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Abstract: This paper proposes an approximation algorithm based on the Legendre and Chebyshev
artificial neural network to explore the approximate solution of fractional Lienard and Duffing
equations with a Caputo fractional derivative. These equations show the oscillating circuit and
generalize the spring–mass device equation. The proposed approach transforms the given nonlinear
fractional differential equation (FDE) into an unconstrained minimization problem. The simulated
annealing (SA) algorithm minimizes the mean square error. The proposed techniques examine
various non-integer order problems to verify the theoretical results. The numerical results show that
the proposed approach yields better results than existing methods.

Keywords: orthogonal neural network; simulated annealing optimization technique; fractional
differential equations; Caputo derivative

1. Introduction

In ancient times, fractional calculus was used by mathematicians due to its several
applications in applied mathematics as well as mathematical physics. Recently, fractional
differential equations have been used to model many real-world problems in circuit theory,
fluid dynamics, physics, mathematical biology, quantum mechanics, electrochemistry, etc.
Also, it is well known that non-integer-order derivatives control the models efficiently.
Talebi et al. [1] explored the application of fractional calculus to filtering structures for
α-stable systems, where α-stable distributions are a class of probability distributions that
generalize the Gaussian distribution and can describe asymmetric and heavy-tailed behav-
ior. These distributions are encountered in real-world scenarios, including financial time
series and communication channels. Fractional-order filters and processing methods might
provide better tools for dealing with such systems. Therefore, studying these equations
and finding their solutions is necessary. The general form of the Lienard equation [2] is
given by

z′′(t) + f (z)z′(t) + g(z) = h(t). (1)

Various types of selection of the functions f , g, and h give distinct models. For example,
if f (z)z′(t) is the damping force, g(z) is the restoring force, and h(t) is the external force,
then it forms the damped pendulum equation. Moreover, if we have f (z) = ε(z2 − 1),
g(z) = z, and h(t) = 0, then Equation (1) is transferred to the Van der Pol equation [3],
representing a nonlinear electronic oscillation model. However, it is well known that the
exact solution of Equation (1) is a complex problem.

Kong [4] and Feng [5] investigated the exact solution of the Lienard equation in
the form

z′′(t) + Lz′(t) + Mz3 + Nz5 = 0, (2)
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where, L, M, and N are constant coefficients.
The general form of the Duffing oscillator equation is

z′′(t) + Lz′(t) + Pz + Mz3 = 0, (3)

where, L, M, and P are constant coefficients.
Some recent works in the literature, such as [6–9], focused on generalized forms of

the Lienard and Duffing equations using fractional calculus. Fractional-order derivatives
can explore various physical methods that vary with time and space [10,11]. Also, us-
ing fractional calculus principles is well established in several scientific fields. Bohner
and Tunç [12] conducted a qualitative analysis of Caputo fractional integro-differential
equations with constant delays. This work delves into the dynamics of such equations,
shedding light on their behavior and properties and contributing to the advancement of
their understanding in this specialized area of mathematics. In [13], the authors dived into
fractional calculus and delay integro-differential equations. Their work, which focuses on
Caputo proportional fractional derivatives, presents novel solution estimation techniques.
By addressing these intricate equations, the authors contributed to advancing analytical
methods in the context of fractional calculus and its applications. Many real-life phenomena
are represented by the fractional Lienard equation and Duffing equation, such as oscillating
circuit theory [14,15], the mass damping effect [16], and pipelines and fluid dynamics [17].

The general form of the fractional order Lienard equation is given as follows:

Dνz(t) + LD′z(t) + Mz3 + Nz5 = 0, 1 < ν ≤ 2, t ∈ [0, 1], (4)

with respect to

z(0) = α, z′(0) = β, where α and β are constants. (5)

Also, the fractional Duffing equation with the damping effect is given as follows:

Dηz(t) + LD′z(t) + Pz(t) + Mz3 = 0, 1 < η ≤ 2, t ∈ [0, 1], (6)

subject to
z(0) = γ z′(0) = δ, where γ and δ are constants. (7)

In the literature, many analytical and numerical approaches exist for solving
Equations (4) and (6). In 2004, Feng [18] explicitly presented the exact solution of the
Lienard equation and provided some applications. In 2008, Matinfar et al. [19] used the
variation iteration technique to solve the Lienard equation and compared the numerical
solutions obtained with the analytic solution. Furthermore, Xu [20] acquired the eight
types of explicit analytical solutions of the Lienard equation, which included periodic
wave solutions and solitary wave solutions in terms of elliptic Jacobian and trigonometric
functions. Janiczek [21] demonstrated the modulating functions method for all models
described by fractional differential equations. Modulating functions are used to reduce
the order of derivatives in an equation, generate equations without derivatives of output
signals, and eliminate the need to solve differential equations. Chebyshev’s operational
matrix method for solving the multi-term fractional-order ordinary differential equation
was proposed by Atabakzadeh et al. [22]. To apply this approach, they first converted the
given problem into a system of fractional ODEs and then used the Chebyshev operational
matrix method. Again, Kazem [23] analyzed fractional ODEs via an integral operational
matrix approach based on Jacobi polynomials. Nourazar and Mirzabeigy [16] proposed a
modified differential transform technique to deal with the fractional Duffing equation with
a damping effect. In 2016, Ezz-Eldien [24] discovered a new numerical approach to solving
fractional variational problems. Furthermore, Gómez-Aguilar et al. [17] used the Laplace
homotopy analysis technique with a new fractional derivative without a singular kernel to
solve the fractional Lienard equation that describes the fluid dynamics of the pipeline. The
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homotopy analysis method was implemented in [25,26] to solve the Duffing oscillator and
the Lienard problem with a fractional derivative. Recently, Singh et al. [14,15,27,28] also
made several effective attempts to find the solutions to Equations (4) and (6) by using a va-
riety of techniques. Also, Kumar et al. [29] used the Rabotnov fractional exponential kernel
to solve the nonlinear Lienard equation numerically. More recently, Adel [30] demonstrated
an approach based on Bernoulli collocation and shifted Chebyshev collocation points to
solve Equations (4) and (6).

In recent years, neural architecture-based approximation schemes have been used
to solve FDEs, ODEs, PDEs, and delay differential equations (DDEs) [31–38]. In 2013,
Lefik [39] illustrated that an ANN performs the numerical representation of the inverse
relation. It can be used as many times as needed in the same application, replacing tradi-
tional “ad hoc” back computation for any new piece of experimental data. Malik et al. [40]
proposed a hybrid heuristic approach to solve the Lienard equation based on genetic al-
gorithms, such as memetic computation, combining genetic algorithms, the interior-point
algorithm, and the active set algorithm. Furthermore, Mall and Chakraverty [33,36] used
the multilayer perceptron and functional connection neural network with regression-based
parameters to solve ODEs. In [34,38], the authors also used the multilayer perceptron
technique with quasi-Newton and Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms
to solve the singular initial and boundary value problems. Kumar et al. [41] presented
a comparative analysis of two distinct neural modeling approaches to approximate the
multidimensional poverty levels within an Indian state. This study sought to provide useful
information for choosing the best modeling approaches to determine poverty levels in the
Indian setting by examining their performance and precision. Sahoo and Chakraverty [42]
proposed a symplectic artificial neural network to handle nonlinear systems arising in dusty
plasma models. They presented the dynamics of Van der Pol–Mathieu–Duffing oscillator
problems for different excitation functions using the proposed method, and numerical
simulations and graphical representations were carried out to establish the accuracy of the
presented algorithm.

Motivated by the above, in this manuscript, we discuss the functional link neural
network architecture, which is a single-layer neural network. This article aims to find the
solutions to fractional Lienard and Duffing equations using functional link neural networks.
This technique offers us the following attractive features:

• The proposed technique gives us the solution in a closed analytic form.
• The functional link neural network consists of a single layer, and thus the number of

network parameters is less than the traditional multilayer ANN and works with low
computational complexity.

• It is capable of fast learning and is computationally efficient.
• This process does not need linearization to solve a nonlinear problem.

We have organized the present article as follows. Section 2 includes some important
preliminaries and discusses the structure of the Chebyshev and Legendre neural networks.
Section 3 discusses the methodology, including a well-explained algorithm and the im-
plication protocol, while Section 4 discusses the numerical experiments and their results.
Section 5 deals with the error analysis of the technique, while Section 6 concludes the work.

2. Preliminaries

This section provides some basic definitions and results related to the Chebyshev and
Legendre artificial neural network models used in this paper. We begin with the following
definitions:

Definition 1. Suppose that r and s are positive integers such that r − 1 < s < r. Then, for a
continuous function p(x), the Riemann–Liouville derivative and integral of a fractional order s are
given by

R
a Ds

x p(x) =
1

Γr− s
dr

dxr

∫ x

a
(x− τ)r−s−1 p(τ)dτ,
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and
R
a D−s

x p(x) =
1
Γs

∫ x

a
(x− τ)s−1 p(τ)dτ,

respectively.

Definition 2. Suppose that r and s are positive integers such that r − 1 < s < r. Then, for a
continuous function p(x), the Caputo derivative and integral of a fractional order s are given by

C
a Ds

x p(x) =
1

Γ(r− s)

∫ x

a

p(r)(τ)
(x− τ)s+1−r dτ, r− 1 ≤ s ≤ r,

and
C
a D−s

x p(x) =
1
Γs

∫ x

a
(x− τ)s−1 p(τ)dτ,

respectively.

Remark 1. Note that the Caputo definition has the advantage of being bound, which means that
the derivative of a constant is equal to zero. It also allows for the consideration of easily understood
initial conditions.

2.1. Chebyshev and Legendre Artificial Neural Network Models

Chebyshev and Legendre artificial neural networks are functional link neural networks
with one single layer. Both models can learn fast and have functional expansion blocks to
enhance input patterns. In 1995, Pao and Philips [43] presented an approach based on a
single-layer functional connection neural network. The architectures of the Chebyshev and
Legendre neural network models are given as follows.

The architecture of the Chebyshev neural network model: The structure of the ChNN
model is shown in Figure 1. It consists of a single input node, a Chebyshev polynomial
function expansion block, and an output node. Assume that t is a single input node with k
data; that is, (t = t1, t2, . . . , tk)

T . N(t, p) is the output of the feedforward neural network.

Figure 1. Structure of Chebyshev neural network.
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The following are the first two Chebyshev polynomials:

T0[t] = 1,

T1[t] = t.

The well-known recurrence relation can be used to obtain higher-order Chebyshev
polynomials:

Tn+1(t) = 2tTn(t)− Tn−1(t).

The architecture of the Legendre neural network model: The structure of the LeNN
model is depicted in Figure 2. It has a single input node, a Legendre polynomial function
expansion block, and an output node. Assume that t is a single input node with l data; that
is, (t = t1, t2, . . . , tl)

T . N(t, p) is the output of the feedforward neural network.

Figure 2. Structure of Legendre neural network.

Some Legendre polynomials are as follows:

L0[t] = 1,

L1[t] = t,

L2[t] =
1
2
(3t2 − 1).

The well-known recurrence relation can be used to obtain higher-order Legendre poly-
nomials: Ln+1(t) =

1
n + 1

[(2n + 1)tLn(t)− nLn−1(t)].

2.2. Simulated Annealing Algorithm

Simulated annealing is a straightforward stochastic function minimizer. It is inspired
by the annealing process, which involves heating a metal piece to a high temperature and
letting it cool gently. This process enables the metal’s atomic structure to settle into a lower
energy state, making it harder. Using optimization terminology, annealing enables the
structure to leave a local minimum and to search for and arrive at a better, ideally global
minimum. A new point is generated randomly near the present point with each iteration
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of the simulated annealing technique. The radius of the neighborhood decreases with
each iteration.

3. Description of the Method
3.1. General Remarks

The orthogonal perceptron expands upon the classical perceptron algorithm utilized
for binary classification applications. The perceptron is a fundamental building element that
accepts input values, adds weights to them, and generates output in the context of machine
learning and neural networks. The orthogonal perceptron introduces a significant change:
it requires orthogonality between the weight vectors connected to various classes. The
weight vectors are modified in conventional perceptrons to reduce misclassification errors.
However, in the orthogonal perceptron, the weight vectors for various classes are restricted
to be orthogonal to one another, in addition to being modified to minimize mistakes. In
higher-dimensional spaces, the orthogonal constraint provides a discriminating component
that can better explain class separation. Orthogonal weight vectors can lead to better
decision boundaries and enhanced generalization.

A flow chart demonstrates the proposed technique in Figure 3. We have also explained
the methodology stepwise.

Figure 3. Pictorial presentation of the algorithm.
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Due to the similarity of both techniques, we discuss the combined steps for the
Chebyshev and Legendre ANN techniques. For both methods, the entire procedure is the
same except for the polynomial selection

• Prepare the network by using the Chebyshev or Legendre polynomials.
• Provide the network adaptive coefficients (NACs) for each polynomial.
• Calculate and save the sum of the products of the NACs and Chebyshev polynomials

or Legendre polynomials as a function µ or δ.
• Use the Taylor series extension of the activation function tanh(.) to activate the function

µ or δ.
• Now, construct the problem’s trial solution, which satisfies the given initial or bound-

ary conditions.
• Substitute the derivatives of the trial solution into the given situation and obtain the

error function.
• To minimize the error function, use simulated annealing optimization techniques.
• If the assessment of the mean square error is in an acceptable range, then collect the

value of the adaptive coefficients of the network and substitute it into the trial solution
to obtain the results; otherwise, repeat the same process for various values of the
NACs until the agreeable MSE is acquired.

3.2. Employment on Nonlinear FDEs

Here, we apply the proposed technique to fractional-order nonlinear differential
equations of the following type:

Dνz(t) = F(t, z, z′(t)), (8)

subjected to the following conditions:

z(0) = α, z′(0) = β.

Equation (8) can be written in the following form to apply the Chebyshev and Legendre
ANN techniques:

Dνztr(t, ψ)− F(t, ztr(t, ψ), Dztr(t, ψ)) = 0, t ∈ [0, 1], 1 < ν ≤ 2, (9)

where ztr is the trial solution of Equation (8) which satisfies the given initial or boundary
conditions and ψ is network adaptive coefficients known as bias and weight. Let us try the
trial solution for Equation (8) expressed as

ztr(t, ψ) = A + tN(t, ψ), (10)

where N is the network output for the Chebyshev ANN. We apply the Taylor series to the
tanh(.) activation function to activate the sum of the product of the weights and orthogonal
polynomials such that

N = tanh(µ) = µ− µ3

3
+

2µ5

15
, (11)

Here, µ is given by

µ =
n

∑
i=1

ψiTi−1, (12)

where Ti−1 represents the Chebyshev polynomials, which can be characterized with the
following recursive formula:

Ti+1(t) = 2tTi(t)− Ti−1(t), i ≥ 2, (13)

Here, T0(t) = 1 and T1(t) = t are the fundamental values of the Chebyshev polynomials.
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For the Legendre ANN, the activation function N is defined by

N = tanh(δ) = δ− δ3

3
+

2δ5

15
, (14)

Here, δ is given by

δ =
n

∑
i=1

ψiLi−1, (15)

where Li−1 represents the Legendre polynomials, which are defined by the following
recursive formula:

Li+1(t) =
1

(i + 1)
(2i + 1)tLi(t)−

1
(i + 1)

iLi−1(t), i ≥ 2, (16)

Here, L0(t) = 1 and L1(t) = t are the fundamental values of the Legendre polynomial.
Now, we can write the trial solution in terms of µ and δ for the Chebyshev and

Legendre ANNs, respectively, and obtain the following:

ztr(t, ψ) = A + t
(

µ− µ3

3
+

2µ5

15

)
and = A + t

(
δ− δ3

3
+

2δ5

15

)
, (17)

Now, we put the values of µ and δ into Equation (17) for n = 2 and obtain

ztr(t, ψ) = A + t
(
(ψ1 + tψ2)−

(ψ1 + tψ2)
3

3
+

2(ψ1 + tψ2)
5

15

)
. (18)

By applying the Caputo fractional-order derivative, we obtain

Dνztr(t, ψ) =
Γ2

Γ(2− ν)
t1−ν

(
ψ1 −

ψ3
1

3
+

2ψ5
1

15

)
+

2
3

Γ6
Γ(6− ν)

t5−ν(ψ1ψ4
2) +

2
15

Γ7
Γ(7− ν)

t6−ν(ψ5
2)

+
Γ3

Γ(3− ν)
t2−ν

(
ψ2 − ψ2

1ψ2 +
2
3

ψ4
1ψ2

)
+

Γ4
Γ(4− ν)

t3−ν

(
4
3

ψ3
1ψ2

2 − ψ1ψ2
2

)
+

Γ5
Γ(5− ν)

t4−ν

(
4
3

ψ2
1ψ3

2 −
ψ3

2
3

)
.

(19)

Also, the mean square error for Equation (8) can be calculated as follows:

E(ψ) =
m

∑
j=1

1
m
(

Dνztr(tj, ψi)− F(tj, ztr(tj, ψi), Dztr(tj, ψi))
)2, t ∈ [0, 1]. (20)

Here, we refer to Equation (20) as a fitness function and m as the number of trial points.
We used a thermal minimization process known as simulated annealing to minimize the
fitness function. This is a probabilistic method used to approximate the global optimum
of a function. This method consists of three steps: perturb the solution, determine the
consistency of the solution, and accept the solution if it is better than the improved one.
The learning of NACs will be performed from Equation (18) by minimizing the MSE to the
lowest possible acceptable minimum value.

3.3. Advantages of the Proposed Technique

1. To approximate the complex nonlinear interactions present in fractional differential
equations, the orthogonal perceptron-based method uses the adaptability of artificial
neural networks. It can capture complex behaviors that are exceedingly difficult to
express using conventional numerical techniques.

2. Once trained, the orthogonal perceptron may generalize its learned patterns to fresh
input data. This is extremely helpful when solving fractional differential equations
with various initial conditions or parameters.
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3. Traditional numerical techniques are frequently built with well-established conver-
gence features. However, the neural network approach’s convergence is determined
by the quality of the data and the architecture used.

4. Numerical Implementation

In this section, two fractional-order problems are solved using the ChNN and LeNN
architectures. The numerical results show that the proposed technique is highly efficient
and robust. All the computations were performed on a computer with an Intel Core i3
processor (Intel Corporation, Santa Clara, CA, USA) with 8 gigabytes of RAM, and the
simulation was conducted with Mathematica 11.1.0 for each problem.

Problem 1. Consider the particular choice of the parameters L = −1, M = 4, and N = 3 in
Equation (4). The fractional Lienard problem is given as follows [14,15,28]:

Dνz(t)− D′z(t) + 4z3 + 3z5 = 0, 1 < ν ≤ 2, t ∈ [0, 1], (21)

z(0) = α =

√
τ

2 + κ
and z′(0) = β = 0,

where

τ = 4

√
3a2

3b2 − 16ac
and κ = −1 +

√
3b√

(3b2 − 16ac)
. (22)

For ν = 2, the exact solution is already known with the given conditions

z(t) =

√
τ sec h2

√
−at

2 + κ sec h2
√
−at

(23)

Equation (22) presents the values of τ and κ.
As we discussed in Section 4, we constructed the trial solution as

ztr(t, ψ) = α + t2N(t, ψ). (24)

The given Lienard problem was solved by ChNN and LeNN techniques for the various
values of ν and employed by dividing the domain into 10 equidistant training points
with 6 NACs. The acquired appropriate MSEs were 1.39515× 10−10 and 5.27835× 10−10,
respectively. The computational time for Problem 1 was 0.05 s and 0.09 s, respectively.
Table 1 shows the accurate values of the NACs after training by the SA algorithm. In
Table 2, we have listed the approximated solution by our methods (ChNN and LeNN), the
methods of Singh [14,15,28], and the exact solution. Table 2 shows the good agreement
with these methods.

Table 1. The ideal estimations of NAC (Problem 1).

NAC W1 W2 W3 W4 W5 W6

ChNN −0.41174 0.379264 0.463621 0.386701 0.0344511 0.0811897
LeNN −1.53305 1.02509 −2.11092 1.1266 −0.969482 0.15995

Table 2. Comparison of numerical results at ν = 2 for Problem 1.

t Exact
Solution ChNN LeNN [28] [14] [15]

0.00 0.643594 0.643594 0.643594 0.643594 0.643594 0.643594
0.01 0.643556 0.643524 0.643524 0.643524 0.643524 0.643524
0.02 0.643443 0.643313 0.643313 0.643313 0.643313 0.643314
0.03 0.643255 0.642959 0.642959 0.642959 0.642959 0.642965
0.04 0.642991 0.642462 0.642462 0.642461 0.642461 0.642477
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Table 2. Cont.

t Exact
Solution ChNN LeNN [28] [14] [15]

0.05 0.642653 0.641821 0.641821 0.641818 0.641818 0.641894
0.06 0.642239 0.641033 0.641033 0.641029 0.641028 0.641082
0.07 0.641751 0.640100 0.640100 0.640093 0.640092 0.640176
0.08 0.641189 0.639019 0.639019 0.639009 0.639009 0.639130
0.09 0.640553 0.637790 0.637790 0.637777 0.637776 0.637946
0.1 0.639844 0.636413 0.636413 0.636395 0.636395 0.636623

In Figure 4, we have compared the approximate solutions by the LeNN and ChNN
methods with the solutions obtained by the methods given in [14,15,28]. Figures 5 and 6
show the approximate solutions for the various values of ν.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input (t)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ol

ut
io

n 
z(

t)

ChNN
LeNN

ECM
JSCM

COMM

Figure 4. Comparison of approximate solutions at ν = 2 by ChNN, LeNN Method with [28], [14], [15]
(Problem 1).

From Figures 5 and 6, we observed that the solution varied continuously from the
fractional-order solution to the integer order. Therefore, we can say that the behaviors of
approximate solutions for different fractional orders converge to integer-order solutions.

Problem 2. Consider the particular choice of the parameters L = 0.5, P = 25, and M = 25 in
Equation (6). The fractional duffing equation is given as follows [14,15,28]:

Dηz(t) + 0.5D′z(t) + 25z + 25z3 = 0, 1 < η ≤ 2, (25)

z(0) = γ = 0.1 and z′(0) = δ = 0.

The exact solution of Problem 2 at η = 2 when using the differential transform
method [16] is given as follows:

z(t) = 0.1− 1.2625t2 + 0.2104t3 + 2.6828t4 − 0.5392t5 − 2.6563t6 + 0.6152t7. (26)
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Figure 5. Nature of the approximate results with the LeNN method at ν = 2, 1.96, 1.9, 1.86, 1.8, 1.76
(Problem 1).
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Figure 6. Nature of the approximate results with the ChNN method at ν = 2, 1.96, 1.9, 1.86, 1.8, 1.76
(Problem 1).
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The trial solution can be written as

ztr(t, ψ) = 0.1 + t2N(t, ψ). (27)

The Duffing equation was solved with the ChNN and LeNN techniques for the various
values of η. We trained the network using 10 equidistant points in the domain [0, 0.1]
with 6 NACs. The obtained MSEs were 1.61568× 10−9 and 1.73644× 10−8, respectively.
The appropriate values of the NACs using the SA algorithm are given in Table 3. The
computational time for Problem 2 was 0.05 s and 0.03 s, respectively. In Table 4, we have
listed the obtained solutions by the proposed methods (ChNN and LeNN) and the existing
method’s solutions from [15,16,28]. Table 4 shows the good accuracy for the acquired
results and the results given in [16].

Table 3. The ideal estimations of the NAC (Problem 2).

NAC W1 W2 W3 W4 W5 W6

ChNN −0.84541 2.43209 0.54458 1.04621 −0.0457733 0.165949
LeNN −1.54176 0.143329 −0.674402 −0.433421 −0.617103 −0.35283

Table 4. Comparison of numerical results at η = 2 for Problem 2.

t DTM [16] ChNN LeNN [28] [15]

0.00 0.100000 0.100000 0.100000 0.1000000 0.100000
0.01 0.099874 0.099874 0.099874 0.0998745 0.099874
0.02 0.099497 0.0994971 0.099497 0.0995025 0.099502
0.03 0.098871 0.0988715 0.0988715 0.0988894 0.098889
0.04 0.098002 0.0980002 0.0980001 0.0980414 0.098041
0.05 0.096886 0.0968865 0.0968864 0.0969644 0.096964
0.06 0.095534 0.0955346 0.0955344 0.0956646 0.095664
0.07 0.093949 0.093949 0.0939488 0.0941484 0.094148
0.08 0.092135 0.0921351 0.0921348 0.0924222 0.092422
0.09 0.090098 0.0900985 0.0900982 0.0904924 0.090492
0.1 0.087845 0.0878456 0.0878453 0.0883660 0.088366

In Figure 7, we have compared the approximate solutions with the proposed method
and the solutions given in [15,16,28]. Figures 8 and 9 show the solutions for the different
values of η.

From Figures 8 and 9, we observed that the solutions varied continuously from
fractional-order solutions to integer-order solutions. Therefore, we can say that the behav-
iors of the approximate solutions for different fractional orders converged to an integer-
order solution, and the periodic behavior of the solution can be seen.

Problem 3. Consider the particular choice of the parameters L = −1, M = 4, and N = −3 in
Equation (4). The fractional duffing equation is given as follows [14,44]:

Dνz(t)− D′z(t) + 4z3 − 3z5 = 0, 1 < ν ≤ 2, (28)

z(0) = c1 =

√
−2L

M
and z′(0) = c2 = − L

√
−L

M
√
−2L

M

.

The exact solution for the considered problem (Problem 3) for ν = 2 is given as follows:

z(t) =

√
−2L(1 + tanh

√
−Lt)

M
. (29)
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Figure 7. Comparison of approximate solutions at η = 2 by ChNN, LeNN method with [16], [28], [15]
(Problem 2).
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Figure 8. Nature of the approximate results with the LeNN method at η = 2, 1.96, 1.9, 1.86, 1.8, 1.76
(Problem 2).
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Figure 9. Nature of the approximate results with the ChNN method at η = 2, 1.96, 1.9, 1.86, 1.8, 1.76
(Problem 2).

The trial solution can be written as

ztr(t, ψ) = c1 + t2N(t, ψ). (30)

The given Duffing equation was solved with the ChNN and LeNN techniques for
the various values of ν. We trained the network by taking 10 equidistant points in the
domain [0, 0.1] with 6 NACs. The obtained MSEs were 5.49991× 10−9 and 2.69692× 10−10,
respectively. The computational time for the problem was 0.08 s and 0.09 s, respectively.
The appropriate values for the NACs using the SA algorithm are given in Table 5. In
Table 6, we listed the outcomes by the proposed method, analytic method and the solutions
obtained by other existing numerical methods [15,44]. In Table 7, we have shown the
absolute error between the exact solution and solution obtained by the proposed technique
and other existing techniques.

Table 5. The ideal estimations of NAC (Problem 3).

NAC W1 W2 W3 W4 W5 W6

ChNN 0.815413 1.23726 2.53108 1.03956 0.498807 0.307813
LeNN − 1.04706 −1.33436 0.254833 −1.04073 −0.113977 −0.295584

In Figure 10, we have compared the approximate solutions with the proposed methods
with the exact solution and the solutions given in [15]. In Figures 11 and 12, we have
presented the solutions to Problem 3 for the various values of ν.

In Figures 11 and 12, we can see that the solution varied continuously from fractional
order to integer order.
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Table 6. Comparison of numerical results at ν = 2 for Problem 3.

t Exact ChNN LeNN [15] [44]

0.00 0.7071067 0.7071067 0.7071067 0.7071067 0.7071067
0.01 0.7106334 0.710811 0.710722 0.7106155
0.02 0.7141419 0.71432 0.714231 0.7140699 0.7141419094
0.03 0.7176318 0.717811 0.717722 0.7174686
0.04 0.7211028 0.721283 0.721193 0.7208102 0.7211028634
0.05 0.7245544 0.724736 0.724645 0.7240935
0.06 0.7279862 0.728168 0.728077 0.7273171 0.7279862988
0.07 0.7313979 0.731581 0.731489 0.7304797
0.08 0.7347890 0.734973 0.734881 0.7335800 0.7347890065
0.09 0.7381591 0.738344 0.738251 0.7366167
0.1 0.7415079 0.741693 0.741601 0.7395886 0.7415079207

Table 7. Absolute error comparison from various numerical technique for Problem 3 at ν = 2.

t Abs. Error
(ChNN)

Abs. Error
(LeNN) Abs. Error [15] Abs. Error [44]

0.00 0 0 0 0
0.01 1.776× 10−4 8.85× 10−5 1.79× 10−5

0.02 1.780× 10−4 8.90× 10−5 7.19× 10−5 1.8669× 10−6

0.03 1.790× 10−4 9.02× 10−5 1.63× 10−4

0.04 1.801× 10−4 9.01× 10−5 2.93× 10−4 6.2706× 10−6

0.05 1.810× 10−4 9.06× 10−5 4.61× 10−4

0.06 1.818× 10−4 9.08× 10−5 6.69× 10−4 4.94502× 10−5

0.07 1.831× 10−4 9.12× 10−5 9.18× 10−4

0.08 1.839× 10−4 9.20× 10−5 1.21× 10−3 1.161249× 10−4

0.09 1.849× 10−4 9.19× 10−5 1.54× 10−3

0.1 1.851× 10−4 9.31× 10−5 1.91× 10−3 2.24737× 10−4
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Figure 10. Comparison of approximate solutions at η = 2 by ChNN, LeNN Method with exact
solution and [15] (Problem 3).
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Figure 11. Nature of the approximate results with the ChNN method at ν = 2, 1.95, 1.85, 1.70
(Problem 3).
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Figure 12. Nature of the approximate results with the ChNN method at ν = 2, 1.95, 1.80, 1.70
(Problem 3).
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5. Error Analysis

For the above problems, we have presented the error analysis of the numerical solu-
tions of the ChNN and LeNN techniques. Initially, we trained the neural network using
the SA algorithm and collected the appropriate values of the network parameters. After
that, we substituted the NAC values into the trial solution and obtained the results for the
ChNN or LeNN techniques (according to the polynomial). To analyze the precision of the
method within the domain [0,1], we also substituted it into Equation (31):

E(t, ψ) = |Dνztr(t, ψ)− F(t, ztr(t, ψ), Dztr(t, ψ))| ∼= 0 (31)

where we found the z(t) approximated continuous results through the ChNN and LeNN
techniques. E(t) approached 0 as the value of the MSE acquired with the ChNN and
LeNN with the SA algorithm changed. The solution’s convergence depends upon the
optimization algorithm, the number of network adaptive coefficients, and the neural
network’s architecture, which we used.

For Problem 1, the mean square errors for the ChNN and LeNN techniques at ν = 2
were 1.39515× 10−10 and 5.27835× 10−10, respectively, which showed that the minimum
error for the ChNN and LeNN was 1.3 × 10−5. This presents that both the strategies’
precisions were inversely proportional to the mean square error value. When we exchanged
the polynomials and used the SA algorithm for the network training, we observed that
both techniques were strongly affected, as can be seen in Table 1.

Problem 2 is known as the fractional-order Duffing equation. For η = 2, the values
of the MSE with 6 NACs by using ChNN and LeNN methods are 1.61568× 10−9 and
1.73644× 10−8 respectively. For the fractional value of η = 1.96, 1.9, the LeNN shows
better results with minimum value for the MSE, however for η = 1.86, 1.8 and 1.76 both
techniques yielded a similar MSE. Problem 3 is also a fractional Lienard equation. We
solved it approximately for the various values of ν and obtained better results with less
computational time than other existing numerical techniques [15,44].

6. Conclusions

This article has solved the Lienard and Duffing fractional- and integer-order equations
using the ChNN and LeNN techniques with the SA algorithm. The proposed approach is
easy to implement on nonlinear FDEs with simplicity of evaluation. The method’s accuracy
can be improved by enhancing the NAC learning methodology. The numerical results
show that the proposed strategies give better results compared with other existing numer-
ical techniques, such as DTM [16], the spectral collocation method [15], the Chebyshev
operational matrix method [28], HAM [25], and the fractional homotopy analysis transform
method [44]. For the solution of nonlinear problems, this technique does not require any
linearization process. As a result, we can conclude that the method is exceptional and
applicable to a broad range of nonlinear fractional-order differential equations that arise in
engineering and science. The proposed technique can also be improved for precision in
the future by improving the neural architecture and the learning technique of NACs. In
the proposed technique, once the network has been trained, it allows continuous evalua-
tion of the solution inside the domain. Also, it can be considered a powerful tool for the
computation of nonlinear problems.
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FDE Fractional differential equation
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LeNN Legendre neural network
NAC Network adaptive coefficient
COMM Chebyshev Operational Matrix Method
JSCM Jacobi Spectral Collocation Method
DTM Differential Transform Method
ECM Efficient Computational Method
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