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Abstract: We propose and examine a model expressed by stochastic differential equations for the
evolution of a complex system. We refer in particular to a market society, in which the state of each
individual is identified by the amount of money at his/her disposal. The evolution of such a system
over time is described by suitable equations that link the instantaneous changes in the probability of
each state with the probable outcomes of pairwise interactions between elements of the system. In
the context at hand, these pairwise interactions simply represent money exchanges, due to the sales
and purchases of goods and services. In this paper, unlike the usual method in the literature, the
interaction frequencies and the consequent probabilities of passing from one state to another are not
considered as assigned once and for all but are supposed to be randomly variable. This choice, as
also shown by several numerical simulations, seems likely to have fruitful consequences, especially
for a more realistic representation of economic issues and phenomena.

Keywords: economic exchanges; kinetic theory; stochastic differential equations; complex systems

1. Introduction

The purpose of the present work is to further develop the analysis carried out in [1],
which considered a description in the framework of kinetic theory of the evolution of
an economic system, or, more precisely, a market system. We mean by this a system
of mutually interacting individuals—who could be called “economic agents”—whose
states are characterized by the amount of money at their disposal and whose mutual
interactions are simply money exchanges that occur due to the sales and purchases of
goods and/or services. As is well known, in a statistical framework, the changes in state
due to interactions between economic agents cannot be deterministically predicted: all that
can be accomplished is to attribute a probability linked to the state before the interaction
to each possible state after the interaction. This is what is called “transition probability”,
and this probability also depends on the state of the subject interacting with an individual.
Usually, the law that associates to any triple (s, s′, s′′) of states, the probability that any
individual goes from state s to s′ after an interaction with an economic agent whose state is
s′′ is assigned more or less arbitrarily, according to a statistical projection from a sufficiently
large number of previous experiences. And, of course, the instantaneous variation of the
probability of each state also depends on the interaction rate, which, in an economic context,
is the frequency of money exchanges per unit time. Thus, this variation is a function of
two sets of terms: (1) the “assigned” terms, which are independent of the evolution of the
system (interaction rates and probability transitions), and (2) the unknown terms, which
are the states of interacting individuals before the interaction.

The assigned terms that determine the variation in the probability distribution over
the set of states are usually considered as characterizing the particular system under
examination. Accordingly, they are prescribed once and for all on the basis of a sufficiently
large number of prior experiments. The correctness of the prescription is checked based on
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the greater or lesser agreement of the solutions to the equations with the observed evolution
of the system. In this connection, a question spontaneously arises: can we improve this
procedure by taking into account a priori any possibility of error in the prescription or
uncertainty? The main purpose of this paper is to give this question an affirmative answer.
As a matter of fact, if the interaction frequencies and transition probabilities, rather than
constants uniquely associated with the model, are assumed to be “random variables” or,
more precisely, values affected by randomly distributed errors, one obtains at least two
important results: (1) on the one hand, as we shall see in details in Sections 2 and 3, one
finds convincing evidence of the validity of the continuous dependence of solutions on the
data (where the word “data” also refers to coefficients, when these latter are interpreted
as parameters); (2) on the other hand, with particular regard to the economic context, it
allows us to outline an explanation of the fluctuations that affect the overall economic state
of a collectivity. These results will be illustrated in this paper through the outputs of some
numerical simulations, in which the errors and uncertainties are assumed to be distributed
according to the standard normal distribution and the extraction of their random values is
performed at each time step.

To put the article in context, we point out that, especially over the last fifteen years or
so, several works have been published studying markets and economic exchanges from
a kinetic theory perspective. To mention just a few of these works, without any claim to
completeness, we recall here [2–6], referring to their bibliographies as well. It is worthwhile
to stress that, despite the common basis that rests on the analogy between individuals
exchanging money and molecules undergoing collisions, these papers and those they quote
in fact have developed different approaches. In particular, their approaches and methods
are significantly different from those presented here. Very briefly, in [2], various “gas-like”
models are reviewed, which rely on a simple framework in which two (out of N) randomly
selected agents exchange money according to a predefined rule. Specific focus is placed on
the effect of different saving propensity attitudes of the traders on the resulting long-time
wealth distribution. In [4], similar asset exchange models are considered in conjunction
with a utility maximization principle for the pairs of trading agents. Monte Carlo simulation
methods are then employed to analyze the distributional features. The approach in [3]
differs from those just mentioned, because it treats the agents as a continuum and defines
the dynamics as governed by a spatially homogeneous Boltzmann equation in which the
term containing the “collisional operator” (in this context, collisions correspond to trades)
is expressed by an integral. In this paper, the analysis focuses on the thickness of the Pareto
tail. An analog of the Boltzmann equation is also considered in [6], which leads, in a suitable
(small transaction) limiting case, to a partial integrodifferential equation. Features such
as inflation, production, and taxation are also added to the model. Finally, the survey [5]
provides an extensive description of the historical development of several statistical models
of money, wealth, and income distributions, and includes in this overview both gas-like
models that involve N agents and models described by integrodifferential equations.

Unlike ours, none of the mentioned papers take into account the distinction of dif-
ferent income classes. Furthermore, the uncertainty that affects the encounter rates and
is incorporated into the present work by means of random variables, has (to the best of
our knowledge) never been dealt with as here. Regarding this aspect of stochasticity, a
final caveat is also necessary. The explicit incorporation of a noise term in a model of the
dynamics of income distribution in the presence of monetary exchanges was the subject
of the article [7] and resulted in a Langevin-type kinetic equation somehow similar to the
one below. We emphasize, however, that the type of noise and uncertainty, as well as the
aims pursued in the investigation, are very different in [7] and here. Whereas in [7], a term
expressing a multiplicative noise, unrelated to interaction rates, is added to the determin-
istic part of the evolution equation, in the present paper it is the coefficients themselves
that express the interaction probabilities between individuals that are considered randomly
changing over time.
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We underline that the stochastic frame formulated in this paper should essentially be
understood as a basis building block for future investigations in which we plan to address
specific topics of economic interest in a more targeted way. Additionally, we think and
hope that it can be a stimulus for in-depth analytical studies and for the establishment
of well-posedness results. Indeed, we do not provide here formal proofs of the global
existence and uniqueness of solutions of the proposed nonlinear stochastic differential
equations. Rather, we pursue a heuristic approach by developing and discussing numerical
simulations. We emphasize, however, that all the numerical simulations we have carried
out (actually, a large number; those reported here are only a sample) suggest that the
proposed model is reasonable and deserves attention and further investigation.

The contents of the paper are distributed as follows: Section 2 is devoted to the
statement of the problem, to the explanation of the mathematical language used to treat
it, and to the formulation of the system of stochastic equations describing the evolution
of an economic system under our hypotheses; in Section 3, we comment on simulations
and show a sample of numerical solutions to the system considered in Section 2, also
discussing their connection with the problem of the continuous dependence of solutions on
parameters. Section 4 is devoted to outlining some conclusions and possible developments
of the present research towards the construction of models that are increasingly faithful
to the behavior of real economic societies. Finally, an appendix (Appendix A) is added
containing the proof of the fact that a certain quantity is conserved during the evolution of
the system.

2. The Model

We consider here a closed market society, characterized by the fact that the frequencies
with which the individuals exchange money vary stochastically over time. We describe
the problem in the context of a complex system approach, considering a population of
interacting individuals divided into a finite number n of classes characterized by the
average income of their members. To fix the notations, we first take n + 1 numbers
0 = ρ0 < ρ1 < . . . < ρn, where ρn is large enough to represent an upper bound for
the maximal conceivable income of each individual in the society. In particular, we suppose
that ρi+1 − ρi = α (ρi − ρi−1) with α > 1, for i = 1, . . . , n − 1. Consequently, one can
consider n intervals [ρi−1, ρi) of increasing length, identifying n income classes. Even if
n is not very large, we can obtain, by suitably choosing α, that the income of individuals
belonging to the n-th class is orders of magnitude larger than that of the individuals of the
first class (as happens in real societies). We denote by ri = (ρi + ρi−1)/2 for i = 1, . . . , n
the average income of the i-th class and, assuming for simplicity that all individuals with
income ρ ∈ [ρi−1, ρi) actually have the same average income ri, we denote by xi = xi(t) for
i = 1, . . . , n the “fraction" (portion) of these individuals at time t.

Our aim is to study the variation over time of the number of individuals belong-
ing to each class, due to the whole of economic exchanges that take place between the
individuals themselves.

We deal with a case in which the global income is constant. Namely, we assume that
only many transfers of money from one individual to another occur. The elementary model
of society we have in mind is one in which payments from one individual to another are
motivated by the provision of a service, good or job. The effect of these economic transfers
is that of a continuous displacement of individuals from one class to another. Of course, in
correspondence with a single transaction, this displacement is “small": we can interpret it as
the displacement of portions of individuals, an interpretation that is justified in the context
of a collective picture. At the “macroscopic level”, the conservation of global income can be
interpreted as the fact that production and consumption in the society are balanced.

To set up a mathematical formulation of the economic exchanges process described, we
introduce n matrices Ci with i = 1, . . . , n, of dimension n× n, with the following property:
the elements ci

hk of Ci satisfy ci
hk ∈ [0, 1] and ci

hk expresses the probability that an individual
of the h-th class belongs to the i-th class after a direct interaction with an individual of the
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k-th class. Of course, the requirement that the coefficients ci
hk express probabilities implies

that for any fixed h and k they satisfy
n

∑
i=1

ci
hk = 1.

A suitable expression for these coefficients has been derived in [1] (note only that in [1]
the case of income intervals of the same length was considered, i.e., the case where α = 1).
To reproduce and then adapt it to the new framework, we introduce an n× n matrix P,
whose elements ph,k for h, k = 1, . . . , n denote the probability that, in an encounter between
an individual of the h-th class and one of the k-th class, the one who pays is the former (also
called a h-individual). We denote by S the amount paid in a transaction. As mentioned
above, any single interaction may cause a slight decrease or increase in the income of
the individuals involved and, in turn, a slight variation in the class populations. In fact,
these variations only affect the original class and the neighboring classes of the individuals
involved, and the only possibly nonzero elements among the ci

hk are easily found (see [1]
for these details) to take the form

ci
h,k = ai

h,k + bi
h,k, (1)

where the only nonzero elements ai
h,k—elements of n matrices Ai—are

ai
i,k = 1, for i, k = 1, . . . , n, (2)

whereas the nonzero elements bi
h,k—elements of n matrices Bi—are given by

bi
i+1,k = pi+1,k

S
ri+1 − ri

,

bi
i,k = − pk,i

S
ri+1 − ri

− pi,k
S

ri − ri−1
,

bi
i−1,k = pk,i−1

S
ri − ri−1

. (3)

Note that the expression for bi
i+1,k in (3) holds true for i ≤ n− 1 and k ≤ n− 1, the

first addendum of the expression for bi
i,k is actually only present for i ≤ n− 1 and k ≥ 2,

while the second addendum is present only under the condition that i ≥ 2 and k ≤ n− 1;
and the expression for bi

i−1,k holds true for i ≥ 2 and k ≥ 2. These constraints are functional
to the meaningfulness of the indices and reflect the fact that in this model individuals of
the first class never pay and individuals of the n-th class never receive money (there are
neither classes poorer than the first nor classes richer than the n-th).

There is an element of symmetry in the Formula (3) since in each trade the variation in
the fraction of i-individuals for 2 ≤ i ≤ n− 1, regardless of whether they pay an individual
of a poorer or richer class, is inversely proportional to the difference in the average incomes
of the classes involved in the exchange. Perfect symmetry, however, cannot be achieved in
this case, because the average income ri of the i-th class increases as i increases.

We emphasize that there are some degrees of freedom in the choice of the coefficients
ph,k. It is reasonable, in this respect, to adjust the coefficients based on the fact that poorer
individuals usually earn and spend less than richer ones. An even more realistic option is
to also take into account the effects of some unavoidable uncertainties and randomness. In
view of this, we consider each ph,k for h, k = 1, . . . , n as the sum of a “deterministic” and a
“stochastic” part,

ph,k = pd
h,k + ps

h,k, (4)

or, in matrix notation,
P = Pd + Ps.
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To this aim, we start by defining a n× n matrix

Q = Q(c, M) = {qh,k},

where the variable c is a positive number and the variable M = {Mh,k} is a n× n matrix,
as the matrix with elements qh,k given by

qh,k = c Mh,k
min{rh, rk}

rn
for h = 2, . . . , n and k = 1, . . . , n− 1,

q1,k = 0 for k = 1, . . . , n,

qh,n = 0 for h = 1, . . . , n. (5)

We then define
Pd = Q(cd, M1),

and
Ps = Ps(dW) = Q(cs, dW),

(with the dependence of Ps on dW explicitly underlined) where M1 is the n× n matrix
having all elements equal to 1, W is a n× n matrix whose elements are Brownian motions
and cd and cs are positive constants, chosen in such a way that the inequalities

0 ≤ ph,k ≤ 1 and ph,k + pk,h ≤ 1 (6)

hold for all h, k = 1, . . . , n with a probability very close to 1. In particular, in Section 3, a
numerical approximation is proposed, according to which the (6) are satisfied; and this
in turn guarantees that the xi remain non-negative during the evolution of the system.
These latter conditions are compatible with the meaning of the ph,k, which express the
probabilities of payment in a case in which encounters without any payment can also occur.

The overall dynamics corresponding to the variation of the fraction of individuals
in the various income classes is described by a vectorial stochastic differential equation
(see, e.g., [8–10] for SDE, [11] for a nice presentation of SDE and their numerical treatment
and [12]). Before writing it down, let us point out that in the following we denote Bi(Pd)
(respectively, Bi(Ps(dW))) the matrix Bi having elements bi

h,k as in the Formula (3), with
the difference, however, that the elements ph,k are replaced by pd

h,k (respectively, ps
h,k).

The announced stochastic differential equation, whose unknown is the vector function
x = (x1, x2, . . . , xn) with components xi denoting the number of individuals in the i-th
income class for i = 1, . . . , n, is given by

dxi =

( n

∑
h,k=1

(
ai

hk + bi
hk(Pd)

)
xh xk −

n

∑
h,k=1

(
ah

ik + bh
ik(Pd)

)
xi xk

)
dt

+
n

∑
h,k=1

bi
hk(Ps(dW)) xh xk, for i = 1, . . . , n. (7)

By taking the sum over i = 1, . . . , n of the left(-hand) and of the right(-hand) side

of (7), one can easily see that (the size of) the total population,
n
∑

i=1
xi(t), remains constant in

time. This is in agreement with the fact that births, deaths and other variations in the total
number of individuals are not significant for the problem under investigation and over the
period of interest here.

By choosing the normalization

n

∑
i=1

xi(t) = 1, (8)
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we observe that, since (as can easily be verified)

n

∑
h=1

(
ah

ik + bh
ik(Pd)

)
= 1,

one has
n

∑
h,k=1

(
ah

ik + bh
ik(Pd)

)
xi xk = xi

n

∑
k=1

xk = xi. (9)

The differential equation (7) can then be written in a more compact and elegant form as

dxi =

((
(Ai + Bi(Pd)) x

)
· x− xi

)
dt +

(
Bi(Ps(dW)) x

)
· x, for i = 1, . . . , n, (10)

and in the numerical simulations we employ the usual approximation ([10–12])

∆xi =

((
(Ai + Bi(Pd)) x

)
· x− xi

)
∆t +

(
Bi(Ps(X)) x

)
· x
√

∆t, for i = 1, . . . , n,

(11)
where X = {Xh,k} is a n× n matrix, whose elements are independent standard normal
random variables. We emphasize that the extraction of the random variables Xh,k occurs at
each time step during the evolution of the system. Furthermore, we stress that the elements
of the matrices Bi depend linearly on the elements of the matrices Ps and, in turn, these
depend linearly on the elements of the matrices X. Yet, the Equation (10) is nonlinear.

In conclusion, the system of equations described above reflects the classical philosophy
underlying the kinetic-theoretical treatment of the behavior of many-particles systems, but
with one very important difference. The total probability variation of each possible state of
the “particles” in the system results from the sum of a gain term and a loss term; but in
the standard model, these are—in an appropriate sense of the term—deterministic: once
the transition probabilities and interaction rates have been assigned, the time derivative
of the probability of each state and the probability itself become—provided the equation
can be solved—known functions of time. This is a peculiar feature of probability: although
the events to which it applies are uncertain by definition, within the framework of a
given theory, its values are certain. Accordingly, the interaction rates and the transition
probabilities that appear in all kinetic-theoretical equations are in a sense the weak point of
all models that use them. In any case, these parameters cannot be assigned exactly a priori
or “by nose” if the models are to be applied to real problems. At most, their values can be
proposed as working hypotheses and must be verified a posteriori.

The difference introduced in this paper lies in the additional term in the right-hand
side of equation (11). Containing a random variable distributed according to the standard
Gauss normal curve of errors, this term takes into account the unavoidable uncertainty
of the interactions rates and the parameters, or data, of the theory. The rigidity of precise
assumptions about the prescription of conditional probabilities is mitigated and, as will be
shown in Section 3 through a series of simulations, this approach can offer a broader class
of solutions that exhibit more natural fluctuating behavior.

3. Numerical Results

Before moving to a discussion on the results of the numerical simulations, we point
out that the specific structure of the coefficients (3) guarantees that the total income
I(x) = ∑n

j=1 rjxj(t) remains constant during the time evolution of the system described by
both Equations (10) and (11). We refer the proof of this to the Appendix and we continue
with the presentation here.

To investigate the processes generated by Equation (11), we have to fix some of the
parameters of the model. As an example, we chose n = 9 (but then, as also mentioned
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below, we also dealt with the cases n = 11 and n = 13) and α = 1.35. The values of the ρj
for j = 0, 1, 2, . . . , n were assumed to be approximately equal to

0 , 3.779 , 8.880 , 15.767 , 25.064 , 37.614 , 54.558 , 77.432 , 108.312 , 150 ,

with average incomes rj for j = 1, 2, . . . , n approximately equal to

1.889 , 6.329 , 12.323 , 20.415 , 31.339 , 46.086 , 65.995 , 92.872 , 129.156 .

The logic is to have the average income of the richest class two orders of magnitude larger
than that of the poorest class. Also, we chose S = 3. As for the parameters ph,k defined
in (5), we chose cd = 1/4 and cs = 1/12, whereas for any h and any k in {1, 2, . . . , n}
a (different) value Xh,k of the standard normal random variable was taken at each time
step. To be precise, in order to guarantee the validity of the inequalities (6), we took a
truncated version of the standard normal random variable, restricting the values domain to
the interval [−3, 3] (which contains, by the way, approximately 99% of all possible values).

At this point, the following observation is in order: a quantity of simulations for the
construction of numerical solutions of the “deterministic” problem, namely the problem
described by equation (11) in which cs = 0, gives evidence of the fact that—once the
parameters n, α, ρj for j = 0, 1, 2, . . . , n and rj for j = 1, 2, . . . , n, S and cd are fixed—all
solutions evolving from initial data x(0) = x0 = (x01, . . . , x0n) with x0i ≥ 0 for any
i = 1, 2, . . . , n, which satisfy ∑n

i=0 x0i = 1 and ∑n
i=1 rix0i = µ for some µ > 0, tend to the

same stationary solution as t → ∞ (actually, as t becomes large). In other words, when
the parameters defining the “deterministic” model are fixed, in correspondence to any
conceivable value µ of the total income, there exists a unique asymptotic stationary solution.

We have therefore fixed a value of the total income, chosen initial conditions com-
patible with this value, performed 33 realizations of the Equation (11) and calculated the
mean and the variance of the sample realizations. Moreover, we repeated this procedure
several times.

Some results which exhibit features typical of all performed simulations are shown in
the Figures 1–6. Precisely, the figures from Figures 1–4 are relative to the case when n = 9.
Each of the panels in Figure 1 refers to one of the income classes and displays five curves
corresponding to the mean over 33 realisations, to the curve obtained adding [respectively,
subtracting] at at any time step the standard deviation to [respectively, from] the mean
value, and to the curve constructed by taking at any time step the minimum [respectively,
the maximum] among the values of the realisations. The panels in Figure 2 refer to the
same experiment, and show for each income class the set of all realisations. The top panel
in Figure 3 displays the nine curves respectively obtained by considering at each time step
the mean of the values over the 33 realisations, whereas in the bottom panel in the same
figure one finds the nine curves corresponding to the components of the solution of the
corresponding deterministic problem. The high similarity (possibly, the equality) of the
curves in the two panels gives indication of the validity of the model. The Figure 4 displays
the nine curves obtained by considering at each time step the standard deviation of the
values over the 33 realisations. The two panels in Figure 5 display the five curves mentioned
in the Figure 1 for a case with the same value of the total income, but with n = 11 in the
classes 2 and 10; the same holds for the two panels in Figure 6 with the only difference that
they refer to the case in which n = 13 and the income classes there represented are class 2
and 12 (the second one and the penultimate), those where the fluctuations appear to be the
largest one.

By looking at these figures one notices that in the long run the stochastic process
modelled by Equation (11), while not leading to an equilibrium, displays fluctuations
which do not deviate much from an equilibrium. Such a picture seems to correspond to the
appropriate representation of an economic phenomenon.
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(a) Income class 1 (b) Income class 2 (c) Income class 3

(d) Income class 4 (e) Income class 5 (f) Income class 6

(g) Income class 7 (h) Income class 8 (i) Income class 9

Figure 1. The nine panels display for each income class in a case with n = 9 the five curves
corresponding to the mean over 33 realisations, the curve obtained adding at any time step the
standard deviation to the mean value, the curve obtained subtracting at any time step the standard
deviation from the mean value, the curve constructed by taking at any time step the minimum among
the values of the realisations, the curve constructed by taking at any time step the maximum among
the values of the realisations.
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(a) Income class 1 (b) Income class 2 (c) Income class 3

(d) Income class 4 (e) Income class 5 (f) Income class 6

(g) Income class 7 (h) Income class 8 (i) Income class 9

Figure 2. The nine panels in the same case with n = 9 as in Figure 1 display for each income class
33 realisations. It is worth noticing that long-time behaviour of each component of the realisations
shows oscillations towards a specific value. We assume that this value is that of the corresponding
component of the stationary solution of the deterministic system. This assumption is supported by
the picture in next figure.

Figure 3. Each of the nine curves displayed in the left panel represents the mean over 33 realisations
in each of the nine income classes of Figure 1. The nine curves in the right panel represent the solution
of the deterministic system for the same data, but in the absence of stochastic perturbation. One can
easily observe the high similarity of the curves in the two panels. In practice, they look the same.
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Figure 4. This figure shows the standard deviations of the sample of 33 realisations carried out in
each of the nine income classes of Figure 1.

Figure 5. These panels refer to the income classes 2 and 10 when n = 11. The five curves correspond
to the mean over 33 realisations, the curve obtained adding at any time step the standard deviation
to the mean value, the curve obtained subtracting at any time step the standard deviation from the
mean value, the curve constructed by taking at any time step the minimum among the values of the
realisations, the curve constructed by taking at any time step the maximum among the values of
the realisations.

Figure 6. These panels refer to the income classes 2 and 12 when n = 13. The five curves correspond
to the mean over 33 realisations, the curve obtained adding at any time step the standard deviation
to the mean value, the curve obtained subtracting at any time step the standard deviation from the
mean value, the curve constructed by taking at any time step the minimum among the values of the
realisations, the curve constructed by taking at any time step the maximum among the values of
the realisations.

4. Conclusions

In this paper, building on previous work on kinetic-type models [1], we have de-
veloped a novel framework for the description of a market society. This framework is
formulated in terms of a nonlinear stochastic differential equation. The main novelty, which
can and will be applied to many other problems, consists in the fact that the interaction
frequencies of the trading individuals (usually assumed to be constant) are supposed to
change at each time step due to the involvement of a normal random variable. More
precisely, the interaction frequencies are thought of as the sum of a “deterministic” and a
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“stochastic” part. In this way, the unavoidable uncertainty that characterizes the real world
is naturally incorporated in the model. As a result, credible findings are obtained efficiently.

Possible future perspectives include an attempt to prove the well-posedness of Equation (7),
an in-depth examination of continuous data dependence, an investigation into the rela-
tionship between the magnitude of the fluctuations and that of the stochastic term in the
differential equation, somewhat in the spirit of a stability analysis and a vectorial extension
similar to that of [13]. Finally, of course, the development is envisaged of applications of
the random variability aspect introduced here to models that arise in various contexts.
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Appendix A

Below, we prove that the total income remains constant for both processes described
by the Equations (10) and (11).

Theorem A1. The function

I : {x = (x1, . . . , xn) ∈ Rn : xj ≥ 0 ∀ i = 1, . . . , n and
n

∑
j=0

xj = 1} → R,

I(x) =
n

∑
j=1

rjxj(t), (A1)

does not vary during the evolution of the Equations (10) and (11).

Proof. It is convenient to start from Equation (7). Writing for sake of notation
(bd)i

hk = bi
hk(Pd) and (bs)i

hk = bi
hk(Ps(dW)), we have, in view of (2) and (8),

dI =
n

∑
i=1

ri dxi =
n

∑
i=1

ri

( n

∑
h,k=1

(
ai

hk + (bd)i
hk
)

xh xk −
n

∑
h,k=1

(
ah

ik + (bd)h
ik
)

xi xk

)
dt

+
n

∑
i=1

ri

n

∑
h,k=1

(bs)i
hk xh xk

=
n

∑
i=1

ri xi dt +
n

∑
i=1

n

∑
h=1

n

∑
k=1

ri (bd)i
hk xh xk dt

−
n

∑
i=1

ri xi dt−
n

∑
i=1

n

∑
h=1

n

∑
k=1

ri (bd)h
ik xi xk dt

+
n

∑
i=1

ri

n

∑
h,k=1

(bs)i
hk xh xk

=
n

∑
i=1

n

∑
h=1

n

∑
k=1

ri (bd)i
hk xh xk dt−

n

∑
i=1

n

∑
k=1

ri xi xk

n

∑
h=1

(bd)h
ik dt

+
n

∑
i=1

n

∑
h=1

n

∑
k=1

ri (bs)i
hk xh xk. (A2)
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The second of the three terms appearing in the last two lines vanishes because the Formula
(3) imply ∑n

h=1(b
d)h

ik = 0. As far as the disappearance of the first and the third term is
concerned, it suffices to prove that

n

∑
h=1

n

∑
k=1

n

∑
i=1

ri bi
hkxhxk = 0, (A3)

where the coefficients bi
hk are as in (3), simply remembering that the corresponding equation

with (bd)i
hk (respectively, (bs)i

hk) instead of bi
hk then follows, the only difference being that

the elements ph,k are replaced by pd
h,k (respectively, ps

h,k).
From the Formula (3) together with the constraints on the various indices therein

appearing, and for fixed h, k ∈ {1, . . . , n}, we have

n

∑
i=1

ri bi
hk = rh−1 bh−1

hk + rh bh
hk + rh+1 bh+1

hk

=
rh−1 ph,k S
rh − rh−1

−
rh pk,h S

rh+1 − rh
−

rh ph,k S
rh − rh−1

+
rh+1 pk,h S
rh+1 − rh

= − ph,k S + pk,h S, (A4)

with the first addendum in the last line actually presenting only the provided h ≥ 2 and
k ≤ n− 1 and the second addendum actually presenting only the provided h ≤ n− 1 and
k ≥ 2.

Now, the sum on the left(-hand) side in (A3) can be split as follows:

n−1

∑
h=2

n−1

∑
k=2

n

∑
i=1

ri bi
hkxhxk +

n

∑
k=1

n

∑
i=1

ri bi
1kx1xk +

n

∑
k=1

n

∑
i=1

ri bi
nkxnxk

+
n−1

∑
h=2

n

∑
i=1

ri bi
h1xhx1 +

n−1

∑
h=2

n

∑
i=1

ri bi
hnxhxn. (A5)

The antisymmetry (established in (A4) for 2 ≤ h and k ≤ n− 1) of the coefficient ∑n
i=1 ri bi

hk
appearing in front of xhxk in the first term in (A5), implies that this first term vanishes.
Hence,

n

∑
h=1

n

∑
k=1

n

∑
i=1

ri bi
hkxhxk = x1

n

∑
k=1

n

∑
i=1

ri bi
1kxk + xn

n

∑
k=1

n

∑
i=1

ri bi
nkxk

+ x1

n−1

∑
h=2

n

∑
i=1

ri bi
h1xh + xn

n−1

∑
h=2

n

∑
i=1

ri bi
hnxh. (A6)

Considering the Formula (3) and armed with holy patience, we can see that in the right(-
hand) side of (A6),

- The only indices i actually present in the sum in the first sum are i = 1 and i = 2;

hence, ∑n
i=1 ri bi

1k = r1 b1
1k + r2 b2

1k = −
r1 pk,1 S
r2−r1

+
r2 pk,1 S
r2−r1

= pk,1 S;
- The only indices i actually present in the sum in the second sum are i = n− 1 and

i = n; hence, ∑n
i=1 ri bi

nk = rn−1 bn−1
nk + rn bn

nk =
rn−1 pn,k S
rn−rn−1

− rn pn,k S
rn−rn−1

= −pn,k S;

- The only indices i actually present in the sum in the first sum are i = h− 1 and i = h;

hence, ∑n
i=1 ri bi

h1 = bh−1
h1 + bh

h1 =
rh−1 ph,1 S
rh−rh−1

− rh ph,1 S
rh−rh−1

= −ph,1 S;

- The only indices i actually present in the sum in the first sum are i = h and i = h + 1;

hence, ∑n
i=1 ri bi

hn = bh
hn + bh+1

hn = − rh pn,h S
rh+1−rh

+
rh+1 pn,h S
rh+1−rh

= pn,h S.
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Putting all this together, we obtain

n

∑
h=1

n

∑
k=1

n

∑
i=1

ri bi
hkxhxk = x1

n

∑
k=2

pk,1 S xk − xn

n−1

∑
k=1

pn,k S xk

− x1

n−1

∑
h=2

ph,1 S xh + xn

n−1

∑
h=2

pn,h S xh

= pn,1 S x1xn − pn,1 S x1xn = 0,

which completes the proof relative to Equation (10). The proof relative to Equation (11) is
entirely similar.
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