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Abstract: Accurate calculation of the electromagnetic force distribution of transformer windings
under different loads and fault conditions is of great significance for transformer maintenance,
condition evaluation and life prediction. Due to the influence of offshore wind power systems,
offshore wind power transformers have high harmonic content and large changes in load rates, which
can easily cause the coil destabilization, winding deformation or even damage because of the uneven
distribution of the electromagnetic force. To improve the accuracy of electromagnetic force calculation,
this paper proposes a fractional order numerical method. First, a three-dimensional axisymmetric
transformer model and a symmetrical lumped parameter equivalent circuit model are established,
respectively, based on field-circuit coupling. Second, the fractional order approximation of circuit
components is realized by using the improved Oustaloup filter. In the fractional order model, the
transformer is replaced by the lumped parameter equivalent circuit model. Third, as in the calculation
process for integer order electromagnetic force, the integer order current has a large error, and the
current waveform does not match the actual power frequency. The fractional order current and
electromagnetic force at the 0.9 order are closer to the rated value. Finally, the effects of different load
rates, three-phase short circuits and harmonic conditions are studied with the fractional order model.
Compared with the traditional integer order finite element electromagnetic model, the fractional order
equivalent circuit model established in this paper is more accurate and suitable for electromagnetic
force calculation. The proposed method is significant for the structural design and state detection of
transformers and also could be applied in the analysis of other dry-type transformers.

Keywords: offshore wind power transformer; fractional order; electromagnetic force; parameter
circuit; finite element method

1. Introduction

The offshore wind power transformer is an important item that connects the offshore
wind power generator set and the power network. Because of the high humidity and salt
spray in the marine environment, the operating conditions are not stable enough; there
can be more fault states such as overload, short circuits, etc., which would produce an
uneven distribution of electromagnetic force of windings and cause winding deformation,
insulation damage, transformer scrapping, or even system collapse [1–3]. Nowadays,
with the increasing application of power electronic devices in double-fed wind generators,
increasing the harmonics causes a significant increase in transformer winding stress [4]. By
accurately calculating the electromagnetic force in the winding, the operating conditions
can be quickly determined to ensure the safety and stability of the transformer.

In recent years, scholars have conducted extensive research on the analysis of electro-
magnetic force and stress characteristics of transformers. The authors of [5] established a
field-circuit coupling model to calculate the axial electromagnetic force of a winding and
proposed dual frequency characteristics of an axial short-circuit electromagnetic force. A
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circuit-magnetic field-solid mechanics multi-physics coupling model was built in [6], and
the influence of transformer stress characteristics on the change in winding mechanical
conditions was studied. By combining the model with vibration signal measurement, the
operating conditions of transformer windings were quickly detected. The authors of [7]
made a three-dimensional multilayer transformer model of a transformer based on mag-
netic field-solid mechanics coupling, and simulated short-circuit electromagnetic force and
found that the middle layer of the winding was subjected to larger radial electromagnetic
force, while the layers at both ends were subjected to larger axial electromagnetic force.
The influence of the short-circuit impedance of a three-phase power transformer on the
cumulative effect of the electromagnetic force was evaluated in [8] by a finite element
analysis model.

Due to the high cost and destructive nature of short-circuit impact tests of transform-
ers, the simulation calculation method is widely used to analyze the electromagnetic force.
The lumped parameter equivalent circuit model is used in simulation calculations because
the model is simple and the computation is convenient. Authors of [9] studied the time-
domain mathematical model of oscillating waves with capacitance and inductance matrix
parameters, and found that the variation of capacitance parameters under an axial dis-
placement fault had a significant effect on the oscillating waves. Authors of [10] analyzed
the transformer winding characteristics and obtained a node voltage response. Authors
of [11] studied the variation trend of sweep frequency impedance curves when short-circuit
faults occurred on different windings, and analyzed the influence of short-circuit faults
within different windings on sweep frequency impedance curves. The sweep frequency
impedance curve showed obvious change under a short-circuit fault.

Since capacitors and inductors are essentially fractional order, the integer order capac-
itance and inductance parameters used in traditional transformer models can no longer
accurately describe the characteristics of offshore wind power transformers [12]. Jonscher
pointed out that the capacitive reactance form of integer order capacitance violated the
fractional order characteristics of dielectric materials [13]. Under the study of H. M. Sri-
vastava, fractional calculus began to become an independent and complete discipline [14].
The authors of [15] measured the orders of fractional capacitance in different dielectrics
by experiment in 1994. A dual impedance converter based on fractional order inductance
and capacitance was proposed in [16], which transmitted the complex impedance source
of any frequency to two frequency loads through a fractional order inductance and two
fractional order capacitances. Authors of [17] studied four passive synthesis methods for a
fractal order circuit model, which described the physical significance of components better
and improved the accuracy of the model. A new operator called conformable derivative
in the Caputo sense was proposed in [18] and derived the solution for the two-parameter
operator of a circuit containing two supercapacitors. The operator could be extended for
circuits containing any number of elements.

With the development of fractional order theory, modeling and simulation technol-
ogy and control strategies for electrical equipment have been widely developed. A low-
pass virtual filter for wind energy conversion systems was proposed in [19] to smooth
the output power; the high-frequency term was restrained, and the wind power fluctu-
ation was mitigated with the proposed virtual filter. The authors of [20] proposed an
improved fractional-order sliding mode controller to optimize the adaptive fractional-order
sliding-mode disturbance observer and realized the theoretical frequency regulation of a
hybrid wind–diesel-based power system. The proposed resilient fractional-order nonlin-
ear controller was capable of countering unknown or uncertain system disturbances. A
fractional-order recurrent neural network was proposed in [21] to realize an optimal ma-
neuvering decision-making algorithm, which improved the convergence rate and reduced
the optimization error by the fractional-order parameter.

In this paper, the fractional order characteristics of circuit components are well
described by using a fractional order filter, and a fractional order-lumped parameter-
equivalent circuit model is proposed to realize the fast and accurate calculation of the
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electromagnetic force. A 35 kV offshore wind power dry-type transformer is taken as the re-
search object, and the three-dimensional axisymmetric geometric model of the transformer
is established by the finite element method. Based on the field-circuit coupling method, the
results of the fractional order numerical method are compared with the traditional integer
order finite element method for the calculation of electromagnetic force of the transformer
winding. The accuracy and correctness of the fractional order model are verified. This new
stress calculation method provides guidance for the operating condition evaluation and
process design of transformers.

2. Finite Element Model and Simulation

An existing 35 kV offshore wind power transformer is taken as the research object
in this paper [22]. Based on electromagnetic coupling theory, a finite element simulation
model of the wind power transformer is established. The transformer has a three-phase
symmetrical structure; it uses epoxy resin as the insulation material, the high- and low-
voltage windings are a segmented structure, and the insulation class is F. The transformer
parameters are shown in Table 1.

Table 1. Parameters of dry-type transformer.

Parameters Value Parameters Value

rated capacity 8000 kVA rated frequency 50 Hz

rated voltage 35 kV/6.3 kV rated current 132 A/733 A

core height 2630 mm core radius 240 mm

turns of high-voltage winding coil 399 turns of low-voltage winding coil 113

high-voltage winding segments 9 low-voltage winding segments 2

height of each part of high-voltage winding 130 mm height of each part of low-voltage winding 680 mm

inner radius of high-voltage winding 440 mm inner radius of low-voltage winding 283 mm

outer radius of high-voltage winding 555 mm outer radius of low-voltage winding 370 mm

To simplify the calculation, the finite element model is set as follows:

1. Since the clamp, pad and base are directly ignored for almost having no influence
on the leakage magnetic field, only the structural models of the core, winding and
insulation are built in the model;

2. The iron core is regarded as a whole, and the influence between silicon steel sheets of
the iron core is negligible;

3. The winding shape is simplified into a cylinder.

The three-dimensional finite element model of the transformer is shown in Figure 1.
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The mesh division is finely processed to obtain more accurate simulation calculation
results. The mesh results for the finite element model are shown in Figure 2.
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As the transformer has a symmetrical structure, we can take one phase winding to
simplify the calculation. By using the finite element transient solution type, the current of
the A-phase winding is obtained as shown in Figure 3.
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The magnetic flux density of the A-phase winding is simulated by using the finite
element method. The results are shown in Figure 4.

The magnetic flux density value for the high-voltage winding is smaller on the outer
side of the winding and larger on the inner side of the winding. On the inner side of
the high-voltage winding, the magnetic flux density is relatively small in the first and
ninth segments, but relatively large in the second, third, fourth, sixth, seventh, and eighth
segments. Overall, it is symmetrically distributed along the axial direction.

The magnetic flux density value of the low-voltage winding is larger on the outer
side of the winding and smaller on the inner side of the winding. On the outer side of
the low-voltage winding, the magnetic flux density is relatively small at both ends of the
winding and relatively large in the middle of the winding. Overall, it is also symmetrically
distributed along the axial direction.
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Figure 4. The magnetic flux density of A-phase winding.

The current density and magnetic flux density affect the electromagnetic force. Accord-
ing to the Maxwell equation, the magnetic field can be described by the following equation:

∇2 A = −µJ (1)

The magnetic flux density can be derived as:

Br = −∂A/∂z (2)

Bz = −∂(rA)/∂r (3)

B =
√

B2
r + B2

z (4)

where B is the magnitude of the magnetic flux density, Br is the magnetic flux density in
the radial direction, Bz is the magnetic flux density in the axial direction, A is the magnetic
vector potential, µ is the magnetic permeability of the electromagnetic field.

The electromagnetic volume force can be expressed by the Lorentz law:

f = J × B (5)

where f is the electromagnetic volume force, J is the volume current density, B is the
magnetic flux density.

The electromagnetic force per unit volume and electromagnetic force magnitude of
the A-phase winding is calculated by using the finite element field calculator. The results
are shown in Figures 5 and 6.

The per-unit volume electromagnetic force of the winding is symmetrically distributed
along the axial direction, just like the magnetic flux density. Since the direction of current
between the low-voltage and high-voltage windings is opposite, the low-voltage winding
is subjected to inward force, while the high-voltage winding is subjected to outward force.
When the distribution of electromagnetic force in the winding changes, the winding may
break down because of insufficient mechanical strength.
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The accuracy of the finite element method is offset by its complicated steps and
long computational time while obtaining the distribution of electromagnetic force and the
electromagnetic force magnitude of the winding. Therefore, it is necessary to establish
an accurate circuit model to obtain high-accuracy calculation results of electromagnetic
force values.

3. Parameters of Circuit Components
3.1. Resistance

In the lumped parameter circuit model, the resistance of each winding is the total of
the resistance values of all turns in the coils connected in series, and the whole resistance
expression is:

R = N
ρl
S

(6)
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where R is the resistance of the coil, ρ is the conductivity of the conductor, l is the length of
the coil in each segment of winding, S is the cross-segmental area of the coil, and N is the
number of turns of the coil.

3.2. Inductance

The formula for calculating the coefficient of self-inductance of a coil containing an
iron core is:

L =
µSN2

l
(7)

where L is the self-inductance of the coil, µ is the magnetic permeability of the media, S is
the cross-segmental area of the coil, l is the length of the coil, and N is the number of turns
of the coil.

The mutual inductance between two coils can be solved with the Neumann formula
as in the following expression:

M12 =
ϕ12

I1
=

µ0N1N2

4π

∮
l1

∮
l2

dl1 · dl2
r

= M21 (8)

where M12 and M21 are the mutual inductance between two coils, ∅12 is the magnetic flux
between two coils, I1 is the current of one coil, µ0 is the vacuum permeability, N1, N2 are
the number of turns of two coils, r is the distance between the two coils, and l1, l2 are the
average turn lengths of two coils, respectively.

Due to the uneven distribution of the magnetic field inside the transformer and
the existence of the leakage field, the parameters calculated by the formula method are
inaccurate [23]. This paper integrates an inductance matrix calculation module into the
magnetic field solver to obtain the self- and mutual-inductance parameters of the winding.
The current source is set as 1 A in the winding coil to calculate the inductance by using the
magnetic field energy principle.

L =
2Wm

I2 =

∫
V HBdV

I2 (9)

where Wm is the energy of the magnetic field generated in each segment of the winding, L is
the self-inductance of each segment of the winding, I is the value of the winding current,
H is the magnetic flux density in each segment of the winding, B is the magnetic induction
intensity in each segment of the winding, V is the total spatial area of the winding model.

The expressions for the equivalent mutual inductance between the two windings are:

W12 =
1
2

(
L1 I2

1 + L2 I2
2 + 2MI1 I2

)
(10)

M =
2W12 − L1 I2

1 − L2 I2
2

2I1 I2
(11)

where W12 is the magnetic field energy between two windings, M is the mutual inductance
between two windings, L1, L2 are the self-inductance of two windings, respectively, and
I1, I2 are the currents of two windings, respectively.

3.3. Capacitance
3.3.1. Coupling Capacitance between Windings

Since the transformer windings have nine segments in the high-voltage windings and
two segments in the low voltage windings, the coupling capacitances between windings
include coupling capacitances at the same horizontal position and at different horizontal
positions. Figure 7 shows the coupling capacitance between high-voltage windings and low-
voltage windings and the coupling capacitance between adjacent high-voltage windings.
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The capacitance matrix calculation module is applied in the electrostatic field solver
to solve the capacitance parameters of the winding. The voltage source is set as 1 V in the
winding coil to calculate the capacitance by using the electric field energy principle.

C =
2We

U2 ==

∫
V DEdV

U2 (12)

where C is the coupling capacitance between windings, U is the voltage source, We is the
electrostatic field energy, D is the flux density, and E is the electric field strength of the
electrostatic field. The total electric field energy between the windings can be calculated
from the finite element, and thus, the capacitance can be calculated. Some calculation
values are shown in Table 2.

Table 2. Values of coupling capacitance between windings.

Winding Number Capacitance Value/pF

A1-a1 144.73
A1-a2 59.781
A1-B1 48.546
A1-B2 50.256
A1-B3 50.846
A1-B4 51.192
A1-B5 50.623
A1-B6 48.523
A1-B7 46.530
A1-B8 44.944
A1-B9 42.834

3.3.2. Coupling Capacitance between Windings and Ground

The simulation model of capacitance between windings and ground is shown in
Figure 8. Taking the A-phase windings as the example, we set the core, epoxy resin, low-
voltage winding and the other eight segments of the high-voltage winding to zero potential.
Equation (12) is used to calculate the value.



Symmetry 2023, 15, 1768 9 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 9 of 24 
 

 

the electrostatic field. The total electric field energy between the windings can be calcu-
lated from the finite element, and thus, the capacitance can be calculated. Some calculation 
values are shown in Table 2. 

Table 2. Values of coupling capacitance between windings. 

Winding Number Capacitance Value/𝒑𝑭 

A1-a1 144.73 

A1-a2 59.781 

A1-B1 48.546 

A1-B2 50.256 

A1-B3 50.846 

A1-B4 51.192 

A1-B5 50.623 

A1-B6 48.523 

A1-B7 46.530 

A1-B8 44.944 

A1-B9 42.834 

3.3.2. Coupling Capacitance between Windings and Ground 

The simulation model of capacitance between windings and ground is shown in Fig-
ure 8. Taking the A-phase windings as the example, we set the core, epoxy resin, low-

voltage winding and the other eight segments of the high-voltage winding to zero poten-
tial. Equation (12) is used to calculate the value. 

High-voltage 

winding

CoreEpoxy resin

Low-voltage 

winding

 

Figure 8. Simulation model of capacitance to ground. 

Because the transformer is symmetrical, the values of capacitances between windings 

and ground in the B and C phases can be obtained by calculating values in the A phase. 
The calculation values are shown in Table 3. 
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Because the transformer is symmetrical, the values of capacitances between windings
and ground in the B and C phases can be obtained by calculating values in the A phase.
The calculation values are shown in Table 3.

Table 3. Values of coupling capacitance between windings and ground.

Winding Number Capacitance Value/pF

a1-ground 34.210
a2-ground 38.857
A1-ground 32.232
A2-ground 33.291
A3-ground 34.228
A4-ground 35.510
A5-ground 37.149
A6-ground 38.098
A7-ground 38.547
A8-ground 39.002
A9-ground 39.172

3.3.3. Coupling Capacitance between Two Adjacent Series Windings

Since the transformer windings have nine segments along the axial direction in the
high-voltage winding and two segments along the axial direction in the low-voltage wind-
ing, the effect of the coupling capacitance between two adjacent windings must be con-
sidered in the lumped parametric circuit model. The coupling capacitance between two
adjacent series windings can be obtained from the parallel plate capacitor formula as shown
in Equation (13).

CW =
ε0εrS

d
(13)

where CW is the coupling capacitance between two adjacent series windings, ε0 is the
permittivity of vacuum, εr is the permittivity of epoxy resin, S is the cross-segmental area
of winding, and d is the length of two adjacent windings.

Because the transformer is symmetrical, the parameters of the other two phases can be
obtained by calculating the parameters of only one phase. The main electrical parameters
of the winding under rated operating conditions are shown in Table 4.
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Table 4. Electrical parameters of windings under rated operating conditions.

Parameters R/Ω L/mH CW/pF

high-voltage winding 0.382 6.833 453.91
low-voltage winding 0.102 1.050 64.791

4. Fractional Order Circuit Model of Transformer
4.1. Fractional Order Arithmetic Implementation

The main methods of implementing fractional order operators in recent research
are defining fractional order calculus formulae or constructing filters. The definition
methods mainly include the GL definition method, RL definition method, and Caputo
definition method. Based on the corresponding definition of fractional calculus, programs
can be directly written for calculation. The definition method requires obtaining the
specific expression of the objective function, and different sampling values can affect the
accuracy of the calculation. In practical engineering applications, the specific objective
function expression cannot be obtained in most cases. The filter method can perform fitting
calculations for fractional order operators without obtaining the specific expression. In
this paper, the fractional order operator is obtained by an improved Oustaloup filter in
accordance with the research theory of Oustaloup [24].

The Oustaloup filter uses an integer order transfer function model to approximate a
fractional order calculus operator. Assuming that the frequency band to be fitted is [wb, wh],
the standard form of the Oustaloup filter is as follows:

G(s) = K
N

∏
k=1

s + w′k
s + wk

(14)

where G(s) is the transfer function of the Oustaloup filter, N is the order of the filter, w′k is
zero, wk is the pole, and K is the gain. The zero, pole and gain can be calculated as:

w′k = wbwu
(2k−1−γ)/N (15)

wk = wbwu
(2k−1+γ)/N (16)

K = wγ
h (17)

and
wu =

√
wh/wb (18)

The algorithm for designing the standard Oustaloup filter can be summarized from
the above equations.

However, because the above filter algorithm does not fit well at the frequency bound-
aries wb, wh, and the numerator and denominator are of the same order, and the transfer
function is not a strictly regular system, the following mathematical model is proposed to
improve the standard Oustaloup filter.

sγ ≈
(

dwh
b

)γ( ds2 + bwhs
d(1− γ)s2 + bwhs + dγ

) N

∏
k=1

s + w′k
s + wk

(19)

where,
w′k = wbwu

(2k−1−γ)/N (20)

wk = wbwu
(2k−1+γ)/N (21)
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K = wγ
h (22)

From the above filter model, it can be seen that the order of the fractional order
operator satisfies γε(0, 1). Typically, the weighting parameters are taken to be b = 10 and
d = 9.

After writing the programs, a sine function is used to verify the accuracy of the above
model. The fractional order is taken as 0.5, the filter order is taken as 5, and the frequency
band is taken as [0.01, 1000]. Two sine functions are used with ω = 1 and ω = 100π,
respectively, for the simulation test. The fitting curves of the definition methods and filter
methods are shown in Figure 9.
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As shown in Figures 9 and 10, the fitting results of the Oustaloup filter and improved
Oustaloup filter in the low-frequency range are basically consistent with the definition
methods. In the high-frequency range, the fitting results of the improved Oustaloup filter
are better than those of the Oustaloup filter, which proves the accuracy of the improved
Oustaloup filter.
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In order to make the curves smooth, prevent the algebraic loops in the system and
improve the computational performance, a low-pass filter is added after the improved
Oustaloup filter.

The low-pass filter should optimize the performance of the simulation system and
cannot affect the calculation accuracy. Based on the existing research and simulation
experiment, the filter has the best performance when the low-pass filter is chosen as

1
0.001s+1 . The fitting curves under four harmonic components are shown in Figure 11.
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Figure 11. Fitting curves with low-pass filter under different harmonic components: (a) fitting
curves of fundamental component, (b) fitting curves of 5th harmonic component, (c) fitting curves of
7th harmonic component, (d) fitting curves of 11th harmonic component.

It can be seen from Figure 11 that by using the low-pass filter, the curves are smoother
at the beginning of the simulation under the four operating conditions, and the accuracy of
the values is not significantly affected.

In this paper, the improved Oustaloup filter is packaged to freely apply the fractional-
order filter algorithm to the circuit model simulation. The whole fractional order operator
module based on improved Oustaloup filter is shown in Figure 12.
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4.2. Fractional Order Lumped Parameter Circuit Model

With the electrical parameters solved by the simulation model, the lumped parameter
equivalent circuit model of the transformer is established as shown in Figures 13 and 14.
The model includes series resistance Rh and Rl , series inductance Lh and Ll , coupling
capacitance between two adjacent windings CW , series resistance between two adjacent
windings RW , coupling capacitance between winding and ground of HV and LV windings
Cgh and Cgl , parallel coupling capacitance between HV and LV windings of the same phase
CA, CB and CC, parallel coupling capacitance between adjacent HV windings CAB and
CBC, mutual inductance between HV and LV windings of the same phase MA, MB and
MC, mutual inductance between different HV windings MAB, MAC and MBC, and mutual
inductance between different LV windings Mab, Mac and Mbc. The transformer is connected
as a YND11 connection. The actual power frequency sinusoidal AC supplies UA, UB, UC
are on the primary side and the load resistors R1, R2, R3 are on the secondary side.
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5. Fractional Order Numerical Calculation

Under rated operating conditions, the electromagnetic forces in transformer windings
are subjected to two forces: the radial electromagnetic force, and the axial electromagnetic
force. The radial electromagnetic force is along the coil radius, the inner and the outer
windings of the current direction are opposite, so that the inner coils bear the inward force,
and the outer coils bear the outward force. The axial electromagnetic force is along the coil
axis, and the coils also bear inward or outward force. When the transformer works under a
short-circuit fault, if the short-circuit electromagnetic force is large enough, the winding
will deform due to insufficient capability to resist short-circuit dynamic force. Therefore,
when a transformer fault occurs, the magnitude and distribution of the electromagnetic
forces in the winding will change. The electromagnetic force of a winding is an important
indicator for monitoring the operating conditions of the transformer.

Accurate calculation of the electromagnetic forces provides a reliable assessment of the
operating conditions of the transformer. According to the Lorentz law, the electromagnetic
forces on the windings can be calculated by Equation (23).

F = NBIL (23)

where F is the electromagnetic force of a winding, N is the number of turns of coil in the
winding, B is the magnetic leakage density, I is the current in the winding, and L is the
length of wire in the winding.

5.1. Fractional Order Currents

To calculate the electromagnetic force, the winding current must be calculated. In the
traditional circuit model, the current is expressed as:

I =
U
Z

+ C
dU
dt

(24)

where I is the integer order winding current, U is the supply voltage, Z is the impedance
of the winding, and C is the equivalent capacitance of the winding.

In the fractional order circuit model, the fractional-order capacitance is used instead of
the integer-order capacitance, and the integer-order differentiation is changed to fractional-
order differentiation by using the fractional-order differentiation operator. The expression
is shown in Equation (25).

Iα =
U
Z

+ Cα
dαU
dt

(25)

where Iα is the fractional order winding current, and Cα is the fractional order equivalent
capacitance of the winding.

Take the A-phase winding as the example for calculation. Based on the lumped
parameter equivalent circuit model, the fractional-order current expressions for the high-
voltage winding and low-voltage winding of phase A are shown as follows.

IAH = UA
ZA

+
8
∑

k=1
CwA

dα(UA(k+1)−UA(k))
dt +

2
∑

i=1

9
∑

k=1
Cai(k)

dα(UA(k)−Ua(i))
dt

−
9
∑

i=1

9
∑

k=1
CAB(ik)

dα(UA(i)−UB(k))
dt −

9
∑

k=1
Cg(k)

dα(UA−UA(k−1))
dt

(26)

IAL =
Ua

Za
+ Cwa

dα
(

Ua(1) −Ua(2)

)
dt

−
2

∑
i=1

9

∑
k=1

Cai(k)

dα
(

UA(k) −Ua(i)

)
dt

−
2

∑
i=1

Cg(k)

dα
(

Ua −Ua(k−1)

)
dt

(27)

where IAH is the high-voltage winding current, IAL is the low-voltage winding current,
ZA is the impedance of the high-voltage winding of phase A, Za is the impedance of the
low-voltage winding of phase A, U(Ak) is the potential of each segment of the high-voltage
winding of phase A, U(Bk) is the potential of each segment of the high-voltage winding of
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phase B, U(ak) is the potential of each segment of the low-voltage winding of phase A, CwA
is the coupling capacitance between two adjacent series high-voltage windings of phase A,
Cwa is the coupling capacitance between two adjacent series low-voltage windings of phase
A, Ca is the coupling capacitance between the high-voltage windings and the low-voltage
windings of phase A, CAB is the coupling capacitance between the high-voltage windings of
phase A and the high-voltage windings of phase B, Cg is the coupling capacitance between
the windings and ground, and α is the fractional order.

At present, studies on fractional order capacitance mostly use the integer order to
approximate fractional order, but there is still no clearer unified standard for obtaining the
order. In this paper, 0.8 order is used as the reference value, the 0.02 order step is taken
based on the reference value for simulation calculation, and the actual calculation results
are more consistent with the transformer rated value when the fractional order is taken
as 0.9. Therefore, the calculation in this paper is performed on the basis of 0.9 order.

Use finite element method to calculate the integer order current of the transformer
winding and numerical method to calculate the fractional order current of the transformer
winding. Taking the A-phase winding as the example, the fractional order current wave-
forms of the A phase high-voltage and low-voltage windings under the rated operating
conditions are obtained as shown in Figure 15.
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To analyze the results easily, the current waveforms were amplified within one period
as shown in Figure 16.

The rated amplitude value of the phase current of the high-voltage winding is
186.6762 A, and the rated amplitude value of the phase current of the low-voltage winding
is 598.492 A. The simulation results show that in the positive half period, the values of
fractional current and integer current are close, and the values of fractional current are
higher and closer to the rated values. In the negative half period, the amplitude values
of integer order phase current of the high-voltage winding and low-voltage winding are
both significantly smaller than the rated values, and the waveforms of the integer order
current are not the strictly sinusoidal waves. The results for the integer order current are
not correct in the negative half period mainly because of the systematic error of the finite
element method. The fractional order current is the standard sinusoidal wave, and the
values are closer to the rated values. The simulation results for the fractional order model
are more accurate than those for the integer order model.
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To further verify the accuracy of the fractional order model, the amplitude value of the
secondary phase current was calculated for five different operating conditions: 50% load
rate, 80% load rate, 100% load rate, 150% load rate and 200% load rate. The results are
shown in Table 5.

Table 5. The amplitude value of phase current on the secondary side at different load rates.

Operating Mode
Load Rates

0.5 0.8 1.0 1.5 2.0

Rated value/A 299.246 478.7936 598.492 897.738 1196.984

Fractional order
value/A 295.3842 472.6173 590.7715 886.1566 1181.5418

Error 1.29% 1.29% 1.29% 1.29% 1.29%

Integer order
value/A 293.8825 467.8946 584.6302 849.9375 1107.1758

Error 1.79% 2.28% 2.32% 5.32% 7.50%

As the load ratios increase, the calculation errors of the integer order simulation model
become larger and larger. The calculation results are more accurate using the 0.9 order
fractional order model.

Compare the above calculation results with existing research results to verify the
accuracy of the fractional order model. The errors of the current on the secondary side at
different load rates studied by paper [25] are shown in Table 6.

Table 6. The errors of the current on the secondary side at different load rates [25].

Operating Mode
Load Rates

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Error 1.74% 3.35% 2.35% 2.36% 2.93% 2.88% 3.18%

By comparing the error values, the fractional order model proposed in this paper is
shown to be more accurate than the finite element model.
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5.2. Fractional Order Electromagnetic Forces

Equation (23) is modified to give the expression for the fractional order electromag-
netic force:

Fα = NIαπ(r1 + r2)
∫

V
dB (28)

where Fα is the fractional order electromagnetic force, Iα is the fractional order current, N is
the number of turns of the coil, B is the magnitude of the magnetic flux density, and r1, r2
are the inner radius and outer radius of the winding, respectively.

After obtaining the magnitude of the magnetic flux density by Equation (4) and the
fractional order current by Equation (25), the field-circuit coupling method is applied to
solve for the fractional-order electromagnetic forces in the windings, as shown in Figure 17.

Symmetry 2023, 15, x FOR PEER REVIEW 18 of 24 
 

 

Compare the above calculation results with existing research results to verify the ac-
curacy of the fractional order model. The errors of the current on the secondary side at 
different load rates studied by paper [25] are shown in Table 6. 

Table 6. The errors of the current on the secondary side at different load rates [25]. 

Operating 

Mode 

Load Rates 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Error 1.74% 3.35% 2.35% 2.36% 2.93% 2.88% 3.18% 

By comparing the error values, the fractional order model proposed in this paper is 
shown to be more accurate than the finite element model. 

5.2. Fractional Order Electromagnetic Forces 

Equation (23) is modified to give the expression for the fractional order electromag-
netic force: 

 
V
dBrrNIF 21  (27) 

where 𝐹𝛼 is the fractional order electromagnetic force, 𝐼𝛼 is the fractional order current, 

𝑁 is the number of turns of the coil, 𝐵 is the magnitude of the magnetic flux density, and 
𝑟1, 𝑟2 are the inner radius and outer radius of the winding, respectively. 

After obtaining the magnitude of the magnetic flux density by Equation (4) and the 
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Figure 17. Schematic diagram of field-circuit coupling. Figure 17. Schematic diagram of field-circuit coupling.

The integer order and fractional order electromagnetic forces in the A-phase winding
under rated operating conditions are shown in Figure 18.

The waveform is amplified for convenient observation and analysis as shown in
Figure 19.

It can be seen that the maximum electromagnetic force of the high-voltage winding
under normal conditions is around 105 newtons, and the maximum electromagnetic force
of the low-voltage winding under normal conditions is around 62 newtons. The fractional
order model is simpler, the calculation results are more accurate, and the running time of
the program is shorter.

Three-phase short-circuit faults are the most serious faults in transformers. Inadequate
short-circuit resistance of the winding is prone to cause winding deformation and, in severe
cases, line tripping or even explosion and burning. Simulations have been carried out to
calculate the fractional and integer order current and electromagnetic forces in three-phase
short-circuited working conditions. The currents and electromagnetic forces are shown in
Figures 20 and 21.



Symmetry 2023, 15, 1768 18 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 19 of 24 
 

 

The integer order and fractional order electromagnetic forces in the A-phase winding 
under rated operating conditions are shown in Figure 18. 

(a)A-phase high voltage winding electromagnetic force (b)A-phase low voltage winding electromagnetic force

 

Figure 18. Waveform of A-phase winding electromagnetic forces. 

The waveform is amplified for convenient observation and analysis as shown in Fig-
ure 19. 

(a)A-phase high voltage winding electromagnetic force (b)A-phase low voltage winding electromagnetic force

 

Figure 19. Waveform of A-phase winding electromagnetic forces. 

It can be seen that the maximum electromagnetic force of the high-voltage winding 
under normal conditions is around 105 newtons, and the maximum electromagnetic force 

of the low-voltage winding under normal conditions is around 62 newtons. The fractional 
order model is simpler, the calculation results are more accurate, and the running time of 

the program is shorter. 
Three-phase short-circuit faults are the most serious faults in transformers. Inade-

quate short-circuit resistance of the winding is prone to cause winding deformation and, 

Figure 18. Waveform of A-phase winding electromagnetic forces.

Symmetry 2023, 15, x FOR PEER REVIEW 19 of 24 
 

 

The integer order and fractional order electromagnetic forces in the A-phase winding 
under rated operating conditions are shown in Figure 18. 

(a)A-phase high voltage winding electromagnetic force (b)A-phase low voltage winding electromagnetic force

 

Figure 18. Waveform of A-phase winding electromagnetic forces. 

The waveform is amplified for convenient observation and analysis as shown in Fig-
ure 19. 

(a)A-phase high voltage winding electromagnetic force (b)A-phase low voltage winding electromagnetic force

 

Figure 19. Waveform of A-phase winding electromagnetic forces. 

It can be seen that the maximum electromagnetic force of the high-voltage winding 
under normal conditions is around 105 newtons, and the maximum electromagnetic force 

of the low-voltage winding under normal conditions is around 62 newtons. The fractional 
order model is simpler, the calculation results are more accurate, and the running time of 

the program is shorter. 
Three-phase short-circuit faults are the most serious faults in transformers. Inade-

quate short-circuit resistance of the winding is prone to cause winding deformation and, 

Figure 19. Waveform of A-phase winding electromagnetic forces.

Symmetry 2023, 15, x FOR PEER REVIEW 20 of 24 
 

 

in severe cases, line tripping or even explosion and burning. Simulations have been car-
ried out to calculate the fractional and integer order current and electromagnetic forces in 
three-phase short-circuited working conditions. The currents and electromagnetic forces 

are shown in Figures 20 and 21. 

(b)A-phase low voltage winding current(a)A-phase high voltage winding current

 

Figure 20. Waveforms of A-phase winding currents under three-phase short circuit. 

(a)A-phase high voltage winding electromagnetic force (b)A-phase low voltage winding electromagnetic force

 

Figure 21. Waveforms of A-phase winding electromagnetic forces under three-phase short circuit. 

The waveform is amplified for convenient observation and analysis as shown in Fig-

ure 22. 

Figure 20. Waveforms of A-phase winding currents under three-phase short circuit.



Symmetry 2023, 15, 1768 19 of 22

Symmetry 2023, 15, x FOR PEER REVIEW 20 of 24 
 

 

in severe cases, line tripping or even explosion and burning. Simulations have been car-
ried out to calculate the fractional and integer order current and electromagnetic forces in 
three-phase short-circuited working conditions. The currents and electromagnetic forces 

are shown in Figures 20 and 21. 

(b)A-phase low voltage winding current(a)A-phase high voltage winding current

 

Figure 20. Waveforms of A-phase winding currents under three-phase short circuit. 

(a)A-phase high voltage winding electromagnetic force (b)A-phase low voltage winding electromagnetic force

 

Figure 21. Waveforms of A-phase winding electromagnetic forces under three-phase short circuit. 

The waveform is amplified for convenient observation and analysis as shown in Fig-

ure 22. 

Figure 21. Waveforms of A-phase winding electromagnetic forces under three-phase short circuit.

The waveform is amplified for convenient observation and analysis as shown in
Figure 22.

Symmetry 2023, 15, x FOR PEER REVIEW 21 of 24 
 

 

(a)A-phase high voltage winding electromagnetic force (b)A-phase low voltage winding electromagnetic force

 

Figure 22. Waveform of A-phase winding electromagnetic forces. 

The figures show that the maximum short-circuit impulse current of the A-phase 
high-voltage winding under three-phase short-circuit conditions is 10 kA, the maximum 

short-circuit impulse current of the low-voltage winding is 3 kA, and the electromagnetic 
force applied to the winding reaches more than 14,000 N, which seriously endangers the 

operational safety of the transformer, which should be removed from operation in time 
before power failure. 

Compare the above values with existing research results to verify the accuracy of the 

fractional order model. Authors of [26] used the same transformer model as described in 
this paper and determined that under three-phase short-circuit conditions, the electro-

magnetic force of the high-voltage winding is about 14,000 N, and the electromagnetic 
force of the low-voltage winding is about 10,000 N. Similarly to the results obtained with 
the finite element method, the calculation results obtained by [26] were smaller than those 

obtained with the fractional order model. If the transformer is designed based on inaccu-
rate calculation results, it may be damaged because of insufficient mechanical strength 

when working under exceptional conditions. By accurately calculating the winding force, 
the operating state of the winding ground can be reliably determined to avoid causing 
instability of the power system. 

The transformer proposed in this paper is used in an offshore wind power platform. 
The offshore wind power system contains a large number of powered electronic devices, 

which may lead to an increase in the harmonic components in the power system. The 
effect of harmonic voltage and harmonic current on the transformer should be considered 
to obtain the accurate electromagnetic force in the windings. The forces on the fractional 

and integer orders of the A-phase winding in the 5th, 7th and 11th harmonic cases were 
simulated and analyzed. The electromagnetic forces are shown in Figure 23. 

Figure 22. Waveform of A-phase winding electromagnetic forces.

The figures show that the maximum short-circuit impulse current of the A-phase
high-voltage winding under three-phase short-circuit conditions is 10 kA, the maximum
short-circuit impulse current of the low-voltage winding is 3 kA, and the electromagnetic
force applied to the winding reaches more than 14,000 N, which seriously endangers the
operational safety of the transformer, which should be removed from operation in time
before power failure.

Compare the above values with existing research results to verify the accuracy of the
fractional order model. Authors of [26] used the same transformer model as described in
this paper and determined that under three-phase short-circuit conditions, the electromag-
netic force of the high-voltage winding is about 14,000 N, and the electromagnetic force of
the low-voltage winding is about 10,000 N. Similarly to the results obtained with the finite
element method, the calculation results obtained by [26] were smaller than those obtained
with the fractional order model. If the transformer is designed based on inaccurate calcula-
tion results, it may be damaged because of insufficient mechanical strength when working



Symmetry 2023, 15, 1768 20 of 22

under exceptional conditions. By accurately calculating the winding force, the operating
state of the winding ground can be reliably determined to avoid causing instability of the
power system.

The transformer proposed in this paper is used in an offshore wind power platform.
The offshore wind power system contains a large number of powered electronic devices,
which may lead to an increase in the harmonic components in the power system. The
effect of harmonic voltage and harmonic current on the transformer should be considered
to obtain the accurate electromagnetic force in the windings. The forces on the fractional
and integer orders of the A-phase winding in the 5th, 7th and 11th harmonic cases were
simulated and analyzed. The electromagnetic forces are shown in Figure 23.
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Accompanying the presence of harmonics, the winding current will be disturbed
within a certain scope. Although the transient value of the electromagnetic force does
not exceed a limited value, prolonged operation in a harmonic environment may lead to
overload and overheating, which would seriously damage the equipment. Therefore, it is
essential to eliminate harmonics in time.

6. Conclusions

Nowadays, accurate calculations of the electromagnetic force in transformer windings
not only facilitate the expected design and provide guidelines for transformer design, they
also help the power sector to improve the reliability of equipment condition assessments
and schedule reasonable maintenance time. In existing study methods, the errors of
finite element simulations are large and consume more computing time, and the actual
parameters of components are not reflected accurately with the integer order model. To
address these problems, in this paper, model simulations are carried out for a dry-type
offshore wind power transformer, the electrical parameters of the transformer are calculated
by the finite element method, and the fractional order lumped parameter equivalent circuit
model of a transformer is proposed. The current and electromagnetic force of the winding
under different operating conditions are calculated. Based on the simulation and analysis
of the experimental results, the following conclusions are derived.

1. A fractional-order differential operator with the improved Oustaloup filter is built to
replace the integer order capacitance, and the results show that the calculation of the
transformer winding current at the 0.9 order is more consistent with the rated values
than at the integer order. The integer order current is not the standard sinusoidal
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wave, and the error is significant in the negative half period compared to the rated
value. The 0.9 order circuit model can describe the actual characteristics of circuit
components more accurately;

2. The fractional order lumped parameter equivalent circuit model is established, and
the fractional order winding current calculation method is proposed for the offshore
wind power transformer under different load rates. Compared with the integer
order current model, the fractional order model is more accurate and imposes low
computational expense, and the calculation results are more accurate and reliable;

3. Based on field-circuit coupling, the fractional order electromagnetic force calculation
method is proposed. By applying the fractional-order circuit model to simulate the
electromagnetic force under different operating conditions, the results verify the
correctness of the fractional-order model. The fractional order lumped parameter
equivalent circuit model proposed in this paper can calculate the electromagnetic
forces of windings under different operating conditions such as different load rates,
short circuits, harmonics, etc.

4. Comparing the integer order results with the fractional order results, the integer order
results are smaller than the fractional order results and have a significant deviation
from the rated value. Using the integer order calculation method to monitor the
operation of a transformer may lead the transformer to operate under overload
conditions for a long time, which can accelerate insulation aging and accumulation of
deformation faults. The fractional order model improves the reliability and accuracy
of transformer structural design. Accurate electromagnetic force analysis can improve
the reliability of the equipment condition assessment and prevent the occurrence of
winding deformation faults.

The significance of this paper is reflected in two aspects. Firstly, the fractional order
characteristics of circuit components are well described by using a fractional order filter,
which is fitter than integer order with the actual situation of nature. Secondly, the fractional
order lumped parameter equivalent circuit model is established to realize the accurate and
fast calculation of the electromagnetic force. Although the model proposed in this paper is
based on an offshore transformer, the method proposed in this paper is equally suitable
for any onshore dry-type transformer. In subsequent research, the relationship between
the structural parameters and fractional order electromagnetic force will be considered to
analyze winding deformation faults, and the fractional order electromagnetic force, thermal
stress, and vibration mode will be systematically combined to realize accurate online
monitoring of transformers and further guide the operation and service life prediction
of transformers.
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