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Abstract: In the present paper, we discuss a nonlocal modification of the Kerr metric. Our starting
point is the Kerr–Schild form of the Kerr metric gµν = ηµν + Φlµlµ. Using Newman’s approach, we
identify a shear free null congruence l with the generators of the null cone with apex at a point p in
the complex space. The Kerr metric is obtained if the potential Φ is chosen to be a solution of the
flat Laplace equation for a point source at the apex p. To construct the nonlocal modification of the
Kerr metric, we modify the Laplace operator4 by its nonlocal version exp(−`24)4. We found the
potential Φ in such an infinite derivative (nonlocal) model and used it to construct the sought-for
nonlocal modification of the Kerr metric. The properties of the rotating black holes in this model are
discussed. In particular, we derived and numerically solved the equation for a shift of the position of
the event horizon due to nonlocality. AlbertaThy 5–23.
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1. Introduction

The Kerr metric discovered by Roy Kerr [1] is the most general vacuum solution of
the Einstein equations describing a stationary rotating black hole in an asymptotically flat
spacetime. It is widely used in astrophysics both for the description of the gravitational
field of stellar mass and supermassive black holes as well as in the study of the coalescence
of black holes. The properties of the Kerr metric are well known and are described in a
number of books (see, e.g., [2–7] and references therein). The Kerr metric, besides two
commuting Killing vectors generating time translation and rotation, possesses a hidden
symmetry. Namely, it has a so-called closed conformal Killing–Yano tensor which generates
a second rank Killing tensor [8,9]. As a result, the geodesic equations of motion of a particle
in the Kerr spacetime are completely integrable and the additional quadratic in momentum
integral of motion (Carter’s constant [10]) is constructed by using the Killing tensor. (A
comprehensive discussion of the hidden symmetries in black hole spacetimes and further
references can be found in [11]).

Another remarkable property of the Kerr metric (as well as of its charged version,
the Kerr–Newman metric [12,13]) is that it can be written in the Kerr–Schild form [14]

gµν = ηµν + Φlµlν , (1)

where ηµν is a flat metric, Φ is a scalar field, and l is a tangent vector to a shear-free geodesic
null congruence. It has been shown that these solutions of the Einstein equations can be
obtained by complex coordinate transformations from the Schwarzschild metric [15,16].
In particular, the potential Φ for the Kerr metric can be obtained as a solution of the Laplace
equation in flat coordinates (X, Y, Z)

4Φ = 4π j , (2)

with a point-like source j located at the complex coordinate Z + ia, where a is the rotation
parameter of the Kerr black hole [17,18]. A comprehensive review of the Kerr–Schild
metrics and complex space approaches can be found in [19].
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More recently, the Kerr–Newman representation of the spacetime geometry received
further development and modifications in the so-called double copy formalism. The main
idea of this approach is based on the observation that for the metrics which allow the
Kerr–Schild representation, the non-linear Einstein equations can be reduced to the linear
equations for Maxwell and scalar fields. This observation can be used to simplify calcu-
lations of gravity scattering amplitudes by reducing this problem to the calculation of
the Yang–Mills amplitudes with a subsequent double copy prescription [20–23]. At the
moment, there exist dozens of publications on this subject. Related references can be found,
e.g., in the following review articles [24–27].

In this paper, we propose a model of a nonlocal modification of the Kerr metric and
discuss its properties. The main idea of this approach is the following. We use the Kerr–
Schild ansatz for the metric but modify Equation (2) for the potential and write it in the form

f (4)4Φ = 4π j , (3)

with a specially chosen form factor function f (z). In particular, we assume that the form
factor is chosen such that it does not vanish in the complex plane of z; hence, it has a unique
inverse. As a result, no new unphysical degrees of freedom are present (at least at tree
level). For this reason, such nonlocal (infinite derivative) theories are sometimes referred
to as “ghost-free”. Quite often, the form factor satisfying these conditions is chosen in
the form

f (4) = exp
[
(−`24)N

]
. (4)

Here, N is a positive integer number, and ` plays the role of the fundamental length
specifying a length scale at which the effects of nonlocality become important. One refers
to this kind of nonlocality as a GFN model.

These kinds of models have been studied in many publications starting with the
papers [28–32] . The main motivation for studying such models is the following. It is well
known that the standard Einstein gravity theory is ultraviolet incomplete. In the classical
theory, this incompleteness manifests itself in the inevitable presence of singularities both
in cosmology and in the black hole interior. One can try to improve the ultraviolet behavior
of the theory by adding higher orders in the derivatives of the curvature terms of the
action. However, this usually results in new unphysical degrees of freedom (ghosts)
arising. The interest in the infinite derivative (nonlocal) modifications of Einstein’s gravity
is partially motivated by the hope of overcoming this difficulty.

Solutions for the gravitational field of point-like sources in linearized ghost-free gravity
were obtained and studied in many papers, references to which can be found, e.g., in [33].
A solution of these equations when the source is a rotating infinitely thin massive ring was
found in [34]. Cosmology in the nonlocal stringy models was studied in [35,36]. Exact pp-
wave and gyraton type solutions in the infinite derivative gravity were discussed in [37–39].
Additional references can be found in the reviews [40–45].

In this paper, we consider the following modification of the Kerr solution, which for
briefness we call the “nonlocal Kerr metric”. We start with the Kerr–Schild form (1) of the
metric. We keep the same shear-free, geodesic null congruence l and the same point-like
source j in the complex space as for the Kerr solution. However, we modify the potential
Φ and choose it to be a solution of Equation (3) with a specially chosen (ghost-free) form
factor. Our goal is to obtain such a nonlocal Kerr metric and to study its properties.

Let us stress that such a metric certainly is not a solution to the exact infinite derivative
equations, which are highly non-linear [46]. At the same time, the obtained nonlocal
Kerr metric, written in coordinates similar to the Boyer–Lindquist coordinates, is non-
linear in the mass parameter. It describes a stationary axisymmetric black hole which
differs in several aspects from the Kerr spacetime. Written in the Kerr–Schild form, (1) this
metric, similarly to the Kerr solution, looks like a linear perturbation of the flat spacetime.
However, the coordinate transformation, required to present the metric in Boyer–Lindquist
form non-linearly depends on the scalar function Φ. For this reason, even for the weak
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nonlocality, the nonlocal Kerr metric cannot be obtained by a small change of the mass
parameter M in the Kerr metric, for example, by taking its slight dependence on the radial
and angle coordinates.

The paper is organized as follows. In Section 2, we discuss the Kerr–Schild form of
the metric and describe different coordinates which are used later in the paper. Section 3
discusses a definition of the delta function in the complex space and contains the derivation
of the potential Φ, which is a solution of the Poisson equation with a complex delta function.
A similar solution for an infinite derivative modification of the Poisson equation with the
same point-like source in the complex space is derived in Section 4. This section also
contains a discussion of the properties of the nonlocal potential. In Section 5, we use
the obtained nonlocal potential to recover the nonlocal modification of the Kerr metric.
The spacetime structure of such a black hole, including the shift of the event horizon due
to nonlocality, is also discussed in Section 5. In Section 6, we discuss a limiting case of a
non-rotating nonlocal black hole. Section 7 contains a discussion of the obtained results.
Technical details and calculations required for the derivation of the equation for the event
horizon shift are discussed in the Appendix A.

2. Kerr Metric and Its Kerr–Schild Form
2.1. Kerr Metric

The Kerr metric describing a vacuum stationary rotating black hole written in the
Boyer–Lindquist coordinates is

dS2 = −
(

1− 2Mr
Σ

)
dt2 − 4Mar sin2 θ

Σ dtdφ

+
(

r2 + a2 + 2Ma2r
Σ sin2 θ

)
sin2 θdφ2

+ Σ
∆ dr2 + Σdθ2 ,
Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 .

(5)

Here, M is the black hole mass, and a is its rotation parameter. This metric has two
commuting Killing vectors ξ(t) = ∂t and ξ(φ) = ∂φ (Many useful relations for the Kerr
metric and its Kerr–Schild form can be found in [47]).

The projection of the metric (5) along the orbits of the Killing vectors determines a
smooth two-dimensional space S with metric [48]

dl2 =
Σ
∆

dr2 + Σdθ2 . (6)

The Killing vectors ξ(t) and ξ(φ) satisfy the following circularity condition (see, e.g., [2,5,6])

ξ(φ) [αξ(t)βξ(t)γ;δ] = ξ(t)[αξ(φ)βξ(φ)γ;δ] = 0 . (7)

These relations are necessary and sufficient conditions for the 2-flats orthogonal to ξ(t) and
ξ(φ) to be integrable. Let us denote by Γ the two-dimensional span of the Killing vectors
ξ(t) and ξ(φ). Then, the circularity condition implies that Γ is orthogonal to S.

2.2. Coordinates

In what follows, we shall use several different coordinate systems. Let us describe
them in this section.

Let us first note that for M = 0, the Riemann curvature of the Kerr metric vanishes
and the metric (5) takes the form

d
o
s 2 = −dt2 + dh2 ,

dh2 = Σ
r2+a2 dr2 + Σdθ2 + (r2 + a2) sin2 θdφ2 .

(8)

In this limit, the metric (8) is nothing but the Minkowski metric and its spatial part dh2 is
flat as well. We denote by (X, Y, Z) standard Cartesian coordinates in this 3D space. Then,
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it is easy to check that the coordinates (r, θ, φ) are related to these Cartesian coordinates as
follows

X =
√

r2 + a2 sin θ cos φ ,
Y =

√
r2 + a2 sin θ sin φ ,

Z = r cos θ .
(9)

The coordinates (r, θ, φ) are nothing but standard oblate spheroidal coordinates taking the
following values r ≥ 0, θ ∈ [0, π], φ ∈ [0, 2π]. For r > 0 the surfaces r =const are oblate
ellipsoids. Figure 1 shows the coordinate lines of the oblate spheroidal coordinates (r, θ) in
the plane Y = 0 (φ = 0).

Z

ϕ
θ = 0

θ = π
4

θ = π
2

−a ar = 0

r1 > 0

r2 > r1

θ = π
4

θ = π
2

θ = 3π
4 θ = 3π

4

θ = π

XO

Figure 1. Coordinate lines of the oblate spheroidal coordinates (r, θ) in the plane Y = 0 (φ = 0).

For r = 0 and θ ∈ [0, π], φ ∈ [0, 2π] one has a disc D of radius a located in the Z = 0
plane. The coordinate θ is discontinuous on the disc. For (0, π/2), the coordinate θ covers
the upper part of the disc, while for (π/2, π), it covers the lower part of it. The boundary
∂D of this disc is a ring of radius a. Equations θ = 0 and θ = π describe the axis of
symmetry X = Y = 0. For θ = 0, Z = r is positive, while for θ = π, Z = −r is negative.

The third type of coordinates in the flat 3D space which will be also used in the paper
are the cylindrical coordinates (ρ, z, φ) related to Cartesian coordinates (X, Y, Z) as

ρ =
√

X2 + Y2, z = Z . (10)

In these coordinates, the flat 3D metric is

dh2 = dρ2 + ρ2dφ2 + dz2 . (11)

The cylindrical coordinates are related to the oblate spheroidal coordinates as follows

ρ =
√

r2 + a2 sin θ, z = r cos θ . (12)

The equation of the ring in cylindrical coordinates is ρ = a, z = 0.
Finally, let us introduce the fourth type of the coordinates. For this purpose, we define

a new coordinate, y, related to the angle θ as follows

y = a cos θ. (13)

The equation of the disc D in (r, y, φ) coordinates is r = 0, y ∈ (−a, a), and φ ∈ (0, 2π).
The equations r = 0, y = 0 describe its boundary, the ring ∂D, see Figure 2. This figure also
shows a sphere ∂R of radius a. On its surface, r = |y| and y ∈ (−a, a). Inside the sphere
∂R (in the regionR−), one has r < |y|, while outside (in the regionR+) one has r > |y|.
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a
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Figure 2. The ring ∂D, the disc D, and the ring sphere ∂R.

The flat metric dh2 in the coordinates (r, y, φ) is

dh2 = Σ

(
dr2

∆0
r
+

dy2

∆0
y

)
+

∆0
r ∆0

y

a2 dφ2 ,

Σ = r2 + y2, ∆0
r = r2 + a2, ∆0

y = a2 − y2 .
(14)

One can see that the metric coefficients in (14) are simple rational functions of r and y and
the coordinates r and y enter this metric in a quite symmetric way (These coordinates and
their generalizations in the higher dimensions are naturally connected with the hidden
symmetries of the black hole metrics. In fact, they are eigenvalues of the rank two Killing
tensor generating the hidden symmetry. For more details, see e.g., [11,49]).

2.3. Kerr-Schild Form

Let us consider the following 1-form

lµdxµ = −dt + ε
Σ
∆0

r
dr−

∆0
y

a
dφ , (15)

where ε = ±1. We define a metric

ds2 = d
o
s 2 + Φ(lµdxµ)2 , (16)

where Φ = Φ(r, θ) is some function. Then, the following statements are valid for each of

the metrics ds2 and d
o
s 2. In other words, these statements are valid for an arbitrary function

Φ, including Φ = 0:

• The contravariant components of the vector l in (t, r, θ, φ) coordinates are

lµ =

(
1, ε, 0,− a

r2 + a2

)
;

• l is a null vector l2 = lµlµ = 0;
• Vectors l are tangent vectors to incoming (for ε = −1) or outgoing (for ε = −1) null

geodesics in the affine parameterization, lνlµ
;ν = 0.

• lµ
;µ = ε

2r
Σ

;

• l(µ;ν)l(µ;ν) − 1
2 (l

µ
;µ)

2 = 0 .

The last property implies that the congruence of null vectors l is shear-free (for more
details, see e.g., [50,51]). Such a null geodesic congruence is related to the light cones with
apex on the world-line in the complex space. The twist is a measure of how far the complex
world-line is from the real slice [52].

Let us denote
V = (ξ(t) · ξ(φ))2 − ξ2

(t)ξ
2
(φ) . (17)
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For the metric (16), this quantity is

V =
∆0

y

a2 (∆
0
r − ΣΦ) . (18)

It is easy to check that for a special choice of the function Φ

Φ0 =
2Mr

Σ
, (19)

the metric ds2 given by (16) is Ricci flat, and in fact, it coincides with the Kerr metric.
In order to prove this, it is sufficient to make the following coordinate transformation

t =tBL − ε
∫ 2Mr

∆
dr ,

φ =− φBL + ε
∫ 2Mar

(r2 + a2)∆
dr ,

(20)

where ∆ is defined in (5). These coordinates are chosen so that the non-diagonal components
grtBL and grφBL of the metric ds2 vanish. One can check that the metric ds2 written in the
(tBL, r, θ, φBL) coincides with the Kerr metric dS2, provided one identifies the coordinates
tBL and φBL in ds2 with the standard Boyer–Lindquist coordinates t and φ in the metric (5)
(Let us emphasize that there exists quite an important difference between (t, φ) and (tB, φB)
coordinates. Namely, the Boyer–Lindquist coordinates cover only the exterior of the black
hole, that is, the domain outside the event horizon, while coordinates (t, φ) can “penetrate”
into the interior of the black and white holes).

Carter [2] showed that if the circularity conditions (7) are satisfied, the event horizon
of an arbitrary stationary axially symmetric black hole coincides with the Killing horizon.
The latter is the set of points where

V = 0 . (21)

For the Kerr metric, this condition implies that

r = rH = M +
√

M2 − a2 . (22)

This relation determines the position of the event horizon of the Kerr black hole.

3. Potential Φ0 and a Point Charge in Complex Space
3.1. Complex Delta Function

Let us consider the scalar function Φ0 given by (19) in flat spacetime with the metric (8).
It is easy to check that it satisfies the Laplace equation

4Φ0 = 0 , (23)

where 4 is the standard 3D flat Laplace operator which takes the following form in
Cartesian coordinates

4 = ∂2
X + ∂2

Y + ∂2
Z . (24)

In fact, Φ0 is a very special solution of (23) which has a point-like source in the complex
space. Namely, it can be written in the following form

Φ0 = −8πM<(G0(X, Y, Z + ia)) , (25)

where G0(X, Y, Z + ia) is an analytical extension in the complex domain of the fundamental
solution of the Laplace equation [18].



Symmetry 2023, 15, 1771 7 of 27

To obtain the solution G0(X, Y, Z + ia), let us, following [18,53], define a delta function
in the complex plane. Here and later, we denote

Z = z + ia , (26)

A generalized delta function δ̃(Z) of a complex argument Z is defined as [53]

δ̃(Z) = lim
σ→∞

1
2π

∫ ∞

−∞
e−iZ pe−p2/2σ2

dp . (27)

Here, σ is constant. The Gaussian exponent containing σ is introduced to provide con-
vergence of the integral over p. The prescription limσ→∞ means that the limit σ → ∞
should be taken at the end of the calculations. It should be mentioned that this expression
is divergent in the quadrants |<(Z)| ≤ |=(Z)| and converges to zero everywhere else.
However, if both endpoints of the integration contour are in the convergent sector, the
definition (27) can be used.

Let f (z) be a test function of the complex variable z, which is analytic throughout
the complex plane and decreases sufficiently rapidly at large distances along the real axis.
Then, as it is shown in [18,53], the following relation is valid∫ ∞

−∞
f (x)δ̃(x− z)dx = f (z) . (28)

Using expression (27), it easy to check that δ̃(−Z) = δ̃(Z).
In what follows, we shall be using the real part of the complex delta function

δR(Z) =
1
2
(δ̃(Z) + δ̃(Z̄))

= lim
σ→∞

1
2π

∫ ∞

−∞
cos(zp)eape−p2/2σ2

dp .
(29)

It is easy to check that δR(z + ia) = δR(−z + ia). Hence, this object is an even function
of z. Other properties of the generalized delta function and its application can be found
in [18,53–56].

3.2. Potential of a Point Source in Complex Space

Using the definition of the complex delta-function, one can define G0(X, Y,Z) as a
solution of the following equation

4G0(X, Y,Z) = δ(X)δ(Y)δ̃(Z) . (30)

Here, we use the notation introduced in (26).
Denote ~ρ = (X, Y) and ~η = (ηX , ηY). Then,

δ(X)δ(Y) = 1
(2π)2

∫
e−i~η·~ρd2~η ,

G0(X, Y,Z) = 1
(2π)2

∫
e−i~η·~ρG̃0(~η,Z)d2~η .

(31)

We use the following representation for the function G̃0(~η,Z)

G̃0(~η,Z) = lim
σ→∞

1
2π

∫ ∞

−∞
e−iZ pe−p2/2σ2

G̃0(η, p) dp . (32)

Then, using Equation (30), one finds the Fourier transform G̃0(η, p) of the Green function
G0(X, Y,Z)

G̃0(η, p) = − 1
η2 + p2 . (33)

Here, η2 = ~η 2
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Combining these results, one gets

G0(X, Y,Z) =− 1
(2π)3

∫
d2ηe−i~η·~ρ Y0(η,Z) ,

Y0(η,Z) = lim
σ→∞

∫ ∞

−∞
dp

e−p2/2σ2
e−ipZ

η2 + p2 .
(34)

Here, ~ρ = (X, Y). Let ~η ·~ρ = ηρ cos φ and d2η = ηdηdφ, then the integration over φ in the
range (0, 2π) yields ∫ 2π

0
dφe−iρη cos φ = 2π J0(ηρ) . (35)

Thus,

G0(ρ,Z) = − 1
4π2

∫ ∞

0
dηηY0(η,Z)J0(ηρ) . (36)

This expression shows that written in the cylindrical coordinates, the Green function G0
does not depend on the angle φ. For this reason, instead of the arguments X and Y of the
Green function, we use a polar radius in the cylindrical coordinates ρ =

√
X2 + Y2.

The integral over p for Y0 can be taken with the following result

Y0 =
π

η
lim

σ→∞
exp(

η2

2σ2 − ηZ)(1− erf(
η√
2σ

)) . (37)

Here, erf(z) is the error function of a complex variable z. Its definition and properties can
be found in [57].

The limit σ→ ∞ can be easily taken and one gets

Y0 =
πe−ηZ

η
. (38)

Using this result and expression, (36) one gets

G0(ρ,Z) = − 1
4π

∫ ∞

0
dηe−ηZ J0(ηρ) , (39)

which finally gives

G0(ρ,Z) ≡ − 1
4π
√

ρ2 +Z2
. (40)

It is easy to check that
ρ2 +Z2 = (r + ia cos θ)2 . (41)

The square root has a branch point. In what follows, we use the following prescription√
ρ2 +Z2 = r + ia cos θ, r ∈ [0, ∞], θ ∈ [0, π] . (42)

Here, (r, θ) are oblate spheroidal coordinates (9).
Hence, we can write relation (40) as

G0(r, θ) = − 1
4π

1
r + ia cos θ

= − 1
4π

r− ia cos θ

r2 + a2 cos2 θ
. (43)

This relation implies that

Φ0 = −8πM<[G0(r, θ)] =
2Mr

r2 + a2 cos2 θ
(44)

which correctly reproduces the expression (19).
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Let us note that similar solutions for a point source in the complex space can be found
in the Maxwell theory. Such an electromagnetic field and its properties were studied in [58].
Potential (44) was also used in [59] to construct the Newtonian analogue of the Kerr metric.

4. Potential Φ in an Infinite Derivative Model
4.1. Integral Representation of the Nonlocal Green Function

In order to obtain the nonlocal modification of the Kerr metric, we proceed as follows.
At first, we calculate a nonlocal version of the potential function Φ0. To achieve this, we
consider the following modification of the Equation (30)

f (4)4G(X, Y,Z) = δ(X)δ(Y)δ̃(Z) . (45)

Here, f is a form factor that is chosen so that it does not produce new (unphysical) poles.
For example, one can take it in the form

f (4) = exp[(−`24)N ], ` > 0 , (46)

where N is a positive integer number. Quite often, one refers to this choice of the form
factor as the GFN model.

After solving Equation (45), we define the nonlocal potential Φ as follows

Φ = −8πM<(G(X, Y,Z)) . (47)

To find the nonlocal Green function G(X, Y,Z), we proceed in the same way as in the
previous section. Namely, we use again the Fourier transform in (X, Y) variables

G(X, Y,Z) = 1
(2π)2

∫
e−i~η·~ρG̃(~η,Z)d2~η , (48)

and the following representation for the function G̃(~η,Z)

G̃(~η,Z) = lim
σ→∞

1
2π

∫ ∞

−∞
e−iZ pe−p2/2σ2

G̃(η, p) dp . (49)

Then, using Equation (45) one finds

G̃(η, p) = − 1
f (η2 + p2)(η2 + p2)

. (50)

Here, G̃(η, p) is the Fourier transform of the Green function (45). It depends on the param-
eters ~η and p of this transform with η2 = ~η2. It looks quite similar to the expression (33)
with the only difference that now it contains an extra factor f (η2 + p2) in the denominator
associated with the form factor.

Combining these results, one gets

G(ρ,Z) =− 1
(2π)3

∫
d2ηe−i~η·~ρ Y(η,Z) ,

Y(η,Z) = lim
σ→∞

∫ ∞

−∞
dp

e−p2/2σ2
e−ipZ

f (η2 + p2)(η2 + p2)
.

(51)

Using (35), we can write the expression for G(ρ,Z) in the form

G(ρ,Z) = − 1
4π2

∫ ∞

0
dηηY(η,Z)J0(ηρ) . (52)

For the GFN model, the integral in Y(η,Z) contains an exponentially decreasing factor
∼ exp([−(`2(η2 + p2))N ] which provides the convergence of the integral. For this reason,
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one can simply put σ = ∞ in the integrand (This remark is valid for any sufficiently fast
decreasing at |p| → ∞ form factors).

In the simplest case when N = 1, the form factor takes the form

f (η2 + p2) = eα(η2+p2), α = `2 , (53)

and one has

Y(η,Z) = 2e−αη2
∫ ∞

0
dpe−αp2 cos(pZ)

η2 + p2 . (54)

For this case, the Green function can be found exactly in an explicit form. In what follows,
we shall focus on this case.

4.2. Nonlocal Green Function

Relations (52) and (54) give the required integral representation for the nonlocal Green
function. In fact, this function depends on the polar coordinates ρ and z, so we write it as
G(ρ,Z). For the GF1 model, this Green function can be found in an explicit form. For this
purpose, we use the following relation

d
dα

Y = −A , (55)

where

A = 2e−αη2
∫ ∞

0
dpe−αp2

cos(pZ)

=

√
π√
α

e−αη2
e−Z

2/4α .
(56)

Differentiating (52) with respect to α, one gets

dG
dα

=
1

4π2

∫ ∞

0
dηηAJ0(ηρ) . (57)

Taking this integral, one finds

dG
dα

= K(~X; α) ,

K(~X; α) =
exp

(
− ρ2+Z2

4α

)
8π3/2α3/2 .

(58)

Integration over α and putting α = `2 gives

G(ρ,Z) = − 1
4π

erf
(√

ρ2 +Z2/2`
)

√
ρ2 +Z2

. (59)

Let us note that
ρ2 +Z2 = (r + iy)2, y = a cos(θ) . (60)

Thus, one has

G(r, y) = − 1
4π

erf
(

r+iy
2`

)
r + iy

. (61)

In what follows, we shall use the following properties of the error function

erf(−z) = −erf(z), erf(ζ) = erf(ζ̄) . (62)
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Let us discuss the properties of the obtained nonlocal Green function. It is a function
of the complex variable

ζ =
r + iy

2`
, (63)

and can be written in the form

G(r, y) ≡ G(ζ) = − 1
8π`

erf(ζ)
ζ

, (64)

The function G(ζ) has the following properties

G(−ζ) = G(ζ), G(ζ) = G(ζ̄) . (65)

The potential Φ is obtained by taking the real part of G. One can write

Φ = −4πMGR ,

GR(ζ) = 2Re(G(ζ)) = G(ζ) + G(ζ) .
(66)

In theR+ domain where r > |y|, the error function remains finite at infinity. For fixed
values of r and y, one has

lim
`→0

erf
(

r + iy
2`

)
= 1 . (67)

Thus,

lim
`→0

G(r, y) = − 1
4π

1
r + iy

. (68)

This means that in the local limit, that is, when ` → 0, the constructed nonlocal Green
function correctly reproduces the local Green function (43).

However, this property is violated in R− where r < |y|. In this domain, the Green
function G(r, y) does not properly reproduce the local Green function in the limit ` → 0.
Let us discuss this point in more detail.

At the boundary surface ∂R separating the R+ and R− domains, one has r = |y|.
Calculating the value of GR(ζ) on ∂R, one gets

GR(ζ)|∂R = G[r(1− iλ)] + G[r(1 + iλ)] , (69)

where λ = sgn(y). Let us denote

G̃(ζ) = G(iζ) ,

G̃R(ζ) = G̃(ζ) + G̃(ζ) .
(70)

Using (65), it is easy to check that the value of G̃R(ζ) restricted to the sphere ∂R coincides
with a similar value of GR(ζ)

GR(ζ)
∣∣
∂R = G̃R(ζ)

∣∣
∂R . (71)

We use G̃(ζ) to define the potential Φ in the domain R−. As a result, we obtain the
following expression for the potential Φ which is valid in both domainsR± (see Figure 3)

Φ = µ<
(

erf(ζ)
ζ

)
. (72)
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Here, µ = M/` and

ζ =


r + iy

2`
, r > |y|

y + ir
2`

, r < |y|
(73)

This so-defined potential is continuous at ∂R and has a correct local limit when ` → 0.
Using the definition of the complementary error function

erfc(z) = 1− erf(z) , (74)

one can write the potential Φ in the form

Φ = Φ0 + Ψ . (75)

Here, Φ0 is the potential for the local theory given by (44)

Φ0 = µ<
(

1
ζ

)
, (76)

and

Ψ = −µ<
(

erfc(ζ)
ζ

)
. (77)

The function Ψ describes the nonlocality contribution to the potential Φ. The complex
variable ζ is defined by (73).

Figure 3. Plot of a potential Φ/µ as a function of (r/2`, y/2`).

Before we discuss properties of the nonlocal potential Φ, let us make the following
remark. The function K which enters the Equation (58) has the form

K(~X, α) =
exp

(
− ~X2

4α

)
8π3/2α3/2 ,

~X2 = X2 + Y2 + (Z + ia)2 .

(78)

It is easy to check that this function obeys the following heat equation

∂K
∂α
−4K = 0 , (79)

where 4 = ∂2
X + ∂2

Y + ∂2
Z is the standard flat Laplacian. Thus, K can be considered as a

heat kernel in a space with the interval ~X2. Let us mention that the method of the heat
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kernels has been used earlier for the study of solutions of higher and infinite derivative
linearized gravity equations [40,44,60,61].

The real part of this interval ~X2 is positive in theR+ domain and negative in theR−
domain. The problem with the definition of the Green function in R− is similar to the
problem of defining the heat kernel in the Minkowski space with the Lorentzian signature
of the metric. This problem is solved by using the complex parameter α and choosing a
proper branch of the corresponding complex function. For more details see e.g., [62,63].

4.3. Properties of the Potential

Let us discuss now some of the properties of the potential Φ defined by (72).

4.3.1. Potential Φ at the Ring

To obtain the value of the potential Φring at the ring, r = y = 0, it is sufficient to use
the following expansion of the error function [57,64]

erf(ζ) =
2ζ√

π
+ O(ζ2) . (80)

One has
Φring =

2µ√
π

. (81)

Hence, the potential at the ring is finite and independent of the rotation parameter a.

4.3.2. Potential Φ at the Symmetry Axis

Let us consider the value of the potential Φ at the symmetry axis θ = 0. For θ = π its
value is the same. One has

Φaxis = µ<
(

erf(ζ)
ζ

)
, (82)

where

ζ =


r + ia

2`
, r > |y|

a + ir
2`

, r < |y|
(83)

The plot of Φaxis is shown in Figure 4.

1 2 3 4 5

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4. Plot of the potential Φaxis along the θ = 0 axis as a function of r/2` for a/2` = 1.05.

4.3.3. Potential Φ on the Disc D
The disc D is defined by the equation r = 0, while 0 < |y| < a and φ ∈ (0, 2π) are the

coordinates on the disc. The potential Φ evaluated on the disc is

ΦD = µ<
(

erf(ζ0)

ζ0

)
, (84)

where ζ0 = y/(2`). The plot of ΦD is shown in Figure 5.
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Figure 5. Plot of the potential ΦD on the disc D as a function of ŷ = y/2`.

The point y = 0 corresponds to the ring and the value of ΦD at this point coincides
with (81). For the disc of the radius a the part of the plot in Figure 5 with |y| > a should be
omitted. At the center of the disc of radius a, that is for y = a, the value of ΦD coincides
with the limit r = 0 of the potential Φaxis on the symmetry axis (82).

4.3.4. Potential Φ on the Sphere ∂R
At the sphere ∂R one has r = |y| and the potential Φ is

Φ∂R = µ<
(

erf(ζ0)

ζ0

)
, ζ0 = (1 + i)

r
2`

. (85)

The plot of Φ∂R is shown in Figure 6. For r = 0, that is, on the ring ∂D, the potential Φ∂R
coincides with (81).

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Figure 6. Plot of the potential Φ on the surface ∂R as a function of r̂ = r/2`.

4.3.5. Small ` Limit

One can expect that when ` is small, then Ψ is small as well. Let us discuss this regime
in more detail.

For small `, the argument of the function Ψ defined by (77) becomes large. In both
cases, that is when r > |y| and when r < |y|, one can use the following asymptotic form of
the complementary error function [64]

erfc(ζ) =
1√
πζ

e−ζ2
+ . . . . (86)

The nonlocal contribution to the potential Ψ for small ` is

Ψ(r, y) = − µ√
π
<
(

e−ζ2

ζ2

)
. (87)

5. Nonlocal Modification of the Kerr Metric
5.1. Ergoregion and Its Inner Boundary

We use the Kerr–Schild ansatz and write the nonlocal modification of the Kerr metric
in the form (16), where Φ is the nonlocal potential described in the previous section. Let
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us notice that the quantity ΣΦ depends not only on the “radial” coordinate r, but also on
the “angle” coordinate y. This difference from the standard (local) Kerr metric has several
important consequences

• In a general case, by using transformations similar to (20), one cannot restore the Boyer–
Lindquist form of the metric with only one non-vanishing non-diagonal component
of the metric gtφ;

• The nonlocal version of the metric still has two Killing vectors, ξ(t) = ∂t and ξ(φ) = ∂φ,
but these vectors do not satisfy the circularity conditions (7);

• As a result of the violation of the circularity conditions, in the general case the surface
V = 0 is not the event horizon.

Let us discuss the last point in more detail. The function V vanishes when the following
equation is satisfied

V ≡ ∆0
r − ΣΦ = 0 . (88)

Calculations give

(∇V)2 ≡ V;µV ;µ =
1
Σ

[
∆0

y(Σ∂yΦ + 2yΦ)2

+V(Σ∂rΦ + 2r(Φ− 1))2
]

.
(89)

On the surface SV , where V = 0, the second term in the square brackets vanishes, while
the first one is ∆0

y [∂y(ΣΦ)]2. If ∂y(ΣΦ) 6= 0 and |y| < a, then (∇V)2 > 0. This means that
in a general case, the surface SV outside the symmetry axis is timelike and hence it cannot
be the event horizon.

For the metric (16), a surface SH where gtt ≡ ξ2
(t) = 0 is defined by the relation

Φ = 1 . (90)

This is an infinite red-shift surface. Outside it, a particle can be at rest with respect to
infinity, so that its 4-velocity

Uµ = ξ
µ

(t)/|ξ
2
(t)|

1/2 , (91)

is timelike.
The domain between S0 and SV is the ergoregion. In this domain, a particle can move

along a circular orbit so that its 4-velocity is proportional to a linear combination of the
Killing vectors

ηµ = ξ
µ

(t) + ωξ
µ

(φ)
, (92)

where ω is a constant angular velocity. The vector η is timelike when ω ∈ (ω−, ω+), where

ω± =
−ξ(t) · ξ(φ) ±

√
V

ξ2
(φ)

. (93)

For ω = ω± the vector η is null. At SV

Ω = ω− = ω+ = −
ξ(t) · ξ(φ)

ξ2
(φ)

. (94)

This quantity Ω is known as the angular velocity of the black hole. We call the surface SV
the inner boundary of the ergoregion.

In the Kerr metric, the surface SV coincides with the horizon and hence is null. It plays
the role of a one-way membrane. For the metric (16), with a more general potential function
Φ, the situation is quite different. The surface SV is timelike, and it can be penetrated by
the outgoing particles and light rays.
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The inner boundary r = rV(y) of the ergoregion, where V = 0 is defined by the
equation

r2 + a2 − 2Mr = ΣΨ , (95)

where Ψ is defined by (77). Let us emphasize that this relation is valid for an arbitrary
function Ψ.

For small Ψ the surface SV is located close to the unperturbed Kerr horizon,

r = rH = M + b, b =
√

M2 − a2 . (96)

Let us write
hV(y) = rV(y)− rH , (97)

Then,

ĥV(y) ≡
1
M

hV(y) =
[

Σ
2b

Ψ
]

r=rh

. (98)

For the GF1 model, using the expression (77) for Ψ, one gets

ĥV(y) = − f (x) ,

f (x) =
µ

2b̂
((1 + b̂)2 + (1− b̂2)x2)<

(
erfc(ζ)

ζ

)
.

(99)

where we have defined
x =

y
a

, b̂ =
b
M

, µ =
M
`

. (100)

5.2. Shift of the Event Horizon

For a stationary black hole, the event horizon coincides with the outer trapped surface.
A useful formalism for finding such surfaces was developed by Senovilla [65]. In this
section, we follow this work and apply its results to find the event horizon for the nonlocal
modification of the Kerr metric.

Let us assume that in the vicinity of the horizon, the potential Φ differs from its
unperturbed (classical) value Φ0 only slightly. Hence, Ψ defined by (75) is small, and one
can expect that the displacement h(y) of the horizon for the nonlocal modification of the
Kerr metric rH,` from the Kerr horizon rH is also small and write

r = rH,` ≡ rH + h(y) , (101)

where h(y) is small. At the moment, we do not specify the function Ψ. We only assume
that it is an even function of y. In Appendix A, it is shown that the function h(y) obeys the
following linear second order ordinary differential equation which is valid in the leading
order of the smallness parameter

d
dy

[
(a2 − y2)

dh
dy

]
− (α + β̃y2)h = vΨ ,

α =
b

4M2r2
H

(
M(4M2 + 7Mb + 4b2) + b3) ,

β̃ =
b2

4M2r2
H

, v = − 1
2b

(r2
H + y2)(α + β̃y2) .

(102)

Here, b =
√

M2 − a2.
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5.3. Numerical Results

To find a solution for the horizon shift, it is convenient to write the equation (102) in
dimensionless form by using ĥ = h/M, x = cos θ and (100)

d
dx

[
(1− x2)

dĥ
dx

]
− (α + βx2)ĥ = F(x) ,

β = β̃a2 =
b̂2(1− b̂2)

4(1 + b̂)2
,

α =
b̂

4(1 + b̂)2
(4 + 7b̂ + 4b̂2 + b̂3) ,

F = − 1
2b̂

((1 + b̂)2 + (1− b̂2) x2)(α + βx2)Ψ .

(103)

Since ĥ is an even function of x, it satisfies the following condition

dĥ
dx

∣∣∣
x=0

= 0 . (104)

Both ĥ(x) and F(x) are regular at the symmetry axis x = ±1 and near it they can be
expanded as

ĥ(x) = ĥ0 + ĥ1(1− x2) + O((1− x2)2) ,

F(x) = F0 + F1(1− x2) + O((1− x2)2)
(105)

Substituting these expansions in (103), one obtains the following relation[
dĥ
dx

+
1
4
(α + β)ĥ− 1

4
F

]
x=±1

= 0 . (106)

Equation (103) with boundary conditions (104) and (106) is a well-posed boundary value
problem which can be solved numerically.

Let us first show that for F = 0, the corresponding homogeneous Equation (103)
does not have a regular solution. Since this equation is invariant under the reflection
ĥ(x) → −ĥ(x), it is sufficient to consider only the case when h(0) > 0. Using the initial
condition (104), one has

dĥ
dx

=
1

1− x2

∫ x

0
(α + βx2)ĥ(x)dx . (107)

This relation implies that ĥ(x) is a positive monotonically growing function of x and, as a
result, dĥ/dx infinitely grows at x = 1. (Let us note that for F(x) = 0, Equation (103) has a
form of the equation for the oblate spheroidal angle functions [66]. For a given β, it has
a regular solution only for special values of α, which are the eigenvalues of this problem.
For an adopted form of the coefficients α and β, this homogeneous equation has a only
trivial regular solution, ĥ(y) = 0).

In order to find a numerical solution, it is convenient to use a function ĥ(θ) where
x = cos(θ) for θ = (0, π). One can write (103) in the following form

d2ĥ
dθ2 + cot(θ)

dĥ
dθ
− (α + β cos2 θ2)ĥ = F(cos2 θ) . (108)
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We are looking for a solution ĥ satisfying the condition

dĥ
dθ

∣∣∣
θ=π/2

= 0 , (109)

and which is regular at θ = 0 and θ = π.
We chose now the function Ψ in the form (77). Then, the function F(x) which enters

the right-hand side of (103) takes the form

F(x) = (α + βx2) f (x) , (110)

where x = cos θ and f (x) is given by (99). To find a regular solution with the boundary
condition (109), we used a specially designed solver (This boundary value problem was
solved with pseudo-spectral method, with basis functions bk = cos kθ and Gauss collocation
grid (corresponding to Type II discrete cosine transform). The authors are grateful to Andrei
Frolov for the help). Figures 7–9 show plots of h(θ) and hV(θ) for some selected values of
the parameters µ and b̂.

ĥ



Figure 7. Plots of ĥ (solid line) and ĥV(θ) (dash line) as a function of the angle θ for parameters µ = 3
and b̂ = 0.3 (a = 0.9).

ĥ



Figure 8. Plots of ĥ (solid line) and ĥV(θ) (dash line) as a function of the angle θ for parameters µ = 4
and b̂ = 0.3 (a = 0.9).

ĥ



Figure 9. Plots of ĥ (solid line) and ĥV(θ) (dash line) as a function of the angle θ for parameters µ = 3
and b̂ = 0.9 (a = 0.44).

6. Non-Rotating Black Holes

Let us discuss now the limiting case of a non-rotating black hole when the rotation
parameter vanishes. In this case, the metric is spherically symmetric and all the related
expressions are greatly simplified.
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The metric (8) takes the form

d
o
s 2 = −dt2 + dh2, dh2 = dr2 + r2dω2 ,

dω2 = dθ2 + sin2 θdφ2 .
(111)

This is a flat metric in spherical coordinates. The null vector l has components

lµdxµ = −dt + εdr, lµ = (1, ε, 0, 0) . (112)

Here, ε = −1 for the incoming radial null rays, and ε = 1 for the outgoing ones. We define
a metric

ds2 = d
o
s 2 + Φ(lµdxµ)2 . (113)

Herem Φ = Φ(r) is some function. Written in an explicit form, this metric is

ds2 = −(1−Φ)dt2 − 2εΦdtdr + (1 + Φ)dr2 + r2dω2 . (114)

One can exclude the non-diagonal term gtr of the metric by making the following
coordinate transformation

dt = dtS − ε
Φ

1−Φ
dr , (115)

The metric (113) written in the coordinates (tS, r, θ, φ) is

ds2 = −(1−Φ) dt2
S +

dr2

1−Φ
+ r2dω2 . (116)

Let us note that the time coordinate tS differs from time t in the metric (111). In fact, for
ε = −1 one has

dt = dv− dr, dv = dtS +
dr

1−Φ
. (117)

Here, v is the standard advanced time coordinate. Let us notice that relation (117) is similar
to (20) for the Kerr metric and coincides with the latter in the absence of the rotation. The
coordinates (t, r, θ, φ) which are used in the Kerr–Schild form of the metric (113) cover not
only the black hole’s exterior but also its interior, remaining regular at the horizon.

One can easily recover the Schwarzschild metric by taking the potential Φ to be a
solution of the equation

4Φ = −8πMδ3(~X) . (118)

Here, both the Laplacian4 and delta function δ3(~X) are taken in the real flat space with
metric dh2. The solution is

Φ0 =
2M

r
, (119)

so that the metric (116) is nothing but the Schwarzschild metric.
In order to obtain the nonlocal modification of the Schwarzschild metric, it is sufficient

to choose the potential Φ to be a solution of the equation

f (4)4Φ = −8πMδ3(~X) . (120)

This equation for the nonlocal GFN models with the form factor of the form (4) has been
studied in several publications. For N = 1 and N = 2, the potential Φ(N) can be found in
an explicit analytic form [33,40]
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Φ(1) = 2M
erf( r

2` )

r
,

Φ(2) =
2M
3π`

[
3Γ
(

5
4

)
1F3

(
1
4

;
1
2

,
3
4

,
5
4

;
r4

16`4

)
− r2

2`2 Γ
(

3
4

)
1F3

(
3
4

;
5
4

,
3
2

,
7
4

;
r4

16`4

)]
.

(121)

Here, aFb is the hypergeometric function [67].
For all N, the potentials Φ(N)(r) are finite at r = 0 and they have the following

asymptotic form [40]

Φ(N) = ϕ
(N)
0 + ϕ

(N)
2 r2 + O(r4) ,

ϕ
(N)
0 =

2M
πN`

Γ
(

1
2N

)
,

ϕ
(N)
2 = − 4M

3N`3 Γ
(

3
2N

)
.

(122)

Let us note that for all GFN models, the coefficients ϕ
(N)
0 are finite and positive. For the

non-rotating black hole, the inner boundary of the ergosphere coincides with the event
horizon and its equation is Φ = 1. For the GF1 model, this equation can be written in the
form

µ erf(x) = x, r = 2`x . (123)

7. Discussion

In this paper, we discussed the nonlocal modification of the Kerr geometry. Our
starting point is the Kerr–Schild form of the Kerr metric. The potential which enters this
representation is a solution of the 3D flat Poisson equation with a point-like source shifted
to the complex space. We considered a modification of this equation obtained by changing
the Laplace operator4 by its infinite derivative analog f (4)4. The function f (z) is chosen
so that it does not have zeroes in the complex plane z, so that the form factor operator has
an inverse. We focus on the study of the simplest case, namely, when the form factor has the
form f = exp(−`24). In this case, the potential Φ can be obtained in an explicit analytic
form. We discussed the properties of a rotating black hole in such a nonlocal model.

Let us notice that in order to reconstruct the Kerr metric in Boyer–Lindquist coor-
dinates, one should make a coordinate transformation that contains dependence on the
black-hole’s mass M. As a result, this parameter enters the Kerr metric in the Boyer–
Lindquist coordinates non-linearly. It is easy to check that a simple linearization of the Kerr
metric, by expanding it in terms of the mass parameter and keeping only its zero and first
order in M terms, produces a metric that is singular and does not have a horizon. One can
also check that the nonlocal modification of the Kerr metric presented in this paper, like the
Kerr metric, is regular at the horizon.

The main difference of the nonlocal modification of the Kerr metric discussed in this
paper is that besides the mass M and the rotation parameter a which specify the Kerr
solution, it contains a new parameter ` which controls the nonlocality effects. We did not
specify its value. However, recent experiments showed that Newtonian gravity gave an
excellent fit to the data at least up to the length `Newton = 38.6 µm [68]. This means that
` at least should be less than `Newton. This implies that for astrophysical stellar mass and
supermassive black holes, `/M � 1. One can expect that the corresponding nonlocal
effects for these objects are extremely small and exponentially suppressed. The effects of
the nonlocality discussed in this paper might be important when `/M ∼ 1, that is, for
mini black holes. In particular, the nonlocality may change the properties of its Hawking
evaporation, such as its temperature and anisotropy. One can also expect that the effects of
the nonlocality becomes important at the final stage of the mini black hole evaporation.
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An important property of the Kerr–Schild form of the Kerr metric is that there exists a
coordinate transformation that allows one to recover the Kerr metric which has only one
non-diagonal component, gtφ. This property is not valid for the nonlocal modification of
the Kerr metric discussed in this paper. This property makes this metric quite different
from models of a regular rotating black hole discussed in the papers [69–73].

The modified metric described in this paper still has two commuting Killing vectors.
However, these vectors do not satisfy the circularity condition which plays an important
role in proving the uniqueness theorems for the rotating black hole solutions of the Einstein
equations. One of the interesting consequences of the violation of the circularity condition
is that the event horizon does not coincide with the inner boundary of the ergoregion,
where the invariant V, (17), constructed from the Killing vectors, vanishes.

When the “fundamental length” parameter `, which defines the scale of nonlocality,
tends to zero, the obtained nonlocal potential Φ has the limit Φ0 = 2Mr/(r2 + y2), and the
metric takes the form of the standard Kerr metric. Corrections to the metric in the black
hole exterior are controlled by the dimensionless parameter `/M. When this parameter is
small, the event horizon of the nonlocal black hole is slightly shifted from the Kerr horizon.
In this approximation, we derived and numerically solved the equation that describes this
shift. These results are illustrated by Figures 7–9. Solid and dashed lines represent the
deviation of the modified event horizon and the position of the inner boundary of the
ergoregion with respect to the Kerr horizon.

In the absence of the rotation, that is, in the limit a→ 0, the modified metric contains
two parameters, the mass M and the scale of the nonlocality `. This metric and its properties
are discussed in Section 6. Let us emphasize that in the Kerr–Schild representation, the
potential Φ enters as a perturbation of the flat metric and it is a solution of the linearized
infinite derivative gravity equations. The standard “Schwarzschild”-type form of the
metric (116) is obtained after making the coordinate transformation (117) which depends
on the mass parameter in the non-linear form.

Let us emphasize that the obtained nonlocal Kerr metric is not a solution to the
fundamental nonlocal gravity equations. However, one can expect that it might properly
reproduce some important features of the (unknown at the moment) solution for a rotating
black hole in the consistent nonlocal (infinity derivative) models of gravity.
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Appendix A. Marginally Trapped Surface

The explicit form of the metric (16) in (t, r, y, φ) coordinates for an arbitrary function
Φ = Φ(r, y) is

ds̃2 = −(1−Φ)dt2 − ε
2ΦΣ
∆0

r
dtdr +

2Φ∆0
y

a
dtdφ

+
Σ(ΦΣ + ∆0

r )

(∆0
r )2

dr2 − ε
2ΦΣ∆0

y

a∆0
r

drdφ

+
Σ
∆0

y
dy2 + (∆0

yΦ + ∆0
r )

∆0
y

a2 dφ2 .

(A1)

The contravariant components of this metric are

gµν =


−1−Φ −εΦ 0 aΦ

∆0
r

−εΦ ∆0
r−ΦΣ

Σ 0 ε aΦ
∆0

r

0 0
∆0

y
Σ 0

aΦ
∆0

r
ε aΦ

∆0
r

0
a2(∆0

r−Φ∆0
y)

(∆0
r )2∆0

y

 . (A2)

To find the event horizon in this metric, we follow the recipe described by Senovilla [65].
Because of the symmetry of the metric (16), the horizon surface equation can be written in
the form

r = F(y) . (A3)

Denote
x = r− F(y) , (A4)

and consider a set of 2D surfaces S

t = t0, x = x0 , (A5)

where t0 and x0 are constant parameters. A 2D surface SH with x = 0 is the intersection of
the event horizonH by the 3D surface t = t0. This implies that SH is a marginally trapped
surface. To find the function F(y) which determines SH , we proceed as follows.

First, we change to the (t, x, y, φ) coordinates by using the relations

dr = dx + f (y)dy, f (y) =
dF
dy

, (A6)

and then present the metric (A1) in the form

ds2 = gabdxadxb + 2gaAdxadxA + gABdxAdxB . (A7)

Indices a, b take values 0, 1 while A, B stand for 2, 3, and we denote

x0 = t, x1 = x, x2 = y, x3 = φ . (A8)

The condition that the coordinates xa are constant specifies a 2D surface S , with xA coordi-
nates on it. The metric (A7) in these new coordinates is



Symmetry 2023, 15, 1771 23 of 27

gabdxadxb = −(1 + Φ)dt2 +
2ΦΣ
∆0

r
dtdx

+
Σ(ΦΣ + ∆0

r )

(∆0
r )2

dx2 ,

gaAdxadxA =
ΦΣ f
∆0

r
dtdy +

Φ∆0
y

a
dtdφ

+
Σ f (ΣΦ + ∆0

r )

(∆0
r )2

dxdy +
Φ∆0

yΣ

a∆0
r

dxdφ ,

gABdxAdxB =

Σ((∆0
r )

2 + f 2ΦΣ∆0
y + f 2∆0

y∆0
r )

∆0
y(∆0

r )2
dy2

+
2ΦΣ∆0

y f

a∆0
r

dydφ +
∆0

y(∆0
yΦ + ∆0

r )

a2 dφ2 .

(A9)

Let us denote by γAB a two dimensional metric on S and by γAB its inverse. Follow-
ing [65], we also introduce the following objects

G =
√

det gAB ≡ eU ,

~ga = gaAdxA ,

div~ga =
1
G

(
GγABgaA

)
,B

,

Hµ = δ
µ
a (U,a − div~ga) .

(A10)

A necessary condition for a 2D surface S to be marginally trapped is that κ = 0 [65],
where

κ = −gab HaHb|S . (A11)

Using the GRTensor package in Maple we calculated κ for the metric (A7), (A9) with
an arbitrary potential function Φ(r, y). However, the obtained expression is rather long, so
we do not reproduce it here.

Instead of this, we consider an approximation where the potential Φ is close to its local
limit

Φ0 =
2Mr

r2 + y2 . (A12)

In this case, the horizon surface differs only slightly from the Kerr horizon

r = rH = M +
√

M2 − a2 . (A13)

We denote

F(y) = rH + λh(y), f (y) = λ
dh
dy

,

Φ(r, y) = Φ0 + λΨ(r, y) ,
(A14)

where we have introduced a dimensionless parameter λ which we assume to be small. This
parameter is used to control the order of “smallness" of the different terms that enter the
equations. We restrict our calculations by keeping the zero and first order expressions in
the decomposition over λ. At the end of the calculations, we put λ = 1. For simplicity
purposes, we proceed as follows: First, we omit in the metric coefficients all of the terms
which contain f 2, f ∂µ f and other similar expressions, which are evidently of second order
in λ. After calculating the quantity κ for an arbitrary Φ we use (A14) and omit all of the
O(λ2) terms in the final expression.
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In the adopted approximation, after omitting quadratic in f terms, one obtains the
following expression for the gAB part of the metric (A7)

gABdxAdxB =
Σ
∆0

y
dy2 +

2ΦΣ∆0
y f

a∆0
r

dydφ +
∆0

yΥ

a2 dφ2 .

Υ = ∆0
yΦ + ∆0

r ,

(A15)

and one has

G ≡
√

det gAB =

√
ΣΥ
a

. (A16)

Let us note that the metric coefficients in (A1) and (A9) are functions of (r, y) coor-
dinates. In order to calculate their partial derivatives with respect to (x, y) variables, one
should use the relations

∂B(r, y)
∂x

∣∣∣
y
=

∂B(r, y)
∂r

∣∣∣
y

,

∂B(r, y)
∂y

∣∣∣
x
=

∂B(r, y)
∂y

∣∣∣
r
+ f

∂B(r, y)
∂r

∣∣∣
y

.
(A17)

The t−component of U,a vanishes, while the other component is

U,x =
∂r(ΣΥ)

2ΣΥ
. (A18)

One also gets

div~gt =
1

2ΣΥ2

[
∆0

yΦΥ(2Σ∂y f + f ∂yΣ)

+ Σ f (Υ + ∆0
r )∂yΥ

]
,

(A19)

div~gx =
1

2Σ∆0
r Υ2

[
f ∆0

yΥ(Υ + 3ΣΦ)∂yΣ

+ Σ f ∆0
y(∆

0
r (Υ + Σ))∂yΦ

+ Σ f (ΣΦ(Υ + ∆0
r ) + Υ(2Υ + ∆0

yΦ))∂y∆0
y

+ 2Σ∆0
yΥ(Υ + ΣΦ)∂y f

]
.

(A20)

After substituting these expressions in Hµ defined by (A10), we calculated the quantity
κ. In these calculations, we use the following truncated version of gab in which only the
zero and first order in f is preserved

gab =


−1−Φ Φ 0 aΦ

∆0
r

Φ ∆0
r−ΦΣ

Σ − f ∆0
y

Σ − aΦ
∆0

r

0 − f ∆0
y

Σ
∆0

y
Σ 0

aΦ
∆0

r
− aΦ

∆0
r

0
a2(∆0

r−Φ∆0
y)

(∆0
r )2∆0

y

 . (A21)

Following our approximation, we use again relations (A14) in the obtained expression
for κ while retaining solely the leading-order terms with respect to λ. In particular, this
means that it is sufficient to use the quantity Ψ(rh, y) instead of Ψ(r, y) since Ψ itself is
already is of the first order in λ.

As is expected, the contribution to κ of the order λ0 vanishes since r = rh is the horizon
of the unperturbed Kerr metric. In the first order in λ, the condition κ = 0 gives the
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following differential equation for the function h(y) which describes the displacement of
the horizon for the perturbed metric.

d
dy

[
(a2 − y2)

dh
dy

]
− (α + β̃y2)h = vΨ ,

α =
b

4M2r2
H

(
M(4M2 + 7Mb + 4b2) + b3

)
,

β̃ =
b2

4M2r2
H

,

v = − 1
2b

(r2
H + y2)(α + β̃y2) .

(A22)

Here, b =
√

M2 − a2.
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