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Abstract: In this paper, we present a theoretical scheme for the generation and manipulation of
bipartite atom–atom entanglement in a dissipative optomechanical system containing two atoms
in the presence of linear and nonlinear (quadratic) couplings. To achieve the goal of paper, we
first obtain the interaction Hamiltonian in the interaction picture, and then, by considering some
resonance conditions and applying the rotating wave approximation, the effective Hamiltonian,
which is independent of time, is derived. In the continuation, the system solution was obtained via
solving the Lindblad master equation, which includes atomic, optical and mechanical dissipation
effects. Finally, bipartite atom–atom entanglement is quantitatively discussed, by evaluating the
negativity, which is a well-known measure of entanglement. Our numerical simulations show that a
significant degree of entanglement can be reached via adjusting the system parameters. It is noticeable
that the optical and mechanical decay rates play an important role in the quasi-stability and even
stability of the obtained atom–atom entanglement.

Keywords: dissipative optomechanical system; optomechanical quadratic coupling; bipartite
entanglement; entanglement stability; negativity

1. Introduction

Quantum entanglement is an inseparable member of quantum mechanics, where it
can help one to characterize the boundary as well as the transition between the classical and
the quantum worlds [1–3]. Due to its fundamental role in advanced quantum technologies,
it has become one of the crucial goals of current research in theoretical [4] as well as experi-
mental [5] physics. It has provided a cornerstone for understanding many phenomena in
the quantum world. On the other hand, entanglement provides a fundamental role and
possesses potential application resources in quantum information processing [6], quantum
cryptography [7,8], quantum teleportation [9,10], quantum computers [11], quantum key
distribution [12] and superdense coding [13,14]. Up to now, quantum entanglement has
been measured in many physical objects, such as photons [15], atoms [16], ions [17] and
phonons [18].

Recently, much attention has been paid to the study of cavity optomechanical sys-
tems with linear coupling [18–23], comprising the radiation-induced pressure interaction
between light and mechanical motion in the macroscopic scale. These types of systems pos-
sess a broad range of important applications, which include the ability to generate different
bipartite [24] and tripartite [25] entanglements and sensitive measurements of mechanical
motion [26–28], photon blockade [29–31], phonon blockade [32,33] and optical squeezing,
which were investigated from both theoretical and experimental points of view [34–36]. An
extension of such systems is an optomechanical system with second-order, i.e., quadratic
coupling, wherein nonlinear interaction between photons and phonons provides conditions
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for performing many interesting phenomena, especially squeezing [37–39], photon block-
ade [40–42], which was first presented by Rabl et al [43,44], and phonon blockade [45–49].

Now, we continue with referring to the literature dealing with linear and nonlinear
optomechanical cavities with more details on the squeezing and blockade that have been of
interest in these systems. In [34], two quantum optomechanical arrangements with linear
coupling have been introduced, which are permitted in the dissipation-enabled generation
of steady two-mode mechanical squeezed states. In the first (second) setup, the mechanical
oscillators were placed in a two-mode optical resonator (mechanical oscillators were placed
in two coupled single-mode cavities), where both arrangements are helpful in quantum
information processing. In [37], the authors studied how to achieve mechanical squeezing
via driving the cavity with two beams in optomechanical systems, while their optical cavity
mode is coupled quadratically to the mechanical mode. They numerically showed that, for
high temperatures and in the weak regime coupling, the steady-state phonon distribution
is non-thermal (Gaussian).

An unconventional phonon blockade has been studied through atom–photon–phonon
interaction in a hybrid optomechanical system, which consists of an atom and one or two
(standard) optomechanical cavities with linear coupling [33]. The authors compared the
occurrence of phonon-induced tunneling and different types of phonon blockade using
phonon number correlation functions of different orders for mechanically steady states
created in a one cavity hybrid system. Studies on the phonon blockade have been carried
out analytically and numerically for an optomechanical system with quadratic coupling
in [47], wherein the nonlinear interaction is induced by a driving field through radiation
pressure. The authors explained that the coefficient of this nonlinear interaction can be
adjusted by controlling the amplitudes of the driving field, and phonon blockades are
accessible when the strength of this coefficient is greater than the mechanical damping rate.

In direct connection with the above-mention topic the above-mentioned literature,
in [31], mechanical control of photon blockade and photon-induced tunneling in an op-
tomechanical system with linear coupling have been presented. It has been found that
single-photon, as well as two-photon blockades, both emerge by adjusting the mechani-
cal driving parameters. Photon blockade has been investigated in [40] by evaluating the
second-order correlation function in a quadratically coupled optomechanical cavity, driven
by a monochromatic laser field. By restricting the system within the subspace of zero-,
one-, and two-photon, an approximate analytical expression for the correlation function
is obtained. The authors also numerically studied the correlation function by solving the
quantum master equation, including optical and mechanical losses.

As we established above, these two phenomena, i.e., squeezing and photon or phonon
blockade, have been frequently studied in optomechanical systems with quadratically
coupling, either theoretically or experimentally. However, we now want to examine the
entanglement between the components of these systems, which has been less explored.
In our proposed scheme, we intend to investigate the generation and manipulation of
atom–atom entanglement in an optomechanical system with second-order coupling in
the presence and absence of various sources of losses. It ought to be mentioned that we
consider the linear coupling between photon and phonon, too. This system includes a
single-mode Fabry–Perot cavity, a movable mirror and two two-level atoms, where the
optomechanical system is driven by an external pump field and a classical field, which
interacts with the two atoms. In order to investigate the dynamics of the outlined system,
we first obtain the Hamiltonian in the interaction picture. Then, by considering some
resonance conditions and using the rotating wave approximation, the time-independent
effective Hamiltonian is achieved. By using the Lindblad master equation, the numerical
solution of the system is obtained, by which we were able to evaluate the negativity as one
of the appropriate measures of the two-qubit entanglement. We found that with adjusting
the initial state of the whole system (which includes the atomic coherence angle), the values
of dissipation parameters and pump amplitude, “stable entanglement” with intermediate
or even higher degrees of entanglement can be achieved.
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This paper is organized as follows. In Section 2 of this contribution, we introduce the
model and its dynamical Hamiltonian. Then, we continue with using the master equation
to solve the time evolution of the system numerically. In Section 3, entanglement dynamics
between the two atoms existing in the optomechanical cavity with a quadratic coupling for
some chosen values of the involved parameters and different initial states of the system are
calculated and discussed in detail. At last, in Section 4 we present important points, and a
summary and concluding remarks.

2. Description of the Model and Its Solution

In this section, we introduce our proposed interacting model, its Hamiltonian dynam-
ics description and finally its solution. In fact, we want to study an optomechanical system
that consists of a single-mode Fabry–Perot cavity and a mechanical resonator, containing
two two-level atoms, while linear as well as quadratic photon–phonon coupling are also
taken into account. Moreover, it should be emphasized that we focus our attention to the
influence of the nonlinear coupling in our further procedure. The optomechanical cavity is
driven by an external pump (classical) field with frequency ωp (ωd) and amplitudes Ep (Ω).
The schematic representation of the model is depicted in Figure 1.

Without the mechanical oscillator, the dynamics for the atom–photon interaction is
usually given by the well-known Jaynes–Cummings model (assuming h̄=1):

ĤJC = ωc â† â +
2

∑
j=1

ωatj

2
σ̂zj +

2

∑
j=1

gj(âσ̂+j + â†σ̂−j), (1)

where â (â†) is the annihilation (creation) operator of the optical field with frequency ωc,
whose decay rate is κ. σ̂zj = |e〉j 〈e| − |g〉j 〈g| is the Pauli operator, which is the atomic in-
version operator and which usually describes the two-level system, and ωat1 = ωat2 = ωat
is the transition frequency between the excited |e〉 and ground |g〉 states with a decay
rate Γ. Also, σ̂+j and σ̂−j are the ladder operators of the two-level system, and gj, that is
g1 = g2 = g, denotes the atom–photon interaction strength.

Figure 1. Schematic structure of the considered system. An optomechanical cavity is driven by an
external pump field with frequency ωp and amplitude Ep. Two two-level atoms exist in the cavity,
which interact with the classical as well as the quantized field. The frequency and the amplitude of
the classical field read as ωd and Ω, respectively. The parameters Γ, γm and κ refer to atomic, mirror
and cavity dissipation rates, respectively.

On the other hand, in the absence of atoms, a connection exists between the mechanical
oscillator and a quantized electromagnetic field induced by the optical field generated
through radiation pressure [50]. For the cavity with length L, the corresponding frequency
is ωc = (n + 1

2 )
2πc

L , where n is an integer or half-integer and c is the speed of light. Now, if
the mirror of the cavity mode has a very small displacement x from its equilibrium, i.e.,
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the oscillation of the mechanical oscillator, the Hamiltonian of the optomechanical system
reads as,

ĤOP = ω′c â† â + ωm b̂† b̂. (2)

Since the length of the cavity is no longer constant and depends on the amplitude of
the oscillations, x (where x � L), the frequency of the cavity can be written as follows,

ω′c ' ωc −
ωc

L
x +

ωc

L2 x2, (3)

where the quantized position is written by x̂ =
√

h̄
2mωm

(b̂ + b̂†) with b̂ (b̂†) as the bosonic
annihilation (creation) operator of the mechanical oscillator. In addition, ωm is the mirror
frequency whose decay rate is γm, and m is its effective mass. The Hamiltonian of the
optomechanical system is so obtained as below,

ĤOP = ωc â† â + ωm b̂† b̂− GL â† â(b̂ + b̂†) + GNL â† â(b̂ + b̂†)2, (4)

where GL = ωc
L

√
h̄

2mωm
and GNL = ωc

L2
h̄

2mωm
denote linear and quadratic photon–phonon

coupling coefficients, respectively, which naturally appear in the Hamiltonian. Moreover, a
few studies considered both linear and quadratic orders in their research [39,51].

Now, we are ready to introduce the Hamiltonian of the whole system, which includes
the atom–field interaction, in which there exist both semi-classical as well as full quantum
mechanical approaches for the atom–field interaction and also the mechanical–optical
interaction, as follows (assuming h̄ = 1):

Ĥ(t) = ωc â† â + ωm b̂† b̂ +
ωat

2

2

∑
j=1

σ̂zj + g
2

∑
j=1

(âσ̂+j + â†σ̂−j)

− GL â† â(b̂ + b̂†) + GNL â† â(b̂ + b̂†)2 + Ep(âeiωpt + â†e−iωpt)

+
2

∑
j=1

Ωj(σ̂+je
−iωdj

t
+ σ̂−je

iωdj
t
), (5)

where Ep and Ωj represent the amplitudes of the external pump field and classical field with
frequencies ωp and ωdj

, respectively. Note that we considered the classical field amplitudes
and frequencies of both atoms to be identical (i.e., Ω1 = Ω2 = Ω and ωd1 = ωd2 = ωd).

We now work in a rotating frame and follow the standard linearization method.
Therefore, considering the unitary operator R̂(t) = eiĤ f reet, wherein Ĥ f ree = ωc â† â +

ωm b̂† b̂ + ωat
2 ∑2

j=1 σ̂zj , the Hamiltonian in (5) in the interaction picture can be directly

assessed, using the relation ĤI(t) = R̂(t)ĤR̂†(t)− iR̂(t) ∂
∂t R̂†(t), which results in,

ĤI(t) = −GL â† â(b̂e−iω1t + b̂†eiω1t) + GNL â† â(2b̂† b̂ + 1)

+ g(âσ̂+1e−iω2t + â†σ̂−1eiω2t) + g(âσ̂+2e−iω3t + â†σ̂−2eiω3t)

+ Ω(σ̂−1e−iω4t + σ̂+1eiω4t) + Ω(σ̂−2e−iω5t + σ̂+2eiω5t)

+ Ep(âe−iω6t + â†eiω6t), (6)

where ω1 = ωm, ω2 = ω3 = ωc − ωat, ω4 = ω5 = ωat − ωd and ω6 = ωc − ωp. It should
be noted that in obtaining (6), all of the terms that oscillate with high frequencies (±2iωm)
have been ignored by using the rotating wave approximation.

Now, an effective Hamiltonian can be obtained using the James–Jerk method [52]. Ac-
cording to this method, an interaction picture Hamiltonian of the form ĤI(t) = ∑N

n=1(ĥne−iωnt

+H.c.), can be converted to an effective Hamiltonian Ĥeff = ∑N
p,q=1

1
ω̄pq

[
ĥ†

p , ĥq

]
ei(ωp−ωq)t



Symmetry 2023, 15, 1770 5 of 12

with 1
ω̄pq

= 1
2 (

1
ωp

+ 1
ωq

). At this stage, if we compare the Hamiltonian in (6) with ĤI in the
mentioned method, we can define the operators,

ĥ1 = −GL â† âb̂, ĥ2 = gâσ̂+1, ĥ3 = gâσ̂+2,

ĥ4 = Ωσ̂−1, ĥ5 = Ωσ̂−2, ĥ6 = Ep â. (7)

In addition, by considering ωi(i = 1, 2, · · · , 6) in (6), the time-independent effective
Hamiltonian of the system can be readily found as,

Ĥeff = GNL â† â(2b̂† b̂ + 1)−
G2

L

ω̄11
(â† â)2 +

Ω2

ω̄44
σ̂z1 +

Ω2

ω̄55
σ̂z2

− g2

ω̄22
(â† âσ̂z1 + σ̂+1σ̂−1)−

g2

ω̄33
(â† âσ̂z2 + σ̂+2σ̂−2)

− g2

ω̄23
(σ̂+1σ̂−2 + σ̂+2σ̂−1) +

GL Ep

ω̄16
(âb̂†ei(ω1−ω6)t + â† b̂e−i(ω1−ω6)t)

+
GL g
ω̄12

(âb̂†σ̂+1ei(ω1−ω2)t + â† b̂σ̂−1e−i(ω1−ω2)t)

+
GL g
ω̄13

(âb̂†σ̂+2ei(ω1−ω3)t + â† b̂σ̂−2e−i(ω1−ω3)t)

−
Epg
ω̄26

(σ̂−1ei(ω2−ω6)t + σ̂+1e−i(ω2−ω6)t)

−
Epg
ω̄36

(σ̂−2ei(ω3−ω6)t + σ̂+2e−i(ω3−ω6)t), (8)

where the constant term
E2

p
ω6

in the effective Hamiltonian has been already ignored.
To simplify the effective Hamiltonian in (8), we consider the resonance conditions as
2ωat = ωc + ωd, ωc = ωm + ωp and ωat = ωp. With these chosen conditions, the effective
Hamiltonian becomes as follows,

Ĥeff = GNL â† â(2b̂† b̂ + 1)−
G2

L

ωm
(â† â)2 +

Ω2

ωm
(σ̂z1 + σ̂z2)

− g2

ωm

[
â† â(σ̂z1 + σ̂z2) + σ̂+1σ̂−1 + σ̂+2σ̂−2 + σ̂+1σ̂−2 + σ̂+2σ̂−1

]
+

GL Ep

ωm
(âb̂† + â† b̂) +

GL g
ωm

[
âb̂†(σ̂+1 + σ̂+2) + â† b̂(σ̂−1 + σ̂−2)

]
−

Epg
ωm

(σ̂+1 + σ̂−1 + σ̂+2 + σ̂−2). (9)

To investigate the dynamical evolution of the system, we should first introduce an
initial state of the whole system. Accordingly, we choose,

|ψ(0)〉 = (cos θ |e1, e2〉+ sin θ |g1, g2〉)⊗ |1 f , 0m〉 , (10)

where θ denotes the coherence angle of the initial state of atoms, and by |1 f , 0m〉 we
assumed that we have one photon in the optical cavity with vacuum state of the
mechanical mode.

To discuss the dynamical evolution of the system, we use the master equation [53],

∂ρ̂

∂t
= −i[Ĥeff, ρ̂] +

Γ
2

2

∑
j=1

(2σ̂−jρ̂σ̂+j − σ̂+jρ̂σ̂−j − ρ̂σ̂+jσ̂−j)

+
κ

2
(2âρ̂â† − â† âρ̂− ρ̂â† â) +

γm

2
nth(2b̂†ρ̂b̂− b̂b̂†ρ̂− ρ̂b̂b̂†)

+
γm

2
(nth + 1)(2b̂ρ̂b̂† − b̂† b̂ρ̂− ρ̂b̂† b̂), (11)
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where ρ̂ is the system density matrix. We assume that the cavity field is connected to
a vacuum bath, while the oscillator environment is a heat bath at temperature T and
nth = [exp(ωm/kBT)− 1]−1 is the equilibrium thermal phonon occupation number, with
kB being the Boltzmann constant. In the next section, we concentrate on the evaluation of
the temporal behavior of the atom–atom entanglement.

3. Results and Discussion: Atom–Atom Entanglement Dynamics

As is known, the entanglement in quantum macroscopic systems is of vital and
fundamental importance. Considering this fact, the main goal of the present work is
to evaluate the bipartite atom–atom entanglement in an optomechanical macroscopical
system, which we discuss in detail. In order to investigate the degree of entanglement
of the above-mentioned system, we use the quantitative measure of negativity which is
explained by the relation N(ρ̂) =‖ ρ̂TA ‖A −1 [54]. It can be seen that this measure is
dependent on the trace norm of the bipartite density matrix ρ̂TA , where the trace norm of
ρ̂TA is equal to the sum of the absolute values of the eigenvalues of ρ̂TA . The value of this
measure can vary from 0 to 1; if the state completely possesses entanglement, then N = 1,
but if we have a separable state, it reads N = 0.

Our goal of the paper is to achieve a stable and significant amount of entanglement
which is applicable in various protocols of quantum information processing. Before paying
attention to the details of each drawn figure, notice that we plotted Figures 2–5 with the
initial state (10), wherein various superpositions of atomic states with different values of
coherence angles θ in (10) are considered . However, in Figures 6 we considered the initial
atomic state as |ψ(0)〉at = |e1, e2〉; in other words, we set the coherence angle in (10) to be
zero. Moreover, in both of the above-mentioned sets of plots, we have chosen the initial
optical and mechanical state as |ψ(0)〉opt−mech = |1 f , 0m〉.

In the continuation, we are going to present a few words about the feasibility of our
model parameters in the laboratory to arrive at the suitable conditions for achieving a
stable and significant degree of entanglement. By examining and studying the experimental
works which have been carried out in the literature, the frequency and length of the
cavity are of the order ωc = 102 THz and L ' 10−5 m, respectively. Also, the effective
mass and frequency of the mechanical oscillator can be selected as m ' 10−15 kg and
ωm = 10 MHz [55,56], respectively. Regarding the mentioned experimental values we
have, therefore, the linear phonon–photon coupling of the order GL ' 1 MHz. Also, atom–
field and photon–phonon couplings are considered such that GL ' g, which reproduces
the experimental conditions [55]. In addition, the quadratic coupling in optomechanical
systems can be determined via the relation GNL = 1

2 ω
′′
c (0)x2

zpf (which is equivalent to our

previous definition after (4) by setting ω
′′
c (0) = ∂2ω′c/∂x2 = ωc/L2 and x2

zpf = h̄/2mωm,
which refer to the mechanical zero fluctuation). This definition reflects the fact that the
nonlinear coupling is typically weak. However, this coupling strength can be enhanced via
improvement of ω

′′
c (0) [57,58]. For instance, in [59], using a fiber cavity, the value of ω

′′
c (0)

has been considerably improved from 30 MHz/nm2 to 20 GHz/nm2. Accordingly, the
nonlinear coupling strength (GNL ) from the order of kilohertz can be easily reachable [57].
Altogether, based on theoretical estimation in the pioneering literature [40,60], the quadratic
coupling in the optomechanical systems has to be considered as GNL ' 0.7 MHz.

In Figures 2 and 3, by removing the dissipative effects and in the absence of the field
pump and the classical field, the entanglement dynamics fluctuate as a regular periodic
function of the scaled time. Figure 2 is drawn for different values of θ = π/4, π/6, π/8,
which correspond to the initial entanglements 1, 0.6 and 0.35, respectively. As is observed,
as time goes on, negativity regularly oscillates while its picks are at the same initial values.
In Figure 2a, its minimum value is '0.3, while in Figure 2b,c, zero values of negativity
are reached, i.e., death of entanglement; however, then its alive can be observed. In
Figure 3, all parameters are similar to Figure 2, but for fixed θ = π/4, wherein we want to
investigate the effect of the quadratic coupling coefficient on atom–atom entanglement. We
can see that by increasing this coefficient from 0 to 0.4g, the maximum accessible value of
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entanglement, 1, is achievable, while the minimum value of entanglement increases from 0
to ' 0.5. Therefore, there may be an optimal nonlinear coupling, by which the two-qubit
entanglement opposes a further decrease in its initial value in each period of time.

0 20 40 60 80 100
gt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N

= 4

(a)

0 20 40 60 80 100
gt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N

= 6

(b)

0 20 40 60 80 100
gt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N

= 8

(c)
Figure 2. Negativity as a function of the scaled time for different coherent angles, i.e., θ = π/4
(a), π/6 (b), π/8 (c). Other parameters in (a–c) are chosen as ωm = 5g, GL = 1.4g, GNL = 0.2g,
Ω = Ep = Γ = γm = κ = nth = 0.
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(a)
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(b)
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1.0

1.2

N
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(c)
Figure 3. Negativity as a function of the scaled time for different values of nonlinear optomechanical
term, i.e., GNL = 0 (a), 0.2g (b), 0.4g (c). Other parameters in (a–c) are chosen as Figure 2, except that
θ = π

4 .
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Figure 4. Negativity as a function of the scaled time for different values of atomic (a) and phononic
(b) decay rates. The chosen parameters are as in Figure 2, except that θ = π

4 and in (a) Ω = 0.01g and
in (b) Ω = 0.
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Figure 5. Negativity as a function of the scaled time for different values of photonic decay rates
(a) and pump field amplitudes (b). The chosen parameters are as Figure 2, except that θ = π

4 .

Now, we investigate the time evolution of entanglement under the influence of damp-
ing rates (which include atomic, photonic and phononic decay rates) and external pump
field amplitude. As you can see in Figure 4, we investigated the effect of atomic and
phonon losses on the dynamics of atom–atom entanglement. Regarding Figure 4a, it can be
observed that by increasing of the atomic damping rate from 0.01g to 0.1g, entanglement
oscillates, while its amplitude and its picks are decreased, such that, in a limited time
interval, it reaches zero. The number of oscillations is decreased by increasing this decay
parameter, in such a way that for Γ = 0.1g, it suddenly decreases from 1 to 0 without
any oscillation. Figure 4b is plotted for different values of mirror mechanical loss. As can
be seen, some oscillations with decreasing its maximum values are observed. In more
detail, the increase in this dissipation parameter leads to the decrease in entanglement.
Moreover, in all cases, stability may be achieved, however, in longer times than the previous
numerical results. In Figure 5, we aim to investigate the influences of optical field loss and
external pump field amplitude on the negativity. In Figure 5a, we can see that by keeping
a fixed value for the pump field amplitude, in the presence of field loss rate, again the
entanglement oscillates with decreasing its maxima. However, this dissipation parameter
has optimal value κ = 0.1g (0.05g) in our simulation, for which entanglement stability
is achieved sooner (later). But, in Figure 5b, by keeping the photon dissipation rate as a
constant κ = 0.1g, we want to evaluate the effect of external pump field amplitude on the
negativity. As is obvious, with the lower value of the pump field, the entanglement stability
can be seen. However, with increasing the pump amplitude, fluctuations increase and the
stability is gradually destroyed. In particular, in the case of γm = 0.1g, the entanglement
has a more rapid damping behavior such that in the scaled time gt ' 70 the negativity
dies, but it is revived again and, after some duration of time, again the stable entanglement
arrives at the value N ' 0.2.



Symmetry 2023, 15, 1770 9 of 12

0 50 100 150 200 250 300 350 400
gt

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N

m = 0.01g
m = 0.05g
m = 0.1g

(a)

0 20 40 60 80 100
gt

0.0

0.2

0.4

0.6

0.8

1.0

N

= 0.01g
= 0.05g
= 0.1g

(b)

Figure 6. Negativity as a function of the scaled time for different values of phononic (a) and photonic
(b) decay rates. The chosen parameters are as Figure 2, except that θ = 0 and in (a) Ep = 0 and in
(b) Ep = 0.001g.

In the following, we want to investigate the atom–atom entanglement with an initial
separable state, i.e., its negativity is zero at t = 0. We want to check whether or not the
stability of entanglement can occur in the presence of optical (Figure 6a) and mechanical
(Figure 6b) dissipations for the initial separable state, similar to the initial entangled
state (10). It can be seen from Figure 6a that, in this case, the initial state of the system is
non-entangled, however, the entanglement increases from zero, its fluctuations decrease
with the increase in phonon loss rate, and, after elapsing nearly 150 units of the scaled
time, stability has been reached in its maximum possible value, interestingly. While, in
Figure 6b, with the increase in the photon loss rate from 0.01g to 0.1g, entanglement has
been reduced. Moreover, for κ = 0.1g, a substantial reduction in negativity occurs, and
at gt ' 80, entanglement has completely died (entanglement sudden death occurs). In
general, it can be observed that with the increase in the phonon loss rate, unlike the photon
loss effect, the entanglement reaches its stable value. Finally, it should be noted that the
amount of stable entanglement is highly dependent on the phonon damping rate.

4. Summary and Conclusions

In summary, we analyzed an efficient scheme to produce stable bipartite entanglement
between two two-level atoms in the absence and under the influences of dissipative effects,
with the help of the negativity criterion. In our model, we considered an optomechanical
system with linear and quadratic photon–phonon couplings, consisting of a single-mode
Fabry–Perot cavity field, which possesses a movable mirror and two two-level atoms exist
within it, while the system is driven by two external fields. It is noticeable that, while usu-
ally in the literature only the first or the second order of nonlinearity is considered, we did
not ignore any of them, as in the very few references [39,51]. After obtaining the interaction
Hamiltonian in the interaction picture, the effective Hamiltonian that is independent of time
is derived by considering some resonance conditions and the rotating wave approximation.
Via the Lindblad master equation, with the effective Hamiltonian of the system, we arrived
at the system solution with the existing dissipations arising from atomic, optical and me-
chanical sources. Then, using the negativity criterion, the entanglement dynamics between
the two atoms were analyzed. By considering the appropriate initial states of atoms, the
optical field and the mechanical mode, to make it close to experimental reality we have
used some laboratory reachable parameters in the typical optomechanical systems [55,56].
Overall, what one may generally conclude from our presented numerical results is that the
effect of dissipation parameters is unpredictable and depends highly on the other chosen
parameters. In all presented plots, the entanglement oscillates between some maxima and
minima, however, among them, there are cases that are more interesting from the point
of view of the stability of entanglement. In this regard, we want to emphasize that the
atom–atom quasi-stable and even stable entanglement can be observed in the presence of
photon as well as phonon dissipation rates. We end this conclusion section by emphasizing
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that all of the observed entanglement dynamics in this paper, i.e., moderate or high degree,
and particularly its stability, are interesting and significant for experimental purposes in
different practical protocols in quantum information science and technology platforms.
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