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Abstract: In this study, a hybrid method based on the marine predators algorithm (MPA) and
adaptive neuro-fuzzy inference system (ANFIS) is presented to identify nonlinear systems exhibiting
symmetrical or asymmetrical behavior. In other words, the antecedent and conclusion parameters of
the ANFIS are adjusted by the MPA. The performance of the MPA is evaluated on eight nonlinear
systems. The mean squared error is used as the error metric. Successful results were obtained on the
eight systems. The best mean training error values belonging to the eight systems are 1.6 × 10−6,
3.2 × 10−3, 1.5 × 10−5, 9.2 × 10−6, 3.2 × 10−5, 2.3 × 10−3, 1.7 × 10−5, and 8.7 × 10−6. In the ANFIS
training carried out to solve the related problems, the performance of the MPA was compared with
the butterfly optimization algorithm, the flower pollination algorithm, moth–flame optimization, the
multi-verse optimizer, the crystal structure algorithm, the dandelion optimizer, the RIME algorithm,
and the salp swarm algorithm. The results have shown that the performance of the MPA mostly
outperforms other algorithms in both training and testing processes.

Keywords: marine predators algorithm; neuro-fuzzy; ANFIS; nonlinear systems; system identification;
swarm intelligence; symmetry in nonlinear systems

1. Introduction

One of the most important artificial intelligence techniques used for prediction, identi-
fication, and modeling is the ANFIS. The training process of the ANFIS has an important
place in achieving successful results. Recently, meta-heuristic algorithms have been used
extensively in the training of the ANFIS [1]. Yaseen et al. [2] proposed a novel hybrid
model based on the ANFIS and the FA for river streamflow forecasting. Tien Bui et al. [3]
proposed three hybrid methods based on the ANFIS by using the CA, BA, and IWO for
flood susceptibility modeling. Chen et al. [4] optimized the parameters of the ANFIS by
utilizing the SBO and TLBO for landslide susceptibility mapping. Namely, they presented
two new hybrid models based on the ANFIS. AlRassas et al. [5] carried out a time series
analysis based on the ANFIS to forecast oil production from two different oil fields in
China and Yemen. They proposed a novel method called AO-ANFIS based on the AO
and the ANFIS. They compared the performance of the proposed hybrid method with the
GWO, SCA, GA, PSO, and SMA-based approaches and the original ANFIS. Karaboga and
Kaya [6] improved a variant of the ABC algorithm called aABC to train the ANFIS and
proposed a hybrid method based on the aABC algorithm and the ANFIS to identify the
nonlinear dynamic systems. They compared the performance of the proposed method with
different neuro-fuzzy-based approaches and reported that the proposed method was suc-
cessful. Pourdaryaei et al. [7] proposed a hybrid approach (ANFIS-BSA) based on the BSA
and ANFIS for short-term electricity price forecasting. The BSA was used in the learning
process of the ANFIS approach. The performance of the ANFIS-BSA was compared with
different artificial intelligence approaches. Riahi-Madvar et al. [8] trained the ANFIS by
using the FA, GA, GWO, PSO, and DE for short- to long-term forecasting of river flows.
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Ahmed et al. [9] presented a hybrid approach based on the KH optimization algorithm
and the ANFIS for wind speed forecasting and performed the parameter optimization of
the ANFIS with KH. Liu et al. [10] presented an observer-based adaptive fuzzy finite-time
attitude control strategy for quadrotor unpiloted aerial vehicles (UAVs). The performance
of their proposed controller was compared with approaches such as PD, finite-time DSC,
DO–NTSMC, adaptive fuzzy finite-time control, FTC–NFTSMC, and adaptive NFTSMC. It
was stated that the proposed control strategy was effective.

Although the MPA was developed in 2020, it quickly became popular. The main
reason for its popularity is that it gives successful results. Since its development, the MPA
has been used to solve many real-world problems [11]. Abd Elminaam et al. [12] proposed
an approach named MPA-KNN by hybridizing the MPA with k-Nearest Neighbors (k-NN)
to evaluate dimension reduction in feature selection. The performance of the proposed
algorithm was compared with the results of eight metaheuristic algorithms by using 18 UCI
medical datasets. Abdel-Basset et al. [13] offered an improved MPA to provide the optimal
values of photovoltaic parameters. They reported that their proposed algorithm was con-
nected with the measured current–voltage data and their algorithm could be beneficial in
estimating the parameters of photovoltaic models. Soliman et al. [14] presented a modified
MPA to obtain the electrical parameters of the triple-diode photovoltaic (TDPV) model
of a photovoltaic (PV) panel. Abd Elaziz et al. [15] proposed an enhanced MPA (EMPA)
for determining the unknown parameters of different PV substances. For the purpose of
determining the effect of the improved algorithm, they compared the MPA and heteroge-
neous comprehensive learning PSO (HCLPSO) algorithms with the improved algorithm
by using three real datasets. It has been indicated that the data fitting, convergence rate,
stability, and consistency of the proposed algorithm were better than the other algorithms.
Zhong et al. [16] improved a new version of the MPA. In the improved algorithm, they
created an archive that stored the non-dominated Pareto optimal solutions to select the
effective solutions. They used the CEC2019 multi-modal multi-objective benchmark func-
tions. The improved algorithm was compared with nine metaheuristics algorithms. They
reported that the improved algorithm has effective results that are better than the other
nine algorithms. Fan et al. [17] proposed a modified MPA (MMPA). The performance of the
MMPA was evaluated on different problems. It has been indicated that the MMPA gave
successful results. Al-Qaness et al. [18] presented the MPAmu, which utilized additional
mutation operators, and they optimized the ANFIS with the MPAmu to estimate wind
power using time series datasets from wind turbines located in France. They compared the
proposed model with the ANFIS, the ANFIS that was modified with different metaheuris-
tic algorithms, and an SVM, FFNN, and LSTM. It has been indicated that the proposed
model increases the prediction accuracy of the traditional ANFIS. Al-Qaness et al. [19]
used a method based on the MPA and ANFIS to estimate the number of infected people
in four countries, Italy, Iran, Korea, and the USA. They compared several methods to the
performance of their proposed method. It has been indicated that the performance of their
proposed method was better. Shaheen et al. [20] proposed an algorithm improved with
the MPA and PSO (IMPAPSO) to implement on the non-linearity of the optimal reactive
power dispatch (ORPD) problem. They utilized IEEE 30 bus, IEEE 57 bus, and IEEE 118
bus systems to evaluate the effect of IMPAPSO. Moreover, IMPAPSO was compared with
other optimization methods. They reported that IMPAPSO was shown to be effective in
the electric power networks’ behavior. Houssein et al. [21] presented a hybrid algorithm
(MPA-CNN) by using the MPA and a CNN. The MPA-CNN included a combination of
heavy feature extraction and classification techniques. Ikram et al. [22] proposed a hybrid
model with the ANFIS and MPA to estimate short-term significant wave heights. The
results were compared with two different models, the ANFIS with the GA (ANFIS-GA)
and the ANFIS with PSO (ANFIS-PSO). They reported that the proposed model generally
was better than the other models. Al-Qaness et al. [23] used a model, the ANFIS that
was optimized with the chaotic MPA (CMPA), to estimate COVID-19 cases in hotspot
regions. They compared the proposed model with three artificial intelligence-based models
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including the original ANFIS and two modified versions of the ANFIS model using both
the original MPA and PSO, to determine the effect of the proposed model. They reported
that the results of their model were better than those of the other models.

In light of the above information, it is apparent that meta-heuristic algorithms are
used in ANFIS training. Especially in some studies, it is apparent that the performance of
meta-heuristic algorithms in ANFIS training has been examined in detail. In these studies,
mostly nonlinear systems are used as test functions. Ghomsheh et al. [24] proposed a
PSO-based hybrid method for ANFIS training. Karaboğa and Kaya [25] evaluated the
performance of the ABC algorithm in ANFIS training on the basis of nonlinear systems.
Zangeneh et al. [26] conducted ANFIS training with DE-based algorithms. Haznedar and
Kalinli [27] optimized the parameters of the ANFIS using a simulated annealing algorithm.
Haznedar and Kalinli [28] trained the ANFIS model with a genetic algorithm for systems
identification. Marzi et al. [29] proposed a hybrid training approach based on the bees
algorithm for ANFIS training. Canayaz [30] carried out ANFIS training with MFO. As can
be observed, it is used in ANFIS training due to the strengths of metaheuristic algorithms.
From the above information, it is clear that the MPA is a powerful and successful algorithm.
Although the MPA is used to solve many real-world problems, there are limited studies
on MPA-based ANFIS training. In particular, there are hardly any studies involving direct
performance analysis. Therefore, there is a need to examine the performance of the MPA in
ANFIS training. In particular, revealing the superiorities according to different algorithms
will shed light on future studies. Therefore, in this study, the aim was to evaluate the
performance of the MPA in ANFIS training. When the content, problem structure, and
scope of the study are evaluated together, it is clear that it is an innovative study. This
study makes important contributions to the literature. These are listed below:

• The performance of the MPA in ANFIS training is examined in detail. The effect of the
number of parameters of the ANFIS on the result was analyzed. The advantages and
disadvantages of the proposed method were evaluated.

• ANFIS training was carried out using the MPA for the identification of nonlinear
systems. Analyses were performed on eight systems with different characteristics.

• The performance of the MPA is compared with eight different meta-heuristic algo-
rithms. These algorithm are the BOA [31], FPA [32], MFO [33], MVO [34], SSA [35],
CryStAl [36], DO [37], and RIME algorithm [38]. The success of the MPA according to
these algorithms was evaluated.

• The use case of the proposed method for different problems other than system identifi-
cation was evaluated.

The organizational structure of this study is as follows: the MPA and ANFIS are
introduced in Section 2. Section 3 presents simulation results. In Section 4, Discussion is
located. In the last section, Conclusions are given.

2. Materials and Methods
2.1. Marine Predators Algorithm (MPA)

Faramarzi et al. proposed the MPA, whose development was inspired by the foraging
strategies of ocean predators [39]. Lévy and Brownian motions are considered in the MPA.
The optimal encounter rate of prey and predators is taken into account.

The MPA is a population-based meta-heuristic algorithm. The optimization process of
the MPA starts with a random solution and (1) is used to start. In (1), Xmin symbolizes the
lower bound, Xmax the upper bound, and rand is a random number between [0, 1].

X0 = Xmin + rand(Xmax − Xmin) (1)

There are two matrices named Prey and Elite in the MPA. They have the same dimen-
sions. When constructing the Elite matrix, the best solution is appointed as the best predator.
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The search for and finding of prey is checked via this matrix.
→
X I denotes the top predator

vector, n search agents, d dimensions. The prey and predator both are the search agents.

Elite =



X I
1,1 X I

1,2 · · · X I
1,d

X I
2,1 X I

2,2 . . . X I
2,d

...
...

...
...

...
...

...
...

...
...

...
...

X I
n,1 X I

n,2 · · · X I
n,d


n x d

(2)

In the Prey matrix, the jth dimension of the ith prey is depicted with Xi,j. In the MPA,
the whole optimization process is directly relevant to these two matrices. Predators use
this matrix to update their positions.

Prey =



X1,1 X1,2 · · · X1,d
X2,1 X2,2 · · · X2,d
X3,1 X3,2 . . . X3,d

...
...

...
...

...
...

...
...

Xn,1 Xn,2 . . . Xn,d


n x d

(3)

There are three phases in the MPA. Details of the phases are explained below.
If Iter < ((Max_Iter)/3), phase 1 is realized. Iter symbolizes the current iteration number

and Max_Iter the maximum iteration number. The best strategy is one wherein the predator
must stop. In mathematical Formula (4) of phase 1, RB depicts a vector characterizing
the Brownian motion and including random numbers based on a normal distribution. P
denotes a constant number with a value of 0.5. R is a random number between 0 and 1.

−−−−−→
stepsize i =

→
RB ⊗

(−−→
Elite i −

→
RB ⊗

−−→
Prey i

)
i = 1, . . . n

−−→
Prey i =

−−→
Prey i + P.

→
R ⊗
−−−−−→
stepsize i

(4)

If ((Max_Iter)/3) < Iter < ((2Max_Iter)/3, phase 2 occurs. When the prey’s move is Lévy,
the predator’s move must be Brownian. The responsibility of the prey is exploitation,
which is formulated in (5), and the responsibility of the predator is also exploration, which

is depicted in (6). In (5),
→
RL is a random-numbers vector denoting Lévy movement. The

multiplication of
→
RL and Prey denotes the prey move, and the prey move is represented

by adding the step size to the prey location. In (6), CF depicts an adaptive parameter. The

step size for the predator move is controlled via CF. The multiplication of
→
RB and Elite

symbolizes the predator move.

−−−−−→
stepsize i =

→
RL ⊗

(−−→
Elite i −

→
RL ⊗

−−→
Prey i

)
i = 1, . . . n/2

−−→
Prey i =

−−→
Prey i + P.

→
R ⊗
−−−−−→
stepsize i

(5)

−−−−−→
stepsize i =

→
RB ⊗

(→
RB ⊗

−−→
Elite i −

−−→
Prey i

)
i = n/2, . . . n

−−→
Prey i =

−−→
Elite i + P.CF⊗

−−−−−→
stepsize i

CF =
(

1− Iter
Max_Iter

)(2 Iter
Max_Iter )

(6)
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If Iter > ((2Max_Iter)/3), phase 3 is realized. As the best strategy, the predator’s move

is Lévy. In (7), the multiplication of
→
RL and Elite symbolizes the predator move.

−−−−−→
stepsize i =

→
RL ⊗

(→
RL ⊗

−−→
Elite i −

−−→
Prey i

)
i = 1, . . . n

−−→
Prey i =

−−→
Elite i + P.CF⊗

−−−−−→
stepsize i

(7)

The factors like eddy formation or Fish Aggregating Devices (FADs) can affect the
marine predator’s course of action. In the MPA, this is called the FADs effect. The FADs

effect is formulized by using (8) with a value of 0.2.
→
U depicts the binary vector with

arrays containing 0 and 1. r denotes a random number between 0 and 1.
→
Xmin is a vector

symbolizing the lower bounds of the dimensions.
→
Xmax is a vector symbolizing the upper

bounds of the dimensions. r1 and r2 depict the prey matrix’s random indexes.

−−→
Prey i =


−−→
Prey i + CF

[→
Xmin +

→
R ⊗

(→
Xmax −

→
Xmin

)]
⊗
→
U, r ≤ FADs

−−→
Prey i + [FADs(1− r) + r]

(−−→
Prey r1 −

−−→
Prey r2

)
, r > FADs

(8)

2.2. Adaptive Network Fuzzy Inference System (ANFIS)

The ANFIS, one of the neuro-fuzzy models, uses the inference feature of fuzzy logic
and the learning ability of an ANN [40]. It has significant advantages as it takes the
strengths of both fuzzy logic and ANNs. The ANFIS consists of two parts, the antecedent
and the conclusion. IF-THEN fuzzy rules determining that these parts are connected with
each other are obtained. As seen in Figure 1, the ANFIS consists of five layers.
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Figure 1. General structure of ANFIS [1].

Layer 1 is called the fuzzification layer. In this layer, MFs are used and fuzzy sets
are obtained from input values using MFs. The parameters in the MFs structure are
called antecedent parameters. The shapes of MFs are formed according to the value of the
antecedent parameters. Membership functions have membership degrees. The membership
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degrees take a value between 0 and 1. If the generalized Bell function is used as an MF, the
membership degrees are calculated using (9) and (10).

µAi (x) = gbellm f (x; a, b, c) =
1

1 +
∣∣ x−c

a

∣∣2b (9)

O1
1 = µAi (x) (10)

Layer 2 is called the rule layer. Firing strengths are found for each rule. Membership
values found in the previous layer are used in the calculation of firing strengths. Firing
strength ( wi) values are found by multiplying the membership values as in (11):

O2
1 = wi = µAi (x) ∗ µBi (y), i = 1, 2. (11)

Layer 3 is named the normalization layer. Normalized firing strengths are calculated
for each rule. Normalized firing strengths wi are calculated as in (12).

O3
1 = wi =

wi
w1 + w2 + w3 + w4

, i ∈ {1, 2, 3, 4} (12)

Layer 4 is named as defuzzification layer. In this layer, the output value of each rule is
calculated. Normalized firing strengths and a first-order polynomial are used as in (13) to
calculate the output for each rule.

O4
1 = wi fi = wi(pix + qiy + ri) (13)

Layer 5 is called the summation layer. The actual output of the ANFIS is obtained by
summing the outputs obtained for each rule in the defuzzification layer.

O5
1 = ∑

i
wi fi =

∑i wi fi

∑i wi
(14)

3. Simulation Results

In this study, the performance of the MPA was evaluated in the ANFIS training carried
out for the identification of nonlinear systems. Eight systems with different characteristics
were used in the applications. Information about the equations, inputs, and outputs of
the systems used, and the data numbers of the training and testing process, are given in
Table 1. The S1 system consists of one input. In other systems except S1, there are two
inputs. In addition, all systems have one input. In other words, an ANFIS model was
created for S1 with an input and an output. For other systems, models consisting of two
inputs and one output were used. As seen in Table 1, the dataset of all systems consists of
100 input–output data pairs. 80 data pairs were used for the training process, and 20 data
pairs were utilized for the testing process. All results are given as mean squared error
(MSE). A generalized Bell function was used as a membership function (MF). The results
were obtained by choosing two, three, and four MFs for each input in all systems. Each
application was run at least 30 times. In each application, the population size is 20 and the
maximum number of generations is 2500.

The training results of the ANFIS training carried out with the MPA to identify the
relevant systems are presented in Table 2. Effective results were achieved with 2, 3, and
4 MFs for S1. The best mean error value in S1 was found using three MFs. Its value is
1.6 × 10−6. Error values at the level of 10−3 were reached in S2. If 2, 3, and 4 MFs are
used, the mean training error values obtained are 6.1 × 10−3, 3.9 × 10−3 and 3.2 × 10−3,
respectively. In fact, this shows that more effective results are achieved with four MFs in S2.
Successful results were achieved in S3. Mean error values at the level of 10−5 were reached.
Its best mean error value is 1.5 × 10−5. The best mean error value of S4 is 9.2 × 10−6. It
was found with four MFs. The effective mean error value was reached with three MFs in
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S5. Its mean error value is 3.2 × 10−5. The mean error values of S6 are at the 10−3 level, as
in S2. As the number of MFs increased in S6, the quality of the solution increased. If 2, 3,
and 4 MFs are used, the mean training error values obtained are 3.0 × 10−3, 2.8 × 10−3 and
2.3 × 10−3, respectively. S7 and S8 are in the same situation as S6 in terms of the number of
MFs. The mean error values of S7 and S8 are 1.7 × 10−5 and 8.7 × 10−6, respectively.

Table 1. Nonlinear systems used.

System Equation Inputs Output Number of
Training/Test Data

S1 y = 4.26
(
e−x1 − 4e−2x1 + 3e−3x1

)
x1 y 80/20

S2 y = e−x1
2−3x2

2−4x1x2 x1, x2 y 80/20

S3 y = 1
9

{
64− 81

((
x1 − 1

2

)2
+
(

x2 − 1
2

)2
)} 1

2

− 1
2

x1, x2 y 80/20

S4 y = 1
3 e−

81
16 {(x1−0.5)2+(x2−0.5)2} x1, x2 y 80/20

S5
y =

0.075e−
(x1−0.3)2

0.32 −(x2−0.3)2

+ 0.094e−
(x1−0.8)2

0.32 − (x2−0.8)2

0.42
x1, x2 y 80/20

S6
y = 0.75e−

(9x1−2)2+(9x2−2)2

4 + 0.75e−
(9x1+1)2

49 − 9x2+1
10 +

0.5e−
(9x1−7)2+(9x2−3)2

4 − 0.2e−(9x1−4)2−(9x2−7)2
x1, x2 y 80/20

S7 y =
1.25+cos(5.4x2)

6{1+(3x1−1)2}
x1, x2 y 80/20

S8 y = 0.7e−{(−3x1+3)2+0.7(3x2−3)2}/5 x1, x2 y 80/20

Table 2. Training process results of ANFIS training carried out with MPA for identification of
nonlinear systems.

System Number of MFs Best (MSE) Mean (MSE) Worst (MSE) Standard
Deviation

S1

2 5.1 × 10−7 8.3 × 10−6 2.3 × 10−4 4.2 × 10−5

3 1.1 × 10−7 1.6 × 10−6 5.3 × 10−6 1.3 × 10−6

4 1.6 × 10−7 3.7 × 10−6 4.5 × 10−5 8.1 × 10−6

S2

2 4.4 × 10−3 6.1 × 10−3 9.1 × 10−3 1.1 × 10−3

3 2.1 × 10−3 3.9 × 10−3 1.1 × 10−2 1.6 × 10−3

4 1.3 × 10−3 3.2 × 10−3 8.4 × 10−3 1.4 × 10−3

S3

2 5.6 × 10−6 2.4 × 10−5 2.0 × 10−4 3.5 × 10−5

3 3.3 × 10−6 1.5 × 10−5 3.5 × 10−5 8.2 × 10−6

4 6.9 × 10−6 1.8 × 10−5 5.3 × 10−5 1.1 × 10−5

S4

2 1.3 × 10−6 2.3 × 10−5 1.9 × 10−4 3.8 × 10−5

3 1.2 × 10−6 1.8 × 10−5 1.8 × 10−4 3.2 × 10−5

4 1.8 × 10−6 9.2 × 10−6 2.5 × 10−5 6.1 × 10−6

S5

2 3.3 × 10−5 5.5 × 10−5 7.5 × 10−5 1.0 × 10−5

3 1.1 × 10−5 3.2 × 10−5 6.0 × 10−5 1.3 × 10−5

4 7.0 × 10−6 3.4 × 10−5 6.1 × 10−5 1.1 × 10−5

S6

2 1.9 × 10−3 3.0 × 10−3 4.1 × 10−3 4.9 × 10−4

3 6.0 × 10−4 2.8 × 10−3 6.1 × 10−3 1.2 × 10−3

4 9.0 × 10−4 2.3 × 10−3 4.6 × 10−3 7.8 × 10−4
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Table 2. Cont.

System Number of MFs Best (MSE) Mean (MSE) Worst (MSE) Standard
Deviation

S7

2 1.2 × 10−6 4.9 × 10−5 4.2 × 10−4 1.0 × 10−4

3 2.0 × 10−6 2.4 × 10−5 1.4 × 10−4 2.9 × 10−5

4 2.7 × 10−6 1.7 × 10−5 1.4 × 10−4 2.8 × 10−5

S8

2 1.0 × 10−6 4.0 × 10−5 1.2 × 10−4 3.2 × 10−5

3 1.3 × 10−6 2.3 × 10−5 1.5 × 10−4 2.9 × 10−5

4 5.4 × 10−7 8.7 × 10−6 3.1 × 10−5 8.7 × 10−6

The testing results of the ANFIS training carried out with the MPA to identify the
relevant systems are presented in Table 3. Effective results were achieved with three MFs
for S1. The best mean error value is 2.2 × 10−6. At the same time, the best error value in
S1 is at 10−8 levels. The best mean value found for S2 is 3.0 × 10−2. This error value was
at the level of 10−3 in the training process. In S3, mean error values were reached at the
level of 10−4 for two MFs and three MFs, and it is at the level of 10−3 for four MFs. In S4,
two MFs are more efficient. Its mean error value is 1.5 × 10−4. Generally effective test error
results were achieved in S5. The mean error value obtained for two MFs and three MFs is
the same, and it is 2.3 × 10−4. For four MFs, the error is 1.6 × 10−4. The decrease in the
number of MFs for S6 increased the solution quality of the test process. For S6, this value
is 3.4 × 10−3. When two MFs and four MFs were used in S7, an error level of 10−4 was
obtained. The best mean error value for S7 is 1.3 × 10−4. Three MFs are more effective in
S8. The mean error value obtained is 3.0 × 10−4.

Table 4 provides information based on the best training error values. In other words,
the results of the best training values found for each system are included. While creating the
table, success in mean training errors was taken into account. In five of the eight systems,
the best mean training error values were obtained with four MFs. In the other three systems,
three MFs were more effective. The best mean error values obtained for S1, S2, S3, S4, S5,
S6, S7, and S8 were 1.6 × 10−6, 3.2 × 10−3, 1.5 × 10−5, 9.2 × 10−6, 3.2 × 10−5, 2.3 × 10−3,
1.7× 10−5, and 8.7× 10−6, respectively. The corresponding test error values are 2.2 × 10−6,
4.9 × 10−2, 8.5 × 10−4, 7.8 × 10−4, 2.3 × 10−4, 4.8 × 10−3, 1.3 × 10−4, and 3.6 × 10−4,
respectively. The training error values obtained for S2 and S6 are at the 10−3 level. For
other systems, this value is 10−5 and above.

The performance of the MPA in ANFIS training to solve the relevant problem is
compared with eight meta-heuristic algorithms including BSO, FPA, MFO, MVO, SSA,
CryStAl, DO, and RIME, and training results are presented in Table 5. In all systems, more
successful mean training error values were achieved with the MPA. In S1, the best training
error value after the MPA was found with the DO. The error values found with the MPA
and DO are 1.6 × 10−6 and 1.3 × 10−4, respectively. The only result at the 10−6 level in S1
belongs to the MPA. Mean error values at the 10−4 level were found with the FPA, MVO,
DO, and the RIME algorithm. The second successful algorithm in S2 is the CryStAl. Its
error value is 2.5 × 10−3. MFO is the second successful algorithm in S3. The values of MFO
and the MPA in S3 are 5.6 × 10−5 and 1.5 × 10−5, respectively. In S4, the MPA achieved a
very successful mean error value compared to other algorithms. The value of the MPA is
9.2 × 10−6. The MVO is the second successful algorithm in S4. Except for BSO, average
error values at 10−5 level were reached in S5. The two most successful algorithms on S5 are
the MPA and MFO, respectively. Except for BSO and the CryStAl, error values at 10−3 level
were reached in S6. In S7, the MPA was very effective compared to other algorithms. The
error value of the MPA is 1.7 × 10−5. The most successful algorithm after the MPA is RIME
for S7. The mean error value of the MPA in S8 is 8.7 × 10−6. MFO ranks second in S8.
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Table 3. Testing process results of ANFIS training carried out with MPA for identification of nonlinear
systems.

System Number of MFs Best (MSE) Mean (MSE) Worst (MSE) Standard
Deviation

S1

2 7.9 × 10−7 6.5 × 10−6 1.7 × 10−4 3.0 × 10−5

3 9.4 × 10−8 2.2 × 10−6 1.1 × 10−5 2.3 × 10−6

4 1.7 × 10−7 6.4 × 10−5 1.2 × 10−3 2.4 × 10−4

S2

2 2.0 × 10−2 6.6 × 10−2 5.1 × 10−1 1.1 × 10−1

3 7.0 × 10−3 3.0 × 10−2 2.3 × 10−1 4.2 × 10−2

4 4.7 × 10−3 4.9 × 10−2 2.2 × 10−1 6.2 × 10−2

S3

2 8.6 × 10−5 4.7 × 10−4 3.2 × 10−3 6.5 × 10−4

3 4.3 × 10−5 8.5 × 10−4 6.0 × 10−3 1.5 × 10−3

4 1.3 × 10−4 1.7 × 10−3 1.7 × 10−2 3.2 × 10−3

S4

2 3.8 × 10−6 1.5 × 10−4 1.3 × 10−3 2.4 × 10−4

3 5.6 × 10−6 1.8 × 10−3 4.7 × 10−2 8.5 × 10−3

4 5.3 × 10−6 7.8 × 10−4 1.2 × 10−2 2.3 × 10−3

S5

2 3.3 × 10−5 2.3 × 10−4 1.4 × 10−3 2.5 × 10−4

3 7.3 × 10−5 2.3 × 10−4 1.1 × 10−3 1.8 × 10−4

4 2.9 × 10−5 1.6 × 10−4 4.4 × 10−4 8.1 × 10−5

S6

2 2.0 × 10−3 3.4 × 10−3 4.5 × 10−3 6.9 × 10−4

3 1.0 × 10−3 4.0 × 10−3 1.1 × 10−2 2.3 × 10−3

4 8.7 × 10−4 4.8 × 10−3 2.8 × 10−2 5.4 × 10−3

S7

2 6.5 × 10−6 2.2 × 10−4 2.0 × 10−3 4.7 × 10−4

3 6.2 × 10−6 2.4 × 10−3 2.0 × 10−2 5.5 × 10−3

4 8.6 × 10−6 1.3 × 10−4 7.4 × 10−4 1.6 × 10−4

S8

2 5.2 × 10−6 4.6 × 10−4 3.4 × 10−3 6.2 × 10−4

3 4.7 × 10−6 3.0 × 10−4 3.6 × 10−3 6.4 × 10−4

4 5.7 × 10−6 3.6 × 10−4 4.7 × 10−3 8.6 × 10−4

Table 4. Information belonging to the best training mean errors.

System Number of MFs Train
Mean

Test
Mean

S1 3 1.6 × 10−6 2.2 × 10−6

S2 4 3.2 × 10−3 4.9 × 10−2

S3 3 1.5 × 10−5 8.5 × 10−4

S4 4 9.2 × 10−6 7.8 × 10−4

S5 3 3.2 × 10−5 2.3 × 10−4

S6 4 2.3 × 10−3 4.8 × 10−3

S7 4 1.7 × 10−5 1.3 × 10−4

S8 4 8.7 × 10−6 3.6 × 10−4
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Table 5. Comparison of training error values obtained with MPA and different meta-heuristic
algorithms (best results are given in bold).

System BSO FPA MFO MVO SSA CryStAl DO RIME Proposed
(MPA)

S1 1.7 × 10−2 3.2 × 10−4 5.5 × 10−3 4.5 × 10−4 1.7 × 10−3 2.5 × 10−3 1.3 × 10−4 7.7 × 10−4 1.6 × 10−6

S2 1.2 × 10−1 8.2 × 10−3 1.1 × 10−2 5.7 × 10−3 7.7 × 10−3 5.4 × 10−2 6.9 × 10−3 5.6 × 10−3 3.2 × 10−3

S3 1.6 × 10−3 1.0 × 10−4 5.6 × 10−5 6.1 × 10−5 8.0 × 10−5 4.0 × 10−4 1.1 × 10−4 6.9 × 10−5 1.5 × 10−5

S4 1.2 × 10−3 1.4 × 10−4 9.2 × 10−5 8.0 × 10−5 1.0 × 10−4 4.2 × 10−4 1.2 × 10−4 1.1 × 10−4 9.2 × 10−6

S5 1.6 × 10−4 6.2 × 10−5 5.9 × 10−5 6.6 × 10−5 6.6 × 10−5 7.3 × 10−5 6.8 × 10−5 6.7 × 10−5 3.2 × 10−5

S6 3.3 × 10−2 4.7 × 10−3 5.0 × 10−3 4.2 × 10−3 5.5 × 10−3 1.7 × 10−2 4.6 × 10−3 3.0 × 10−3 2.3 × 10−3

S7 2.2 × 10−3 1.9 × 10−4 1.8 × 10−4 2.4 × 10−4 2.6 × 10−4 6.5 × 10−4 2.6 × 10−4 1.4 × 10−4 1.7 × 10−5

S8 1.1 × 10−3 4.5 × 10−5 2.5 × 10−5 5.5 × 10−5 3.0 × 10−5 1.4 × 10−4 4.2 × 10−5 4.6 × 10−5 8.7 × 10−6

In Table 6, the testing performance of the MPA is compared with BSO, FPA, MFO,
MVO SSA, CryStAl, DO and RIME. The population size of all algorithms was taken as 20.
The maximum number of iterations is 2500. For each algorithm, the MF information given
in Table 4 was used. The best mean test results in S1, S3, S6, and S7 belong to the MPA. The
error value of the MPA in S1 is at the 10−6 level and high success has been achieved. The
second successful algorithm for S1 is the FPA. Results found with the MPA and FPA are
2.2 × 10−6 and 2.6 × 10−4, respectively. The best mean error value with S2 is 3.1 × 10−2

and it was found with MFO. The most effective algorithm after MFO in S2 is RIME. In
S3, the MPA was more successful than other algorithms. The error value of the MPA is
8.5 × 10−4. The second successful algorithm for S3 is MFO. The error value of MFO is
1.1 × 10−3. The two most successful algorithms in S4 are MFO and the MPA. The mean
error values of these algorithms are 5.0 × 10−4 and 7.8 × 10−4, respectively. The most
successful algorithm in S5 is MFO. Its error value is 2.1 × 10−4. Three algorithms share
the second place in S5. These algorithms are the DO, RIME, and the MPA. The error value
of the MPA in S6 is 4.8 × 10−3. After the MPA for S6, the next most successful algorithm
is RIME, and the mean error value was found to be 5.8 × 10−3 using RIME. The top two
most successful algorithms on S7 are the MPA and FPA. Their error values are 1.3 × 10−4

and 1.8 × 10−3, respectively. While the most successful algorithm in S8 was MFO, the MPA
ranked third.

Table 6. Comparison of testing error values obtained with MPA and different meta-heuristic algo-
rithms (best results are given in bold).

System BSO FPA MFO MVO SSA CryStAl DO RIME Proposed
(MPA)

S1 1.5 × 10−2 2.6 × 10−4 3.5 × 10−3 5.0 × 10−4 9.2 × 10−4 1.5 × 10−3 1.7 × 10−4 5.8 × 10−4 2.2 × 10−6

S2 9.8 × 10−2 6.1 × 10−2 3.1 × 10−2 7.6 × 10−2 3.7 × 10−2 8.1 × 10−2 4.1 × 10−2 3.4 × 10−2 4.9 × 10−2

S3 6.8 × 10−3 1.6 × 10−3 1.1 × 10−3 2.6 × 10−3 3.6 × 10−3 2.6 × 10−3 2.1 × 10−3 2.9 × 10−3 8.5 × 10−4

S4 3.1 × 10−3 1.4 × 10−3 5.0 × 10−4 1.1 × 10−2 1.3 × 10−3 5.2 × 10−3 2.4 × 10−3 3.6 × 10−3 7.8 × 10−4

S5 2.7 × 10−4 2.5 × 10−4 2.1 × 10−4 6.3 × 10−4 2.9 × 10−4 2.9 × 10−4 2.3 × 10−4 2.3 × 10−4 2.3 × 10−4

S6 7.9 × 10−3 6.5 × 10−3 1.2 × 10−2 7.0 × 10−3 7.2 × 10−3 1.7 × 10−2 1.4 × 10−2 5.8 × 10−3 4.8 × 10−3

S7 8.6 × 10−3 1.8 × 10−3 4.7 × 10−3 2.2 × 10−3 2.0 × 10−3 2.6 × 10−3 2.1 × 10−3 2.5 × 10−3 1.3 × 10−4

S8 1.7 × 10−3 1.2 × 10−3 2.2 × 10−4 5.1 × 10−4 3.4 × 10−4 8.4 × 10−4 4.3 × 10−4 3.1 × 10−3 3.6 × 10−4

The performances of the algorithms are compared in Tables 5 and 6. The comparison
of the success scores obtained according to these performances is presented in Table 7.
The MPA’s success ranking score is 24. According to the training and testing processes, it
is generally more successful than other algorithms. Algorithms other than BSO and the
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CryStAl achieved a total success score in the range of 60–80. After the MPA, the most
successful algorithm according to total score is MFO. MFO is followed by the FPA and
RIME with a success score of 72. The DO’s rank is very close to the FPA and the RIME. Its
value is 73. The total score of the SSA is 77. The MVO follows SSA with a total score of 79.
BSO is the most unsuccessful algorithm in both training and testing processes.

Table 7. General success scores of the metaheuristic algorithms.

System
BSO FPA MFO MVO SSA CryStAl DO RIME Proposed

(MPA)

Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test

S1 9 9 3 3 8 8 4 4 6 6 7 7 2 2 5 5 1 1

S2 9 9 6 6 7 1 3 7 5 3 8 8 4 4 2 2 1 5

S3 9 9 6 3 2 2 3 5 5 8 8 5 7 4 4 7 1 1

S4 9 6 7 4 3 1 2 9 4 3 8 8 6 5 5 7 1 2

S5 9 6 3 5 2 1 4 9 4 7 8 7 7 2 6 2 1 2

S6 9 6 5 3 6 7 3 4 7 5 8 9 4 8 2 2 1 1

S7 9 9 4 2 3 8 5 5 6 3 8 7 6 4 2 6 1 1

S8 9 8 5 7 2 1 7 5 3 2 8 6 4 4 6 9 1 3

TOTAL
72 62 39 33 33 29 31 48 40 37 63 57 40 33 32 40 8 16

134 72 62 79 77 120 73 72 24

The graphs of the actual output and the predicted output were compared to evaluate
the success of the training process, and this is presented in Figure 2. These graphics were
created taking into account the best results of the MPA. In S1, S3, S4, S7, and S8, the real and
predicted outputs overlap exactly. In other systems, there is little difference. This shows
that the training process of the MPA is successful.
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4. Discussion

MF type, number of MFs, control parameters of the training algorithm, and the system
to be modeled are important factors affecting performance in ANFIS training. In this study,
the generalized Bell function, which is used extensively in the literature, was used. The
results were obtained by using 2, 3, and 4 MFs for each input in each system. The effect of
increasing or decreasing the number of MFs varies according to the systems. It also affected
training and test results differently. Mostly, the increase in the number of MFs improved
the performance in the training process. This situation is clearly seen in the S2, S4, S6, S7,
and S8 systems. Especially when looking at the best mean error values, it can be seen that
it is not found with two MFs.

In ANFIS training, the testing process is as important as the training process. As seen
in Table 4, training error values and test error values show parallelism with each other. In
other words, both the test results and the training results are successful.

The general structure of nonlinear systems directly affects the results. In some systems,
mean training error values at the level of 10−3 were reached, whereas in some systems,
mean training error values at the level of 10−6 were reached. It is also important in this
context whether nonlinear systems exhibit symmetric behavior or not. When we look at the
systems in general, it can be observed that they have an asymmetric structure. However,
some systems exhibit regional symmetry.

Standard deviation is one of the important indicators. Each application was run
30 times and standard deviation values were calculated. As can be seen in Tables 2 and 3,
low standard deviation values were obtained in parallel with the error values. This shows
that the results are reproducible. Continuously achieving successful results in a process
that starts with random solutions increases the confidence in the training algorithm. The
standard deviation values obtained are an indication that the MPA is effective.

One of the most important ways to determine whether a training algorithm is success-
ful is to compare it with different training algorithms. For this reason, the performance
of the MPA has been compared with meta-heuristic algorithms such as BSO, FPA, MFO,
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MVO, SSA, CryStAl, DO, and RIME. Especially in the training process of all systems, the
MPA is more successful than other algorithms. This supports the conclusion that the MPA
is a powerful training algorithm. Likewise, the MPA achieved significant success in the
test results.

It is apparent that the proposed method is generally successful in solving the relevant
problem. When all the results are evaluated, the proposed method has some advantages
and disadvantages.

• The results show that the proposed method is successful on different systems. The
characteristics of each system are different. Some of them can be very difficult to work
with, and some of them present easier problems. In contrast, the MPA has produced
successful results on all types of systems. To analyze this better, the results obtained
with other meta-heuristic algorithms should be looked at. For example, while MFO is
very successful in identifying some systems in both training and testing processes, it is
also very unsuccessful in some systems. In contrast, the MPA has generally consistent
success across all systems. This is an important advantage.

• Another important advantage of the proposed method is that it is also successful in
the training and testing process. In the training process, the training algorithm learns
by seeing the dataset. But during the test process, it gives results according to the data
that it does not know at all. As seen in Table 7, the MPA is successful in both training
and testing processes and ranks first. The success of the MPA parallels the training
and testing process. In other algorithms, this stability cannot be observed in general.
The behavior of other algorithms may vary depending on the system. In fact, this
shows that the MPA can be successful in solving different problems.

• A disadvantage of the proposed method is that the best results were achieved by
trial and error. In fact, this disadvantage arises from the ANFIS model. The MFs and
number of MFs used in the ANFIS model affect the result. As can be seen in the results,
more successful results were achieved with three MFs in some systems, whereas
using four MFs was more successful in some systems. Furthermore, while increasing
the number of MFs improves performance in some systems, this is not observed in
others. The best successful model for each system must be found by trial and error.
This appears as a disadvantage. Despite this disadvantage, successful results can be
achieved in solving problems with the strong structure of the ANFIS model.

5. Conclusions

In this study, ANFIS training was carried out using the MPA for the identification of
nonlinear systems. Applications were performed on eight nonlinear systems. Performance
analysis was performed on different ANFIS models for each system. The performance of
the MPA is compared with different meta-heuristic algorithms. The main conclusions of
this study are as follows:

• It was observed that the performance of the MPA was successful in the ANFIS training
carried out for the identification of nonlinear systems.

• It has been observed that the performance of the MPA changes according to the
structure of the systems used.

• Low standard deviation values were obtained. This indicates that the results are
reproducible.

• It has been seen that the performance of the MPA is better than meta-heuristic algorithms
such as BSO, FPA, MFO, MVO, SSA, CryStAl, DO, and RIME for solving related problems.

• The change in the number of MFs affects performance. The impact rate varies accord-
ing to the system used and the training algorithm.

In this study, the success, reproducibility, and strong structure of the MPA show that it
can also provide successful results in solving different problems in the fields of economics,
education, social sciences, health sciences, engineering, and energy in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

MPA Marine predators algorithm
BOA Butterfly optimization algorithm
FPA Flower pollination algorithm
MFO Moth–flame optimization
MVO Multi-verse optimizer
SSA Salp swarm algorithm
FA Firefly algorithm
CA Cultural algorithm
BA Bees algorithm
IWO Invasive weed optimization
SBO Satin bowerbird optimizer
TLBO Teaching–learning-based optimization
AO Aquila optimizer
ABC Artificial bee colony
PSO Particle swarm optimization
HS Harmony search
CS Cuckoo search
DE Differential evolution
BSA Backtracking search algorithm
GA Genetic algorithm
GWO Gray wolf optimization
KH Krill Herd
SVM Support vector machine
FFNN Feed-forward neural network
LSTM Long short-term memory
GOA Grasshopper optimization algorithm
EO Equilibrium optimizer
WOA Whale optimization algorithm
DSA Differential search algorithm
LCA League championship algorithm
CryStAl Crystal structure algorithm
DO Dandelion optimizer
RIME RIME algorithm
CNN Convolutional neural network
ANFIS Adaptive Network Fuzzy Inference System
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model using Aquila Optimizer for oil production forecasting. Processes 2021, 9, 1194. [CrossRef]

6. Karaboga, D.; Kaya, E. An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training. Appl. Soft Comput.
2016, 49, 423–436. [CrossRef]

7. Pourdaryaei, A.; Mokhlis, H.; Illias, H.A.; Kaboli, S.H.A.; Ahmad, S. Short-term electricity price forecasting via hybrid backtracking
search algorithm and ANFIS approach. IEEE Access 2019, 7, 77674–77691. [CrossRef]

8. Riahi-Madvar, H.; Dehghani, M.; Memarzadeh, R.; Gharabaghi, B. Short to long-term forecasting of river flows by heuristic
optimization algorithms hybridized with ANFIS. Water Resour. Manag. 2021, 35, 1149–1166. [CrossRef]

9. Ahmed, K.; Ewees, A.A.; El Aziz, M.A.; Hassanien, A.E.; Gaber, T.; Tsai, P.-W.; Pan, J.-S. A hybrid krill-ANFIS model for wind
speed forecasting. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt,
24–26 November 2016; pp. 365–372. [CrossRef]

10. Liu, K.; Yang, P.; Wang, R.; Jiao, L.; Li, T.; Zhang, J. Observer-Based Adaptive Fuzzy Finite-Time Attitude Control for Quadrotor
UAVs. IEEE Trans. Aerosp. Electron. Syst. 2023. [CrossRef]

11. Al-Betar, M.A.; Awadallah, M.A.; Makhadmeh, S.N.; Alyasseri, Z.A.A.; Al-Naymat, G.; Mirjalili, S. Marine Predators Algorithm:
A Review. Arch. Comput. Methods Eng. 2023, 30, 3405–3435. [CrossRef]

12. Abd Elminaam, D.S.; Nabil, A.; Ibraheem, S.A.; Houssein, E.H. An efficient marine predators algorithm for feature selection.
IEEE Access 2021, 9, 60136–60153. [CrossRef]

13. Abdel-Basset, M.; El-Shahat, D.; Chakrabortty, R.K.; Ryan, M. Parameter estimation of photovoltaic models using an improved
marine predators algorithm. Energy Convers. Manag. 2021, 227, 113491. [CrossRef]

14. Soliman, M.A.; Hasanien, H.M.; Alkuhayli, A. Marine predators algorithm for parameters identification of triple-diode photo-
voltaic models. IEEE Access 2020, 8, 155832–155842. [CrossRef]

15. Abd Elaziz, M.; Thanikanti, S.B.; Ibrahim, I.A.; Lu, S.; Nastasi, B.; Alotaibi, M.A.; Hossain, M.A.; Yousri, D. Enhanced marine predators
algorithm for identifying static and dynamic photovoltaic models parameters. Energy Convers. Manag. 2021, 236, 113971. [CrossRef]

16. Zhong, K.; Zhou, G.; Deng, W.; Zhou, Y.; Luo, Q. MOMPA: Multi-objective marine predator algorithm. Comput. Methods Appl.
Mech. Eng. 2021, 385, 114029. [CrossRef]

17. Fan, Q.; Huang, H.; Chen, Q.; Yao, L.; Yang, K.; Huang, D. A modified self-adaptive marine predators algorithm: Framework and
engineering applications. Eng. Comput. 2022, 38, 3269–3294. [CrossRef]

18. Al-qaness, M.A.; Ewees, A.A.; Fan, H.; Abualigah, L.; Abd Elaziz, M. Boosted ANFIS model using augmented marine predator
algorithm with mutation operators for wind power forecasting. Appl. Energy 2022, 314, 118851. [CrossRef]

19. Al-Qaness, M.A.; Ewees, A.A.; Fan, H.; Abualigah, L.; Abd Elaziz, M. Marine predators algorithm for forecasting confirmed cases
of COVID-19 in Italy, USA, Iran and Korea. Int. J. Environ. Res. Public Health 2020, 17, 3520. [CrossRef]

20. Shaheen, M.A.; Yousri, D.; Fathy, A.; Hasanien, H.M.; Alkuhayli, A.; Muyeen, S. A novel application of improved marine
predators algorithm and particle swarm optimization for solving the ORPD problem. Energies 2020, 13, 5679. [CrossRef]

21. Houssein, E.H.; Abdelminaam, D.S.; Ibrahim, I.E.; Hassaballah, M.; Wazery, Y.M. A hybrid heartbeats classification approach
based on marine predators algorithm and convolution neural networks. IEEE Access 2021, 9, 86194–86206. [CrossRef]

22. Ikram, R.M.A.; Cao, X.; Sadeghifar, T.; Kuriqi, A.; Kisi, O.; Shahid, S. Improving Significant Wave Height Prediction Using a
Neuro-Fuzzy Approach and Marine Predators Algorithm. J. Mar. Sci. Eng. 2023, 11, 1163. [CrossRef]

23. Al-Qaness, M.A.; Saba, A.I.; Elsheikh, A.H.; Abd Elaziz, M.; Ibrahim, R.A.; Lu, S.; Hemedan, A.A.; Shanmugan, S.; Ewees, A.A.
Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil. Process Saf. Environ. Prot. 2021, 149,
399–409. [CrossRef] [PubMed]

24. Ghomsheh, V.S.; Shoorehdeli, M.A.; Teshnehlab, M. Training ANFIS structure with modified PSO algorithm. In Proceedings of
the 2007 Mediterranean Conference on Control & Automation 2007, Athens, Greece, 27–29 June 2007; pp. 1–6. [CrossRef]
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