
Citation: Guo, S.; Song, Y.; Guo, S.;

Yang, Y.; Song, S. Three-Party

Password Authentication and Key

Exchange Protocol Based on MLWE.

Symmetry 2023, 15, 1750. https://

doi.org/10.3390/sym15091750

Academic Editor: Chin-Ling Chen

Received: 10 June 2023

Revised: 30 July 2023

Accepted: 2 August 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Three-Party Password Authentication and Key Exchange
Protocol Based on MLWE
Songhui Guo, Yunfan Song *, Song Guo, Yeming Yang and Shuaichao Song

Third Academic, PLA Information Engineering University, Zhengzhou 450001, China;
songhui.guo@outlook.com (S.G.); songguo@nudt.edu.cn (S.G.); m18888928280@163.com (Y.Y.);
14737122615@163.com (S.S.)
* Correspondence: syf1271525826@gmail.com

Abstract: With the rapid development of quantum theory, the discrete logarithm problem and signifi-
cant integer factorization problem have polynomial solution algorithms under quantum computing,
and their security is seriously threatened. Therefore, a three-party password-authenticated key
agreement scheme based on module learning with errors problem was proposed, and its security was
proved in the BPR model. Compared with other password-authenticated key agreement protocols, the
proposed protocol has higher efficiency and a shorter key length, which can resist quantum attacks.
Therefore, the protocol is efficient and secure and suitable for large-scale network communication.

Keywords: lattice; module learning with errors; three-party password authentication key exchange

1. Introduction

With the rapid development of internet technology and the possible arrival of quan-
tum computers, the demand for data security has become increasingly urgent. Currently,
the cryptographic algorithms based on the discrete logarithm problem and the large integer
factorization problem have polynomial solving algorithms [1] under quantum computers,
and their security cannot be guaranteed. Therefore, cryptographic algorithms that resist
quantum computer attacks have been widely studied. Among them, the cryptographic
algorithm based on lattice theory has the universality of constructing almost all crypto-
graphic primitives and the characteristics of being able to resist quantum computer attacks,
so it has become a research hotspot in the field of cryptography.

Authenticated key exchange (AKE) means that two or more participants in an open
network authenticate each other and agree on a shared session key. According to differ-
ent authentication methods, AKE can be divided into identity-based, certificate-based,
and password-authenticated key exchange (PAKE). Password-based authenticated key
exchange protocols are easy to remember and operate and can eliminate the dependence
on public key infrastructure (PKI) and security hardware. Therefore, the password-
authenticated key exchange (PAKE) protocol is the most widely used authenticated key
exchange protocol.

The current research on the PAKE protocol mainly focuses on two-party password-
authenticated key exchange (2PAKE) [2]. 2PAKE is usually based on the CS model, which
requires every two participants to share a password, so the number of passwords needed
to be stored will increase with the increase of the number of users communicating with it,
and it is not suitable for the communication between a large number of users. Therefore,
researchers proposed the three-party password-authenticated key exchange (3PAKE) [3], in
which users only need to share a low-entropy password with a trusted server. The trusted
server authenticates between two users and helps two users with different passwords to
negotiate keys, which is suitable for large-scale network communication.

The research on the PAKE protocol mainly focuses on two-party password-based
authenticated key exchange [2]. 2PAKE is usually based on the CS (client-server) model,

Symmetry 2023, 15, 1750. https://doi.org/10.3390/sym15091750 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15091750
https://doi.org/10.3390/sym15091750
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym15091750
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15091750?type=check_update&version=1

Symmetry 2023, 15, 1750 2 of 21

which requires every two participants to share a password. The complexity of passwords
managed by 2PAKE increases exponentially with the number of participants, so it is
unsuitable for the scenario where many participants need to mutually authenticate key
exchange. For the scenario in which a large number of participants need a mutually authen-
ticated key exchange, researchers have proposed a three-party password-authenticated
key exchange protocol [3–6].

In 1995, Steiner et al. [7] first proposed the 3PAKE protocol, in which two users
with different passwords authenticate each other and negotiate a key with the help of a
trusted server. In the same year, Ding et al. [8] pointed out that Steiner’s protocol was
vulnerable to the undetectable online dictionary attack. In 2000, Lin et al. pointed out
that Steiner’s protocol was also vulnerable to offline dictionary attacks and proposed a
new 3PAKE which can resist undetectable online dictionary attacks and offline dictionary
attacks. However, its implementation depends on the server’s public key and has a high
communication overhead. In 2001, Lin et al. [9] improved the protocol proposed by
Lin et al. [5] and proposed a 3PAKE protocol that does not rely on the server’s public key,
but the communication overhead is still high. In 2005, Abdalla et al. [3] proposed a security
model for a 3PAKE protocol based on the BPR model and a new real-or-random (ROR)
security model and constructed a general 3PAKE protocol framework based on a 2PAKE
protocol. Since then, researchers have proposed several PAKE protocols [10–16] that can be
provably secure in the random oracle model based on traditional mathematical problems.

Compared with the 3PAKE protocol based on traditional mathematical difficulties,
the research on the 3PAKE protocol based on the lattice started late. It was not until 2013
that Ye Mao et al. [17] constructed the first 3PAKE protocol based on the lattice scheme of
KATZ [18]. The scheme realizes the key exchange based on the ideal lattice and reduces the
overhead of 3PAKE.

2017 Xu et al. [19] improved the 2PAKE protocol on the lattice proposed by Ding et al. [20]
based on RLWE and Ding’s error coordination mechanism and designed a three-party PAKE
protocol. Implementation based on an error coordination mechanism is more efficient than
that using the smooth projection hash function. In 2018, Wang et al. [21] improved Xu’s
3PAKE protocol by considering both implicit authentication and explicit authentication.
In the same year, Yu et al. [22] proposed a more efficient three-party PAKE protocol based
on the split public key encryption scheme proposed by Zhang et al. [23] in 2017. In 2021,
influenced by the verifier proposed by Gao [24] in 2018, Shu Qin et al. [25] designed a
3PAKE protocol based on RLWE that can resist server compromise attacks. Shu Qin et al.
proved that the protocol is secure in the universally composable model.

The current PAKE protocols that can resist quantum computing attacks are mainly
concentrated in two-party scenarios, and there are fewer PAKE protocols for three-party
scenarios. 2PAKE can better solve the key exchange problem in the client-server environ-
ment, but it is unsuitable for communication between many users. The 3PAKE protocol can
solve this problem. The current 3PAKE protocol is mainly implemented based on LWE and
RLWE, and no 3PAKE protocol design is based on MLWE. MLWE is a compromise between
learning with errors (LWE) and ring learning with errors (RLWE); module learning with
errors (MLWE) retains the matrix format while introducing ring polynomials. Therefore,
MLWE has a lower overhead than LWE and has higher security than RLWE. At the same
time, MLWE can flexibly configure parameters of different security levels by adjusting the
matrix dimension.

Contribution: Aiming at the current PAKE protocol that can resist quantum computing
attacks, this paper constructs a three-party PAKE protocol based on the MLWE problem
using Peikert error coordination technology. The new protocol proposed in this paper has
the following advantages:

1. The new protocol is a three-party PAKE protocol. Compared with the two-party
PAKE protocol, it can solve the problem of password storage and management in
multi-user scenarios;

Symmetry 2023, 15, 1750 3 of 21

2. The new three-party PAKE protocol is based on the MLWE problem and the Peik-
ert error reconciliation mechanism is implemented. Compared with the LWE
problem-based scheme, its performance is better under the same security param-
eters. Compared with the RLWE problem-based 3PAKE, it can provide a more
flexible parameter configuration;

3. The transmitted signal value of Peikert error reconciliation mechanism may bring the
risk of signal leakage attack. The new three-party PAKE protocol does not need to
transfer signal value in clear text, which can effectively resist signal leakage attacks.

2. Preliminaries

In this section, the definition of MLWE hard problems and the notation used in this
paper are presented.

2.1. Sampling Random Variables on Lattice

Lattice cryptography adopts a particular probability distribution as noise to ensure
that each sampling and the generated data are indistinguishable.

Definition 1. Gaussian function on the lattice.

Given the parameters s > 0, c ∈ Rn, the continuous Gaussian function ρs,c(x) in
n-dimensional space is defined as: ρs,c(x) = exp

(
−πx−c2

s2

)
. c is called the center of the

Gaussian and s is called the parameter of the Gaussian function. Then, for Gaussian
function on a lattice Λ, denoted as ρs,c(Λ) = ∑x∈Λ ρs,c(x).

Definition 2. The discrete Gaussian distribution on a lattice.

It is known that the Gaussian function on the lattice Λ is ρs,c(Λ) = ∑x∈Λ ρs,c(x), if the
random variable ξ satisfies Ps,c(ξ = x) = ρs,c(x)

ρs,c(Λ)
; then, the random variable ξ is said to obey

the discrete Gaussian distribution DΛ,s,c(x) with c as the center and the parameter s on
the lattice.

Definition 3. The central binomial distribution on the lattice.

The central binomial distribution sampling on the lattice can be used to improve the
sampling efficiency and ensure that the results are indistinguishable from the discrete
Gaussian distribution sampling. According to the work of Bai et al. [26], vectors sampled
by the central binomial distribution with parameter η are statistically indistinguishable
from vectors sampled by n-dimensional discrete Gaussian distribution with parameter√

η/2. Therefore, Bη is an approximate Gaussian distribution with zero expectation and
variance η/2, which can be used as the noise distribution in learning with errors problems.
When a polynomial or matrix of such polynomials is sampled from Bη in this paper, each
polynomial coefficient is sampled from Bη .

Take
{

a0, a1, . . . , aη , b0, b1, . . . , bη

}
← {0, 1}2η uniformly and randomly, and output

η

∑
j=1

(
aj − bj

)
. f is a polynomial whose coefficients satisfy the Bη distribution, and v is

an n-dimensional vector composed of k polynomials f . Sample n coefficients satisfy Bη

distribution from Bη distribution to form polynomial f , denoted as f ← βη . When the
generated k polynomials f form a vector v, it is marked as v← βk

η .
Specifically, the input of the CBD algorithm in this paper is the n× 2η bit output of

the pseudo-random function; the output is a polynomial f ← βη . The process is defined as
follows Algorithm 1.

Symmetry 2023, 15, 1750 4 of 21

Algorithm 1: Central Binomial Distribution Sampling Algorithm

1. Input: the n× 2η bit sequence B =
(
b0, b1, . . . , bn×2η−1

)
∈ Bn×2η ;

2. output: polynomial f ∈ Rq.
3. For i from 0 to n – 1

4. a :=
η−1
∑

j=0
b2iη+j,

5. b :=
η−1
∑

j=0
b2iη+η+j,

6. fi := a− b,
7. End for
8. Return f = f0 + f1x + fix2 + . . . + fn−1xn−1

2.2. MLWE Problem

Since RLWE introduces additional algebraic structures on lattices, there may be po-
tential security risks, such as the recently proposed attack using ring ideal lattice algebraic
structures. In 2015, Langlois et al. [27] proposed the modular error-tolerant learning
problem (MLWE). The design scheme introduced a tiny dimension (usually 2, 3, and 4 di-
mensions) in the polynomial ring structure and reduced the polynomial in the polynomial
ring. The number of dimensions makes the operating efficiency comparable to RLWE while
ensuring the same security. The MLWE problem can be reduced to a difficult problem on
the lattice.

The following gives the definition of the MLWE problem [28] with parameters (n, q, k, η),
where n is the dimension of the vector, q is the modulus, q is the modulus in the polynomial
ring Rn

q = Zq[x]/ f (x), f (x) is the irreducible polynomial xn + 1, k is the dimension of the
polynomial matrix, and βη is a central binomial distribution on Rn

q . By randomly selecting
the polynomial matrix A← Rk×k

q and randomly and uniformly selecting the secret s← βk
η

and the error vector e← βk
η , b = As + e ∈ Rk

q. The following two distributions exist:

1. The distribution (A, b), in which the polynomial matrix A← Rk×k
q , the secret s← βk

η ,
the error vector e← βk

η is chosen uniformly at random, compute b = As + e ∈ Rk
q.

2. The distribution (A, b), where the polynomial matrix A← Rk×k
q and b← Rk

q is cho-
sen uniformly at random.

Then, the difficult problem of search MLWE based on module lattice is given distribu-
tion 1, for (A, b) and b = As + e ∈ Rk

q in distribution 1; finding s← βk
η is difficult.

Then, the difficult problem of decision MLWE based on module lattice is given distri-
bution 1 and distribution 2, and judging whether the given (A, b) is from distribution 1 or
distribution 2.

2.3. Reconciliation Mechanism

The error reconciliation mechanism has a similar principle to the fuzzy extractor,
which enables two parties with similar values to obtain the same value through information
transmission and calculation.

By improving the original Ding-type error reconciliation mechanism [29], in 2014,
Peikert [30] proposed the Peikert error reconciliation mechanism, which intercepts the
high-order bits of the Zq element so that both parties evenly extract an identical bit from
each Zq element. The specific process of the error reconciliation mechanism is described in
detail below.

Supposing q is a prime number greater than 2, define Zq = {−q/2, . . . , 0, . . . , q/2− 1}.
Define the following three intervals: I0 = {0, 1, . . . , q/4− 1}, I1 = {−q/4, . . . ,−1},

E = [−q/8, q/8) ∩ Z.

Definition 4. Error reconciliation mechanism.

Symmetry 2023, 15, 1750 5 of 21

The cross-rounding function: 〈x〉q,2 = b4/q · xcmod2, if x is uniformly random, then
〈x〉q,2 is uniformly random.

The modular rounding function: bxeq,2 = b2/q · x
⌉

, if x is uniformly random, then
bxeq,2 is uniformly random.

The reconciliation function: Rec(w, σ) =

{
0, w ∈ Iσ + E mod q

1, else
;

When the above two functions are extended for the elements in MLWE, it is equivalent
to performing the wrong reconciliation for each term of the polynomial on the Rq ring to
obtain the correct shared key of n bits.

For an even number q, if w + v = e mod q mod q is known, and w ∈ Zq, e ∈ E, then

we have bveq,2 = Rec
(

w, 〈v〉q,2

)
.

For an odd q, then if the synchronization function rec is used directly at this time, the
output is uneven. At this time, randomized function dbl(x) = 2x− e is introduced, where
e is a random term. The probability that e is 0 is 0.5, and the probability that e is −1 and
1 is 0.5. If v ∈ Zq is uniformly random, let v = dbl(v) ∈ Z2q, then given dbl(v), bve2q,2 on
Z2q is uniformly random. If w + v = 2e mod 2q is known, and w ∈ Z2q, e ∈ E, then we have

bve2q,2 = Rec
(

w, 〈v〉2q,2

)
.

When the above two functions are extended to the elements of a polynomial ring, Rq,
it is equivalent to performing error reconciliation for each term of the polynomials in the
ring to obtain the correct shared key.

2.4. PWE Assumption Based on MLWE

To facilitate the construction of the security proof of the PAKE protocol, refer to the
PWE (pairing with errors) assumption proposed by Ding [20] based on RLWE hard problem
and DING error reconciliation mechanism, and propose the PWE assumption based on the
MLWE problem.

To determine the content of the PWE assumption based on the MLWE problem, let the
adversary be an algorithm in probabilistic polynomial events, and the input (A, X, Y, σ),
where A← Rk×k

q , X ← Rk
q , sy, ey, ez ← βk

η , Y = ATsy + ey ∈ Rk
q, σ = dbl

(
XTsy + ez

)
2q,2 ∈

{0, 1}n, K = dbl
(
XTsy + ez

)
2q,2 ∈ {0, 1}n. Then, the goal of the adversary C is to obtain the

value of the K from the input of (A, X, Y, σ). In this paper, the adversary’s advantage in
breaking the PWE assumption based on MLWE problem is formally defined as follows.

AdvMPWE
Rq

(C)= Pr

[
A← Rk×k

q ; sy ← βk
η ; ey ← βk

η ; ez ← βη ; Y ← ATsy + ey;
σ← dbl

(
XTsy + ez

)
2q,2 : K = C(A, X, Y, σ)

]

Let AdvMPWE
Rq

(t, N) = maxC

{
AdvMPWE

Rq
(C)
}

, where, all adversaries with the maxi-
mum time complexity t will take advantage of the maximum attack, and these adversaries
will output a list containing at most N elements belonging to {0, 1}n. The MPWE assump-
tion shows that t is negligible for t and N under the bounds of security parameters. The
decision version of the MPWE problem can be defined as follows.

Definition 5. Decision MPWE problem.

Given (A, X, Y, σ, K) ∈ Rk×k
q ×Rk

q×Rk
q×{0, 1}n×{0, 1}n,where σ = dbl

(
XTsy + ez

)
2q,2,

K = dbl
(
XTsy + ez

)
2q,2 ∈ {0, 1}n. Set Z = XTsy + ez, then the DMPWE problem is to de-

cide whether Y ∈ Rk
q and randomly uniformly generated Y′ ← Rk

q can be distinguished. If
DMPWE is hard, then MPWE is hard.

Before reducing the DMPWE problem to the MLWE problem, it is first necessary to
define an MLWE-DH problem, which can be reduced to the decision MLWE problem.

Symmetry 2023, 15, 1750 6 of 21

Definition 6. MLWE-DH problem.

Given (A, X, Y, Z) ∈ Rk×k
q × Rk

q × Rk
q × Rq, where A← Rk×k

q , X ← Rk
q , then the

MLWE-DH problem is to decide whether
(
Z = XTsy + ez, Y ← ATsy + ey

)
∈ Rq × Rk

q and
random uniformly generated (Z′, Y′)← Rq × Rk

q can be distinguished.

Theorem 1. Assuming that the decision MLWE problem is hard, the MLWE-DH problem is also hard.

Proof of Theorem 1. Suppose there exists an algorithm D that can solve the MLWE-DH
problem with a non-negligible advantage on the input (A, X, Y, Z). Then an algorithm D′

can be constructed to solve the decision MLWE problem based on the algorithm. Specifically,
two decision MLWE instances (A1, b1) and (A2, b2) with the same private key sy ∈ Rk

q are
first given. The execution process of the algorithm D′ is as follows:

1. Set (A, X, Y, Z) = (A1, A2, b1, b2);
2. Input (A, X, Y, Z) into the algorithm D;

If the algorithm D outputs 1, then that means
(
Z = XTsy + ez, Y ← ATsy + ey

)
∈

Rq × Rk
q,
(
b2 = A2

Tsy + ez, b1 ← A1
Tsy + ey

)
∈ Rq × Rk

q, the algorithm D′ also outputs 1.
If the algorithm D outputs 0, then it means that (Z, Y) ∈ Rq × Rk

q is randomly uniformly
generated. Therefore, (b2, b1) ∈ Rq × Rk

q is randomly uniformly generated, in which case
the algorithm D′ also outputs 0. The decision MLWE problem is solved. �

Suppose an algorithm can solve the MLWE-DH problem with non-negligible advan-
tage. In that case, one can construct an algorithm to solve the decision MLWE problem
with non-negligible advantage. However, this is contrary to the hardness of the decision
MLWE problem itself, so if the decision MLWE problem is hard, the MLWE-DH problem is
also hard.

Theorem 2. Assuming that the MLWE-DH problem is hard, the DMPWE problem is also hard.

Proof of Theorem 2. Suppose an algorithm D exists that can solve the DMPWE problem
with a non-negligible advantage on the input (A, X, Y, σ, K). An algorithm D′ can be
constructed based on the algorithm D to solve the MLWE-DH problem. Specifically, the
algorithm D′ execution process is as follows:

1. For an instance of the MLWE-DH problem (A, X, Y, Z), set σ = dbl(Z)2q,2 ∈ {0, 1}n,
K = dbl(Z)2q,2 ∈ {0, 1}n;

2. Input (A, X, Y, σ, K) to the algorithm D;

If the algorithm D outputs 1, then that means
(
Y ← ATsy + ey

)
∈ Rk

q. Therefore,(
b1 ← ATsy + ey

)
∈ Rk

q, the algorithm D′ also outputs 1. If the algorithm D outputs 0, then
it means that Y ∈ Rk

q is randomly uniformly generated. Therefore, b1 ∈ Rk
q is randomly

uniformly generated, in which case the algorithm D′ also outputs 0. The MLWE-DH
problem is solved. �

Suppose an algorithm D can solve the DMPWE problem with a non-negligible advan-
tage. In that case, an algorithm D′ can be constructed to solve the MLWE-DH problem with
non-negligible advantage.

It can be seen from Theorem 1 that the MLWE-DH problem is difficult, which is
contrary to the solvability of the MLWE-DH problem. Therefore, if the MLWE-DH problem
is hard, then DMPWE is also hard.

Symmetry 2023, 15, 1750 7 of 21

2.5. Three-Party PAKE Security Model

This section mainly adopts [20,31,32] models in the literature to give a more realistic
three-party PAKE security model, which can more accurately evaluate the real risk faced
by the three-party PAKE protocol.

Security game: an algorithm game between the challenger C and the adversary. The
challenger C runs an instance of the simulator simulating the protocol P, running the
protocol P on behalf of the honest user.

System model: Similar to the existing three-party PAKE protocol, the system model
consists of a server set and a user set, while also assuming the existence of a dictionary
library of size |D|. At the protocol’s beginning, two users and are extracted from the user
set, and their passwords PWi and passwords PWj are assigned from the dictionary library,
respectively. Then, extract a server from the server set and assign it a password PWi and a
password PWj. The users Ui and Uj authenticate and exchange information to establish a
shared session key through the server.

Adversary capability: An adversary A operating in probabilistic polynomial time is
assumed to have complete control over the communication channel. The adversary A can
create, forward or modify a message. The adversary can also create multiple instances
to participate in the concurrent execution of the protocol. The participant instance of the
3PAKE protocol is denoted by identity Πi

P; the two instances of the user are denoted by
Πi

A and Πi
B, and the instance of the server is denoted by Πi

S. The security of the protocol is
defined by a series of games between the challenger C and the adversary A, in which the
adversary A can query any given participant instance as follows:

Execute (Πi
A, Πi

B, Πi
S) query: This query characterizes the passive attack capability of

the adversary A. The adversary can obtain the information transmitted over the channel
during the honest interaction of the protocol by querying the instances.

Send (Πi
P, m) query: This query describes the dynamic attack capability of the adver-

sary A. The adversary can interact with the Πi
P instance by intercepting, forwarding, and

modifying the generated information m. The oracle output is the reply message executed
according to the protocol specification after Πi

P receiving the generated information from
the adversary A.

Reveal (Πi
U) query: This query captures the ability to leak session keys when a

participant in a user instance Πi
U misuses a session key. The adversary A obtains the

session key SKi
U in the user instance through this query.

Corrupt (Πi
P) query: This query characterizes the forward security of the protocol,

allowing the adversary A to damage the protocol participants at will. If the participant is a
server, return the passwords of both users to the adversary A; if the participant is a user,
return the passwords of the corresponding users to the adversary A.

Test (Πi
P) query: This query characterizes the adversary’s ability to distinguish a real

session key from random values. Randomly flip a coin b ∈ {0, 1}; if b = 0, return the
real negotiated key, if b = 1, return any random number in the session key space. Finally,
the adversary A outputs b′; if b′ = b, the adversary A wins. If the result of this query is
guaranteed to be valid, it should be assured that the queried session instance is fresh.

Based on the above description, this section gives the following definitions:

Definition 7. Partnership.

This article uses session identifiers to define partnerships, where Sid is an identifier
used to uniquely name one of the sessions corresponding to that instance. Pid is used to de-
termine the identity of the user instance that is talking to the instance. SK is the value of the
shared secret that both user instances Πi

A and Πi
B have completed the calculation of the last

step stipulated in the protocol. Both Πi
A and Πi

B instances maintain list
(

Sidi
A, Pidi

A, SKi
A

)
and

(
Sidi

B, Pidi
B, SKi

B

)
, respectively. Partnership is said to be satisfied when the following

conditions are satisfied: 1. Sidi
A = Sidi

B; 2. Pidi
A = B, Pidi

B = A; 3. SKi
A = SKi

B.

Symmetry 2023, 15, 1750 8 of 21

Definition 8. Freshness.

Πi
A is a fresh instance when Πi

A is an honest session, and satisfies the following conditions:

1. The adversary has not performed the Reveal (Πi
U) query on the user instance Πi

A or
its partner Πi

B;
2. The adversary has not executed the Corrupt (Πi

P) query on the user instance Πi
A, the

partner instance Πi
B, or the server instance Πi

S.

Definition 9. Semantic safety.

The PAKE protocol is secure if the following conditions are satisfied:
Two honest user instances satisfy the partnership and compute the same session key

(otherwise the protocol fails).
Under the BPR model, the goal of adversary A is to identify the real session key from

a given random key and the real session key. The adversary performs a special test (Πi
P)

query. Finally, adversary A outputs b′, and if b′ = b, then adversary A wins. The advantage
of adversary A in attacking instance Πi

U is defined as:AdvAke
Π (A) = |2Pr(b′ = b)− 1|.

The 3PAKE protocol is semantically safe if AdvAke
Π (A) is negligible for all probabilistic

polynomial-time adversaries A.

3. Our Protocol

Aiming at the current PAKE protocol that can resist quantum computing attacks, this
chapter constructs a three-party PAKE protocol based on the MLWE problem and the
Peikert error reconciliation technique. The new protocol has the following advantages:
(1) The new protocol is a three-party PAKE protocol, compared with the two-party PAKE
protocol, so it can solve the problem of password storage and management in multi-user
scenarios. (2) The new three-party PAKE protocol is implemented based on the MLWE
problem and Peikert error reconciliation mechanism, which has better performance than
the scheme based on the LWE problem under the same security parameters and can provide
more flexible parameter configuration than the 3PAKE based on RLWE problem. (3) The
signal value transmitted by the Peikert error reconciliation mechanism may bring the risk
of signal leakage attack. The new tripartite PAKE protocol does not need to transmit the
signal value in plaintext, which can effectively resist the signal leakage attack.

3.1. System Initialization Process

In the PAKE scheme in this paper, R and Rq represent Z[x]/(xn + 1) and Zq[x]/(xn + 1),
respectively; the lowercase italic letters represent column vectors, in which the elements
belong to the ring R or Rq; the capital italic letters indicate matrix. Let (n, q, k) be the public
parameters of the PAKE scheme, where n is a power of 2, and q is an odd prime and satisfies
q ≡ 1modn. A← Rk×k

q represents a sample matrix uniformly from Rk×k
q . (s, e)← βk

η × βk
η

represents a sample private key and noise uniformly from βk
η .

3.2. Registration Process

When users i join the system, they need to register with the server S through a secure
channel. The details are as follows:

1. i→ S : (IDi, PW1) .The user i selects an identity IDi, a private password PW0, and
calculates shared password PW1 = H0(IDi||PW0) . After that, the user i sends regis-
tration request (IDi, PW1) to the server S.

2. S→ i : (TIDi, H1(·)) .The server S receives the registration request (IDi, PW1)
from the user i, generates random number n0, calculates the temporary identity
TIDi = H0(IDi||n0||PW1) of the user i, and retains the shared password PW1. After
that, the server S sends TIDi to the user i.

Symmetry 2023, 15, 1750 9 of 21

3.3. Authentication and Key Exchange Phase

When users A and users B need to share the session key for communication, it is
necessary to establish two-way authentication between users A with users B based on the
trusted server to ensure the legitimacy of the identities of both users A and users B, and an
exchange shared session key.

The execution process of the protocol is described in Figure 1:

1. A→ S : M0 = (TIDA, TIDB, n1, bA0)

Symmetry 2023, 15, x FOR PEER REVIEW 11 of 24

ClientA ClientBServerS

()0 1 0, , ,A B AM TID TID n b=

()1 1 0 12, ,, ,,A B A SM TID TID n n b b=

()2 0 1 3 0 0, , , , ,A BM TID Auth n c bσ=

()3 2 0 1 2 0 0, , , , , ,B B SM TID n c Auth b bσ=

()

()

0 0

1

0 0 0

0 1 0

,
:

, , ,

k k
A A

A A A

A B A

s e
random n
b As e
M TID TID n b

η ηβ β← ×

= +
=

()
()

()

()

0 0 1

1 2

2

0 0 0

1 1 2

0 0 0 1

0 0

0 0 2 ,2

0 0 2 ,2

1 1 0 12

, ,

,
:

, ,, ,,

k k
S S S

k k
S S

T
S S S

S S S
T
A S S

q

q

A B A S

s e e

s e
random n
b A s e
b As e
v b s e
v dbl v

v

k v

M TID TID n n b b

η η η

η η

β β β

β β

σ

← × ×

← ×

= +
= +

= +
←
←< >

←

=

()

()

()

()

0 0 1 2

3 4

0 0 0

1 1 0 1

1 1

1 1 2 ,2

1 1 2 ,2

2 0 0 2

2 2

2 2 2 ,2

2 2 2 ,2

0 1 2 3 1 1

1 1

, , ,
: ,

, , , , ,
,

k k
B B B B

T
B B B

T
S B B

q

q

T
A B B

q

q

A B B

A B

s e e e
random n n

b A s e
v b s e
v dbl v

v

k v

v b s e
v dbl v

v

k v

Auth H TID TID n n k PW

Auth H TID TID

η η η ηβ β β β

σ

σ

← × × ×

= +

= +
←
←< >

←

= +
←
←< >

←

=

=

calculate：

()
()

()
()

()

0

0 0 1 2

0 2 2 3 1 1

0 2 4 1

2 0 0 1 2

2 0 1 3 0 0

4

4

, , , , ,
, , , , ,
, ,

, , , , , ,
, , , , ,

A B

A B B

sk

B A B A B

A B

b b n n k

sk H TID TID n n k PW

c Enc n Auth

sk H TID TID b b n n k

M TID Auth n c b

σ

σ

=

←

=

=

() { }
()

()
()

()
()

0

1 0 1

1 1

0 1 2 3 1 1

0 0

0 2 2 3 1 1

2 4 1 0

2 1 1 2 0 1

1 2 1

1

1

1 2 0

' 2 , 0,1

' , , , , ',
'?

, , , , ',

, ,

, , , , ,

, , ,?

'

, ,

' T
B S

n

A B B

A B B

sk

A B A

A B A

v b s

k Rec v

Auth H TID TID n n k PW
Auth Auth
sk H TID TID n n k PW

n Auth Dec c

Auth H TID TID n n k PW

sk H TID TID n n k PW

c

σ

σ

=

= ∈

=
=

=

←

=

=

←

calculate:

()
()

1 2 4 1

3 2 0 1 2 0 0

, ,

, , , , , ,
sk

B B S

Enc n Auth

M TID n c Auth b b

σ

σ=

() { }
()

()
()

() { }

1

0 0

0 0

2 1 1 2 0 1

2 2

1 1 1 2 0 1

2 4 1 1

0 0

2 0

0

1 0

0

2

2

1

' 2 , 0,1

' , , , , ',
'?

, , , , ',

, ,

' 2 , 0,1

' ,

'

,

'

,

'

'

T
S A

n

A B A

A B A

sk

T
B A

n

A B A

v b s

k Rec v

Auth H TID TID n n k PW
Auth Auth
sk H TID TID n n k PW

n Auth Dec c

v b s

k Rec v

Auth H TID TID b b

σ

σ

σ

=

= ∈

=
=

=

←

=

= ∈

=

calculate:

calculate:

()

()

0 1 4 2

1 1

2 0 0 1 4 2

, , , '
'?

, , , , , , '

B

A A B A B

n n k
Auth Auth
sk H TID TID b b n n k

=
=

Figure 1. Authentication and key exchange phase.

4. ()3 2 0 1 2 0 0: , , , , , ,B B SS A M TID n c Auth b bσ→ =
The server calculates '

1 0 1
T
B Sv b s= , then the user uses the Peikert error reconciliation

function to calculate () { }1 1 1' 2 ', 0,1 nk Rec v σ= ∈ . The server calculates the verification infor-
mation ()0 1 2 3 1 1' , , , , ',A B BAuth H TID TID n n k PW= with user B and the verification infor-
mation ()2 1 1 3 0 1, , , , ,A B AAuth H TID TID n n k PW= with user A . If 0 0'Auth Auth= , the server
continues to calculate the shared key ()0 2 2 3 1 1, , , , ',A B Bsk H TID TID n n k PW= with user B
and the shared key ()1 2 1 2 0 1, , , , ,A B Ask H TID TID n n k PW= with user A , and the server uses
the shared key 0sk to decrypt 0c to obtain 2 4 1, ,n Authσ . After the user finishes decrypt-
ing, the server uses the shared key 1sk with user A to encrypt 2 4 1, ,n Authσ to obtain 1c
. The server sends ()3 2 0 1 2 0 0, , , , , ,B B SM TID n c Auth b bσ= to user A .

5. A Bsk sk=
After user A receives the message 3M , user A calculates 0 0 0' T

S Av b s= and uses
the Peikert error reconciliation function to calculate ()0 0 0' 2 ',k Rec v σ= . Then, user A cal-
culates ()2 1 1 2 0 1' , , , , ',A B AAuth H TID TID n n k PW= and compares it with the received authen-
tication information 2Auth of the server; if 2 2'Auth Auth= , the server’s identity is credible.
User A calculates the shared key ()1 1 2 0 1, , , ',B Ask TID n n k PW= with the server, and de-
crypts 1c to obtain 2 4 1, ,n Authσ . Based on the decrypted information, user A continues

Figure 1. Authentication and key exchange phase.

The user A samples (sA0, eA0)← βk
η × βk

η uniformly, generates random number n1,
and calculates bA0 = AsA0 + eA0. The user A sends M0 = (TIDA, TIDB, n1, bA0) to the
server S.

2. S→ B : M1 = (TIDA, TIDB, n1, n2, bA0, bS1)

Upon the server receiving M0, the server confirms the identity of the client applying
for authentication and key exchange through (TIDA, TIDB). Then, the server samples
(sS0, eS0, eS1)← βk

η × βk
η × βη and (sS1, eS2)← βk

η × βk
η uniformly generate random num-

ber n2 and calculate bS0 = ATsS0 + eS0, bS1 = AsS1 + eS2 and v0 = bT
A0sS0 + eS1. The server

uses the randomized function, cross-rounding function, and modular rounding function
to calculate b. The randomized function, cross-rounding function, and modular rounding
function are used to calculate v0 ← dbl(v0) , σ0 ←< v0 >2q,2 and k0 ← bv0e2q,2 , and send
M1 = (TIDA, TIDB, n1, n2, bA0, bS1) to the user B.

Symmetry 2023, 15, 1750 10 of 21

3. B→ S : M2 = (TIDA, Auth0, σ1, n3, c0, bB0)

After the user B receives the message M1, user B sample (sB0, eB0, eB1, eB2) ←βk
η ×

βk
η× βη× βη uniformly generates random numbers n3, n4, and calculates bB0 = ATsB0 + eB0,

v1 = bT
S1sB0 + eB1 and v2 = bT

A0sB0 + eB2. The user B uses the randomized function to
calculate v1 ← dbl(v1) and v2 ← dbl(v2) ; uses the cross-rounding function to calculate
σ1 ←< v1 >2q,2 and σ2 ←< v2 >2q,2 ; uses the modular rounding function to calculate
k1 ← bv1e2q,2 and k2 ← bv2e2q,2 .

The user B calculates the authentication information Auth0 = H1(TIDA, TIDB, n2,
n3, k1, PWB1) between the server and user B, and calculates the authentication information
Auth1 = H1(TIDA, TIDB, bA0, bB0, n1, n3, n4, k2) between user A and user B. Then, user
B calculates the shared key sk0 = H2(TIDA, TIDB, n2, n3, k1, PWB1) between user B and
uses the shared key to encrypt (σ2, n4, Auth1). At this time, user B sets the shared key
skB = H2(TIDA, TIDB, bA0, bB0, n1, n3, n4, k2) between user B and user A. User B sends
M2 = (TIDA, Auth0, σ1, n3, c0, bB0) to the server.

4. S→ A : M3 = (TIDB, n2, σ0, c1, Auth2, bB0, bS0)

The server calculates v′1 = bT
B0sS1, then the user uses the Peikert error reconciliation

function to calculate k1
′ = Rec(2v1

′, σ1) ∈ {0, 1}n. The server calculates the verification
information Auth0

′ = H1(TIDA, TIDB, n2, n3, k1
′, PWB1) with user B and the verification

information Auth2 = H1(TIDA, TIDB, n1, n3, k0, PWA1) with user A. If Auth0
′ = Auth0,

the server continues to calculate the shared key sk0 = H2(TIDA, TIDB, n2, n3, k1
′, PWB1)

with user B and the shared key sk1 = H2(TIDA, TIDB, n1, n2, k0, PWA1) with user A, and
the server uses the shared key sk0 to decrypt c0 to obtain σ2, n4, Auth1. After the user
finishes decrypting, the server uses the shared key sk1 with user A to encrypt σ2, n4, Auth1
to obtain c1. The server sends M3 = (TIDB, n2, σ0, c1, Auth2, bB0, bS0) to user A.

5. skA = skB

After user A receives the message M3, user A calculates v0
′ = bT

S0sA0 and uses the
Peikert error reconciliation function to calculate k0

′ = Rec(2v0
′, σ0). Then, user A calculates

Auth2
′ = H1(TIDA, TIDB, n1, n2, k0

′, PWA1) and compares it with the received authentica-
tion information Auth2 of the server; if Auth2

′ = Auth2, the server’s identity is credible.
User A calculates the shared key sk1 = (TIDB, n1, n2, k0

′, PWA1) with the server, and de-
crypts c1 to obtain σ2, n4, Auth1. Based on the decrypted information, user A continues
to calculate v2

′ = bT
B0sA0 and uses the Peikert error reconciliation function to calculate

k2
′ = Rec(2v2

′, σ2). Then, the user calculates Auth1
′ = H1(TIDA, TIDB, bA0, bB0, n1, n4, k2

′)
and compares it with Auth1. If Auth1

′ = Auth1, user A‘s identity is credible, and user A
obtains the same session key skA = H2(TIDA, TIDB, bA0, bB0, n1, n4, k2

′) as user B.

4. Proof of Correctness of the Protocol

If the protocol participants all run the protocol honestly, they will obtain skA = skB
with significant probability. In the protocol, the following is the correctness proof that user
A and user B obtain the same session key when the honest user executes the scheme.

It is known that skA = H2(TIDA, TIDB, bA0, bB0, n1, n4, k2
′) and skB = H2(TIDA,

TIDB, bA0, bB0, n1, n4, k2).
So, if k2

′ = k2, user A and user B will obtain the same session key. This paper has
k2
′ = Rec(2v2

′, σ2) and k2 ← bv2e2q,2 . From the Peikert error reconciliation function, if
all the coefficients of the polynomial obtained by (v2 − 2v2

′) are not in [−q/4, q/4), then
k2
′ = k2 can be obtained in this paper.

v2 = dbl(v2) = 2v2 + e (1)

v2 = bT
A0sB0 + eB2 = (AsA0 + eA0)

TsB0 + eB2 = sT
A0 ATsB0 + eT

A0sB0 + eB2 (2)

Symmetry 2023, 15, 1750 11 of 21

v2
′ = bT

B0sA0 =
(

ATsB0 + eB0

)T
sA0 = sT

B0 AsA0 + eT
B0sA0 =

(
sT

A0 ATsB0

)T
+ eT

B0sA0 (3)

Since sT
A0 ATsB0 is a polynomial, so v2 − 2v2

′ = 2eT
A0sB0 + 2eB2 + e − 2eT

B0sA0. Ac-
cording to the central binomial distribution sampling algorithm, all the coefficients of
the obtained polynomial

(
2eT

A0sB0 + 2eB2 + e− 2eT
B0sA0

)
are not in [−q/4, q/4). So, from

the Peikert error reconciliation function, user A and user B will obtain skA = skB with
significant probability.

5. Security Analysis

This section proves the AKE security of the three-party PAKE protocol proposed in
this paper based on the BPR model, and analyzes the security properties satisfied by the
protocol against known attacks.

5.1. Security proof

This section is mainly based on the BPR model to prove the security of the three-party
PAKE protocol scheme proposed in this paper. Each participant, including the adversary, is
simulated in this protocol section as a set of probabilistic polynomial oracles. Suppose there
is a polynomial time adversary A, user instances Πi

A and Πi
B of the ith session, and server

instance Πi
S. The adversary’s ability can be abstracted as several queries on the Execute,

Send, Reveal, Corrupt, and Test oracles.

Theorem 3. Let Π be the protocol proposed in this paper, and D be the dictionary library of
size |D|. qse, qex, qre, qco respectively represent Send, Execute, Reveal, Corrupt queries, and
qro represent querying random oracles. Assume that the emulator controls all oracles that the
adversary A has access to. The simulator runs the protocol Π, including choosing a password
for each user. Then, for a polynomial time adversary A, the advantage of its attack protocol is
defined as: AdvAke

Π (A) ≤ (qro + qse + qex)
2/qnk + qse/2d + qro/qnk + 2AdvMPWE

Rq
(t′, qro) +

2AdvDMLWE
Rq

(t′, qro)+qse/|D|.

Proof of Theorem 3. The game Gi(i = 0, . . . , 7) is defined in the security model of this
section. Among these, G0 = Π is equivalent to the honest implementation of the protocol.
In G7, it is equivalent to simulating the protocol in the ideal situation under the random
oracle model; at this time, the advantage of the adversary attacking the protocol is negligible.
For any game Gi, define the event that the adversary guesses correctly to randomly select
the bit b in the Test query as Succi. The advantage of the adversary attacking the protocol
in Gi is greater than that of the adversary attacking the protocol in Gi−1; that is, the security
of the protocol is gradually reduced, so we can obtain:

AdvAke
G0

(A) ≤ AdvAke
G1

(A) + ε1 ≤ AdvAke
G2

(A) + ε2 ≤ AdvAke
G3

(A) + ε3 ≤ AdvAke
G4

(A) + ε4

≤ AdvAke
G5

(A) + ε5 ≤ AdvAke
G6

(A) + ε6 ≤ AdvAke
G7

(A) + ε7
(4)

The ε1 . . . ε7 in the formula is negligible. By combining these negligible values with
the probability of success of an online password-guessing attack, this paper can calculate
the adversary’s advantage of the success in attacking the protocol.

For ease of understanding, this article distinguishes between user queries Πi
A, user

queries Πi
B, and server queries Πi

S. Adversary A makes one of the following queries:
A0 query: whether to instruct some unused Πi

A instance to send the first message to
the server instance Πi

S, which corresponds to the user Πi
A start of the authenticated key

exchange phase;
S1 query: whether some messages were sent to a previously unused server instance

Πi
S, and the server instance Πi

S is expected to send some messages to user instance

Symmetry 2023, 15, 1750 12 of 21

Πi
B, which corresponds to the first response of the server during the authentication key

exchange phase;
B1 query: whether a message has been sent to an unused user instance Πi

B, and the
user instance is expected to send a message to the server instance Πi

S, which corresponds
to the first response of the user Πi

B in the authentication key exchange phase;
S2 query: whether a message was sent to a used server instance Πi

S and is expected to
send a message to a user instance Πi

A, which corresponds to the second response of the
server during the authentication key exchange phase;

A1 query: Whether a message was sent to a user instance Πi
A indicating that this is

the last message for this key exchange, corresponding to the last message received during
the authenticated key exchange phase.

For ease of understanding, the adversary can define session key guessing and pass-
word guessing events for user instances and server instances at any stage in the query
process:

Testsk (A, i, B, S, l): For bA0, bB0, bS0, bS1, adversaries A perform a query Hl(TIDA,
TIDB, bA0, bB0, n1, n4, k2

′); the query A0, whose output is (TIDA, TIDB, n1, bA0), the A1
query whose input is (TIDB, n2, σ0, c1, Auth2, bB0, bS0), and the nearest query is the query
Hl(·) or query A1, where k2

′ = Rec(2v2
′, σ2) and v2

′ = bT
B0sA0, the event’s associated value

is the output of Hl(·), l ∈ {1, 2}(representing Auth1
′, skA, respectively).

Testsk! (A, i, B, S, l): For bB0, c1, making a A1 query with input (TIDB, n2, σ0, c1, Auth2,
bB0, bS0) and results in the event Testsk (A, i, B, S, 1) with associated value is Auth1

′.
Testsk (B, j, A, S, l): For bA0, bB0, bS0, bS1, the adversary has made B1 queries with

the input (TIDA, TIDB, n1, n2, bA0, bS1) and output (TIDA, Auth0, σ1, n3, c0, bB0). Then, the
adversary has made the Hl(TIDA, TIDB, bA0, bB0, n1, n4, k2) query, where k2 ← bv2e2q,2 ,
v2 = bT

A0sB0 + eB2. The event’s associated value is the output of Hl(·), l ∈ {1, 2}(representing
Auth1

′, skA respectively).
Testsk* (B, j, A, S): For l ∈ {1, 2}, Testsk(B, j, A, S, l) occurs.
Testsk (A, i, B, j, S): For l ∈ {1, 2}, the Testsk (A, i, B, S, l) and Testsk (B, j, A, S, l) events

occur simultaneously, where Πi
A is paired with Πj

B and Πi
B is paired with Πj

A after the
S2 query.

Testexecsk (A, i, B, j, S): For bA0, bB0, bS0, bS1, and adversary A has executed (Πi
A, Πi

B, Πi
S)

query with output (bA0, bB0, bS0, bS1, c1), then adversary A has made Hl(TIDA, TIDB, bA0,
bB0, n1, n4, k2), where k2 ← bv2e2q,2 =Rec(2v2

′, σ2). The event’s associated value is the
output of Hl(·), l ∈ {1, 2}(representing Auth1

′, skA, respectively).
Correctsk: Testsk! (A, i, B, S, l) events occurs on A, i, B and S or Testsk* (B, j, A, S)

occurs on B, j, A, and S, before any Corrupt queries.
Correctskexec: Testexecsk (A, i, B, j, S) occurs on A, i, B, j, S.
Pairedskguess: For A, i, B, j, S, the Testsk (A, i, B, j, S) event occurs.
Correctauth 0: For bB0, bS1, the adversary makes the H1(TIDA, TIDB, n2, n3, k1

′, PWB1)
query, the S1 query with input (TIDA, TIDB, n1, bA0) and output (TIDA, TIDB, n1, n2, bA0, bS1),
and S2 query with input as (TIDA, Auth0, σ1, n3, c0, bB0), where the nearest query is the
H1(·) query or S2 query. If k1

′ = Rec(2v1
′, σ1), v1

′ = bT
B0sS1, the associated value for this

event is Auth0.
Correctauth 2: For bA0, bS0, the adversary makes the H1(TIDA, TIDB, n1, n2, k0

′, PWA1)
query, the A0 query with input (TIDA, TIDB, n1, bA0), the A1 query with input
(TIDB, n2, σ0, c1, Auth2, bB0, bS0), and the nearest query is the H1(·) query or the A1 query.
k0
′ = Rec(2v0

′, σ0), v0
′ = bT

S0sA0. The associated value for this event is Auth2.
Correctpw: The adversary made a correct guess about the user’s password.
The next step is to make security reduction on the 3PAKE protocol proposed in

this paper:
G0: This game simulates a real attack under the random oracle model for the PAKE

protocol proposed in this paper. The advantage of an adversary in breaking the protocol
can be defined as: AdvAke

G0
(A) = 2Pr[Succ0]− 1.

Symmetry 2023, 15, 1750 13 of 21

G1: In this game, the simulator simulates a random oracle Hi(·)(i ∈ {0, 1}) by main-
taining hash lists ∧H0 and ∧H1. In a hash query, if there is a record (m, r) in the hash list, r
is returned; otherwise, an element r ∈ Zq is randomly selected, (m, r) is added to the list,
and r is returned. �

Lemma 1. For probabilistic polynomial adversaries A , G1 and G0 are indistinguishable.

Proof. Obviously, unless adversary A can break the one-way hash function, adversary A
cannot distinguish the output of the hash function and random string. Thus, G1 and G0 are
indistinguishable:

∣∣∣AdvAke
G0

(A)− AdvAke
G1

(A)
∣∣∣≤ negl .

G2: G2 and G1 are indistinguishable unless an honest player randomly chooses
bA0, bB0, bS0, bS1 which appeared in a previous query; then, the protocol aborts and the
adversary fails. �

Lemma 2. For probabilistic polynomial adversaries A, the advantage of distinguishing between
games G2 and G1 games is:

∣∣∣AdvAke
G2

(A)− AdvAke
G1

(A)
∣∣∣≤ (qro + qse + qex)

2/qnk.

Proof. That is, bA0 cannot be equal to the bA0 that appeared in the previous Execute
(Πi

A, Πi
B, Πi

S), Send (Πi
P, m) query, A0 query, S1 query or B1 query and random oracle

query; bS0 cannot be equal to bS0 that appeared in the previous Execute (Πi
A, Πi

B, Πi
S), Send

(Πi
P, m) query, S2 query, A1 query, or random oracle query. bS1 cannot be equal to the bS1

that appears in the previous Execute (Πi
A, Πi

B, Πi
S), Send (Πi

P, m) query, S1 query, B1 query,
or random oracle query; bB0 cannot be the same as bB0 that appeared in the previous Execute
(Πi

A, Πi
B, Πi

S), Send (Πi
P, m) query, B1 query, S2 query, A1 query, or random oracle query.

From the birthday attack, the probability of distinguishing G2 from G1 for a probabilistic
polynomial adversary does not exceed:

∣∣∣AdvAke
G2

(A)− AdvAke
G1

(A)
∣∣∣ ≤(qro + qse + qex)

2/qnk.
G3: G3 is same as G2, except that the adversary does not use the random oracle model

in the output of Execute (Πi
A, Πi

B, Πi
S) and Send (Πi

P, m) queries. Subsequent oracle queries
by the adversary will be as consistent as possible with Execute (Πi

A, Πi
B, Πi

S) and Send
(Πi

P, m) queries. The specific queries are answered as follows:
For the Execute (Πi

A, Πi
B, Πi

S) query, bA0 = AsA0 + eA0 , bS0 = ATsS0 + eS0 ,
bS1 = AsS1 + eS2, bB0 = ATsB0 + eB0, where sA0, eA0, sS0, eS0, sS1, eS2, sB0, eB0 is taken
randomly from the distribution βk

η , Auth0, σ1, Auth2 random uniform is taken from the

distribution {0, 1}d, and c0, c1 is generated uniformly at random from distribution {0, 1}.
For S1 queries on server instances Πi

S, bA0 = AsA0 + eA0, where sA0, eA0, sS1, eS2 are
randomly taken from the distribution βk

η .
For B1 queries on the user instance Πi

B, bB0 = ATsB0 + eB0 where sB0, eB0 is taken
randomly from the distribution βk

η , and Auth0, σ1 are taken randomly uniformly from the

distribution {0, 1}d, and c0 is the generated uniformly at random from distribution {0, 1}.
For S2 queries on server instances Πi

S, if the query results in a Correctauth0 event, set
bS0 = ATsS0 + eS0, where sS0, eS0 are randomly taken from the distribution βk

η . Otherwise,
the server instance aborts.

For A1 queries on the user instance Πi
A, if the query results in a Correctauth2 event,

perform the following steps:
If the user instance Πi

A is not yet paired with a user instance Πi
B, and the query results

in a Testsk! (A, i, B, S, l), then set skA to the relevant value of Testsk (A, i, B, S, 2).
Set skA = skB, if the user instance Πi

A has already paired with a user instance Πi
B.

Otherwise, the user instance Πi
A terminates.

If the query does not result in a Correctauth2 event, the user instance Πi
A terminates.

For Hl(·) query, l ∈ {1, 2}, if the query results in the occurrence of the events Testsk
(A, i, B, S, l), Testsk (B, j, A, S, l), Testexecsk (A, i, B, j, S), Correctauth0, or Correctauth2, then
output the associated value of the event, otherwise output a random value. �

Symmetry 2023, 15, 1750 14 of 21

Lemma 3. For any polynomial adversary,
∣∣∣AdvAke

G3
(A)− AdvAke

G2
(A)

∣∣∣ ≤ qse/2d + qro/qnk.

Proof. The design of G3 is a standard technique used in the security analysis of ran-
dom oracle. G3 and G2 are indistinguishable unless the adversary makes the following
two queries:

The Correctauth0 or Correctauth2 event caused by the Hl(·) query with the correct
password as input, but the total probability of this happening is at most qro/qnk since the
adversary cannot actually obtain the correct password.

The Send (Πi
P, m) query terminates either the user instance or the server instance.

According to the above analysis, the query that causes the termination of the user instance
Πi

A is the A1 query, and the query that causes the termination of the server instance Πi
S

is the S2 query. If the query does not cause a Correctauth0 event, the server instance
terminates. The probability of termination is not more than qse/2d.

Thus, for any polynomial adversary, the advantage of distinguishing G3 and G2 is∣∣∣AdvAke
G3

(A)− AdvAke
G2

(A)
∣∣∣ ≤ qse/2d + qro/qnk.

G4: G4 is the same as G3, except that in Hl(TIDA, TIDB, bA0, bB0, n1, n4, k2
′), the query

executes a random response without checking the consistency of its output with the Execute
query. That is, the Testexecsk (A, i, B, j, S) event does not occur in G4. �

Lemma 4. For any polynomial adversary, the advantage of distinguishing G4 and G3 is∣∣∣AdvAke
G4

(A)− AdvAke
G3

(A)
∣∣∣ ≤ 2AdvMPWE

Rq
(t′, qro) + 2AdvDMLWE

Rq
(t′, qro).

Proof. Clearly, if the Testexecsk (A, i, B, j, S) event does not occur, G4 and G3 are indistinct.
If an adversary can cause Testexecsk (A, i, B, j, S) to occur with non-negligible probability,
then a simulator can construct an algorithm D to solve the MPWE problem by running the
adversary on G3. Given (A, X, Y, σ), the algorithm simulates the game G3 by changing it
as follows.

1. When adversary makes the Execute (Πi
A, Πi

B, Πi
S) query, the algorithm D sets

bA0 = X + AsA0 + eA0, bB0 = Y + ATsB0 + eB0, where sA0, eA0, sB0, eB0 are taken from
the distribution βk

η . At the same time, it is assumed that the adversary knows what is
selected randomly and uniformly. This assumption will only increase the advantage
of the adversary’s successful attack.

2. When the adversary finishes, for each Hl(TIDA, TIDB, bA0, bB0, n1, n4, k2
′) query,

where (bA0, bB0, n1) is obtained in the Execute query, k2
′ = Rec(2v2

′, σ2) = bv2e2q,2,
v2 ← dbl(v2) , v2 = bT

A0sB0 + eB2. Then, the algorithm D can compute:

v2 = bA0
TsB1 + eB1

= (X + AsA0 + eA0)
T(sy + sB0

)
+ eB1

= XTsy + XTsB0 + sA0
T ATsy + sA0

T ATsB0 + eA0
Tsy + eA0

TsB0 + eB1

≈ XTsy + sA0
TY + (X + AsA0 + eA0)

TsB0

(5)

Calculate K = Rec
(
2XTsy, σ

)
= Rec

(
2
(

v2 − sA0
TY− (X + AsA0 + eA0)

TsB0

)
, σ
)

and
add K to the list of possible values of the MPWE problem, at which point the MPWE
problem is solved.

When the algorithm D simulates the game G3, algorithm D sets bA0 = X + AsA0 + eA0,
bB0 = Y + ATsB0 + eB0 to replace the actual bA0 = AsA0 + eA0, bB0 = ATsB0 + eB0, respec-
tively. Because X is randomly uniformly drawn from the distribution Rk

q, bA0 set by the
algorithm and the actual bA0 are indistinguishable. Because Y = ATsy + ey, unless the
adversary can solve the DMLWE problem with a non-negligible advantage, the algorithm
sets bB0 and the actual bB0 is indistinguishable. Considering the difficulty of the MPWE
problem, assuming t′ is the algorithm D’s running time, D creates a list of size qro with the
advantage of ε, and t′ = O

(
t + (qse + qex + qre + qco)texp

)
.

Symmetry 2023, 15, 1750 15 of 21

For probabilistic polynomial adversaries A, the advantage of distinguishing between games
G4 and G3 games is

∣∣∣AdvAke
G4

(A)− AdvAke
G3

(A)
∣∣∣ ≤ 2AdvMPWE

Rq
(t′, qro) + 2AdvDMLWE

Rq
(t′, qro).

G5: G5 is the same as G4, unless the adversary is able to execute the Correctsk event
before the Corrupt query. When the adversary executes the Correctsk event, the protocol
terminates and the adversary succeeds. Compared to G4, G5 makes following changes:

Before the Corrupt query, in A1 query to the user instance Πi
A, if the Testsk! (A, i, B, S, l)

event occurs, the protocol terminates and the adversary succeeds.
Before the Corrupt query, for the Hl(·) query, if the Testsk* (B, j, A, S) event occurs, the

protocol terminates and the adversary succeeds. �

Lemma 5. For any polynomial adversary, AdvAke
G4

(A) ≤ AdvAke
G5

(A).

Proof. Clearly, the definition only increases the advantage of the adversary; then, for any
polynomial, the adversary AdvAke

G4
(A) ≤ AdvAke

G5
(A).

G6: G6 is the same as G5 unless the adversary guesses the password of the paired
two user instances. At this point, the protocol is terminated and the adversary fails. If the
Pairedskguess event occurs, the protocol terminates and the adversary fails. This section
assumes that the test for Correctsk occurs after the test for Pairedskguess when the query
is made.

This will make the following changes to G5: If a Testsk(A, i, B, S, l) event occurs for
l ∈ {1, 2} (this event should be checked in the A1 query or Hl(·) query), check whether the
Testsk(A, i, B, j, S) event also occurs. �

Lemma 6. For any polynomial adversary, the advantage of distinguishing G6 and G5 is∣∣∣AdvAke
G6

(A)− AdvAke
G5

(A)
∣∣∣ ≤ 2AdvMPWE

Rq
(t′, qro) + 2AdvDMLWE

Rq
(t′, qro).

Proof. Clearly, G6 and G5 are indistinguishable if the Pairedskguess event does not occur.
If the adversary can make the Pairedskguess occur with non-negligible probability in G5,
then the algorithm D can be constructed to solve the MPWE problem by running the
adversary in G5. Given (A, X, Y, σ), the algorithm D simulates the game G5 by changing
the following.

In A0 queries to user instances Πi′
A, the algorithm D sets bA0 = X.

In the B1 query with input as (TIDA, TIDB, n1, n2, bA0, bS1) to the user instance Πj
B,

there is A0 query for the user instance Πj
B with output (TIDA, TIDB, n1, bA0), and S1 query

with input is (TIDA, TIDB, n1, bA0), and the output is (TIDA, TIDB, n1, n2, bA0, bS1), and
set bB0 = Y + ATsB0 + eB0, where sB0, eB0 are all taken from βk

η .

In the A1 query to user instance Πi′
A, if Πi′

A has not been paired, the algorithm outputs
0 and aborts.

After the adversary attack is finished, for each Hl(TIDA, TIDB, bA0, bB0, n1, n4, k2
′)

query, when bA0 and bB0 are in a related Πi′
A query, the algorithm D can be calculated

as follows:
v2 = bA0

TsB1 + eB1
= XT(sy + sB0

)
+ eB1

= XTsy + XTsB0 + eB1
≈ XTsy + XTsB0

(6)

Calculate K = Rec
(
2XTsy, σ

)
= Rec

(
2
(
v2 − XTsB0

)
, σ
)
, and add K to the list of possi-

ble values of the MPWE problem; then, the MPWE problem is solved.
When the algorithm D simulates the game G5, algorithm D sets bB0 = Y + ATsB0 + eB0

to replace actual bB0 = ATsB0 + eB0. Because Y = ATsy + ey, unless the adversary can solve
the DMLWE problem with non-negligible advantage, the algorithm D sets bB0 and the
actual bB0 is indistinguishable. Considering the difficulty of the MPWE problem, assuming
t′ is the algorithm D′s running time, D creates a list of size qro with the advantage of ε, and
t′ = O

(
t + (qse + qex + qre + qco)texp

)
.

Symmetry 2023, 15, 1750 16 of 21

For probabilistic polynomial adversaries A, the advantage of distinguishing between games
G6 and G5 games is

∣∣∣AdvAke
G6

(A)− AdvAke
G5

(A)
∣∣∣ ≤2AdvMPWE

Rq
(t′, qro) + 2AdvDMLWE

Rq
(t′, qro).

G7: G7 is the same as G6, except that there is an internal password oracle that keeps all
passwords and is used to check the correctness of a given password in G7. This oracle is
password-safe. The password oracle initializes all passwords and is unavailable to arbitrary
polynomial adversaries.

The oracle accepts queries of the form testpw (U, PW) and returns TRUE if PW = PWU ,
FALSE otherwise. It also accepts a Corrupt (U) query and returns PW1 = H0(IDi||PW0) if
U is a server, else returns PWU . When a protocol receives a Corrupt(U) query, it answers
with a Corrupt (U) query to the password oracle. �

Lemma 7. For any polynomial adversary, G7 and G6 are indistinguishable, AdvAke
G7

(A) =

AdvAke
G6

(A).

Proof. Clearly, G7 and G6 are completely indistinguishable.
Now this section analyzes the advantages of the adversarial attack game G7. According

to the definition of the game G7, this section can easily bound the probability of the
adversary’s success in the game as follows.

Pr[Succ7(A)] ≤ [Pr, Correctpw] + (Pr[Correctsk¬Correctpw]+
Pr[Succ7(A)¬Correctsk∩ ¬Correctpw]·
Pr[¬Correctsk∩ ¬Correctpw]) · Pr[¬Correctpw]

(7)

For Pr[Correctpw], since passwords are randomly selected from a dictionary of size |D|
and will occur at most qse queries to the password oracle, then Pr[Correctpw] ≤ qse/|D|.

For Pr[Correctsk¬Correctpw], since the adversary cannot decrypt n4 without correctly
guessing the password, the probability of the event Correctsk is negligible; that is, the
probability Pr[Correctsk¬Correctpw] is negligible.

For Pr[Succ7(A)¬Correctsk∩ ¬Correctpw], the Correctsk event and Correctpw event
have not occurred; then, if and only if the adversary successfully guesses the password
used in the Test query on a fresh instance, the adversary succeeds in the attack. Since
Pr[Correctsk|¬Correctpw] is negligible, the Pr[¬Correctsk∩ ¬Correctpw] probability is
close to 1, so Pr[Succ7(A)¬Correctsk∩ ¬Correctpw] ·Pr[¬Correctsk∩ ¬Correctpw] ≤ 1/2.

In summary, Pr[Succ7(A)] ≤ qse/|D|+ 1/2(1− qse/|D|) ≤ 1/2+ qse/2|D|, so for any
polynomial adversary, the advantage of its attack game G7 is AdvAke

G7
(A) ≤ qse/|D|.

Integrating G0 to G7, the advantage of the adversary’s successful attack is AdvAke
Π (A) ≤

(qro + qse + qex)
2/qnk + qse/2d + qro/qnk + 2AdvMPWE

Rq
(t′, qro) + 2AdvDMLWE

Rq
(t′, qro)+

qse/|D| and its value is negligible. The attacker bases the query on the random oracle, and
the advantage of a successful attack is almost zero. The PAKE protocol scheme in this paper
is provably secure based on the random oracle model, and the security of the protocol can
ultimately be attributed to the difficulty of the MLWE problem on the lattice. �

5.2. Security Properties

This section will mainly analyze how the three-party PAKE protocol of this paper
satisfies the proposed security requirements.

1. Mutual authentication between three parties

In the proposed protocol, there is implicit authentication with user Πi
A and explicit

authentication with user Πi
B for server Πi

S, explicit authentication with user Πi
B and server

Πi
S for user Πi

A, and implicit authentication with user Πi
A and server Πi

S for Πi
B. After the

user Πi
A obtains the shared key with users Πi

B, the user Πi
B can explicitly authenticate user

Πi
A’s identity by sending the authentication information or encrypting the message with

Symmetry 2023, 15, 1750 17 of 21

the shared key. Therefore, the proposed protocol realizes mutual authentication among the
three parties, and only the legitimate party with a legitimate password can authenticate.

2. Known key security

The session keys are independent of each other. Even if the adversary obtains a specific
session key, it cannot obtain other session keys through this session key. The final session
key in this paper is skA = H2(TIDA, TIDB, bA0, bB0, n1, n4, k2

′), which is constructed by the
identity of the polynomial matrix regenerated each time bA0, bB0, random numbers and the
secret information k2

′ are exchanged and calculated by two users. Therefore, each session
key is independent of each other, and the collision probability is minimal. Therefore, the
three-party PAKE protocol proposed in this paper has known-key security.

3. Forward security

The forward security of PAKE means that even if the adversary obtains one or more
shared passwords, the attacker cannot obtain the previously established session key. That
is, session keys and passwords are independent of each other. Since the three-party PAKE
protocol proposed in this paper needs the random number n1, n4 generated in this session,
the calculated k2

′ every time the session key is generated, and the session key is independent
of the user password. Therefore, the protocol in this paper can provide forward security.

4. Resist three types of dictionary attacks

The dictionary attacks on the PAKE protocol can be divided into three categories: offline
dictionary attacks, testable online dictionary attacks, and untestable online dictionary attacks.

For the offline dictionary attack, the adversary intercepts the information through
the open channel and can carry out the dictionary attack Auth0, Auth2, c0 and c1. If the
adversary conducts dictionary attack on Auth0 or c0, the adversary needs to overcome
the MPWE problem with inputs bB0 and bS1 to calculate k1. If the adversary conducts a
dictionary attack on Auth2 or c1, it needs to overcome the MPWE problem with inputs bA0
and bS0 to calculate k0. According to the difficulty of the MPWE problem, the protocol in
this paper can resist offline dictionary attacks.

For the measurable online dictionary attack, the adversary pretends to be the user Πi
B

and the server Πi
S to launch an online dictionary attack on the user Πi

A. Since the user Πi
A

will verify whether the server Πi
S holds the password and whether the user Πi

B is legal
during the stage A1, once the verification fails many times, the user Πi

A will realize that
Πi

A is the target of online dictionary attacks. Suppose the adversary pretends to be the user
Πi

A and the server Πi
S to launch an online dictionary attack on the user Πi

B. Then, user Πi
B

will authenticate user Πi
A through the verification information or the message encrypted

with the shared key after the key exchange is completed sent by the user Πi
A. In that case,

once the verification fails many times, user Πi
B will realize that Πi

B is the target of online
dictionary attacks. Suppose the adversary pretends as user Πi

A and user Πi
B to launch an

online dictionary attack on the server. Since the server Πi
S can verify whether the user Πi

B
is legal in the stage S1, the verification fails many times. In that case, the server Πi

S realizes
it has become the target of the online dictionary attack. Once a protocol participant realizes
that it has become the target of an online dictionary attack, it can immediately notify the
other party that shares the password to update the password. Therefore, the protocol in
this paper can resist measurable online dictionary attacks.

For untestable online dictionary attacks, since all online dictionary attacks in this
protocol are detectable, the adversary cannot conduct untestable online dictionary attacks
on the protocol participants.

6. Performance Analysis

In this section, the parameter settings of the proposed tripartite PAKE scheme and
the comparison tripartite PAKE scheme are given, and the performance analysis is carried
out from three aspects: computational efficiency, communication efficiency, and security.
Considering that the computational complexity of symmetric encryption, hash function,
and Peikert error reconciliation operation are much smaller than that of polynomial multi-

Symmetry 2023, 15, 1750 18 of 21

plication operation and public and private key generation operation, when comparing the
computational efficiency, this section mainly considers polynomial multiplication operation
and public and private key generation operation with high computational cost, and ignores
the rest of the operations.

6.1. Parameter Selection

This section assumes that for all PAKE protocols, the size of the username is 64 bytes,
the output length of the hash function is 256 bits, and the size of the random number is
taken to be 256 bits. The parameters of the scheme implemented based on the RLWE hard
problem are selected, and the parameters of the scheme based on the MLWE hard problem
are set, as where the dimension of the polynomial in the polynomial ring, and the parameter
of the central binomial distribution is the modulus (n, η, q) = (768, 2, 3329)(n, k, η, q) =
(256, 3, 2, 3329)nRqkηq LWE_ESTIMATOR [33] for the LWE hard problem and the scheme
based on the MLWE hard problem, respectively. The results show that both parameter
configurations can achieve 222 bits of post-quantum security.

6.2. Computational Efficiency

The software implementation of the protocol presented in this paper was executed
on a 64-bit system computer with 2.30 GHz 11th Gen Intel(R) Core(TM) i7-11800H and
16 GB RAM on Windows 11 Version 22H2. In order to improve the computational effi-
ciency, the NTT algorithm was introduced O

(
n2) to reduce the O(n log n) computational

complexity of polynomial multiplication and public and private key generation operations
to a minimum. The following Table 1 provides the average operation time costs of poly-
nomial multiplication and public and private key generation operations obtained from
1,000,000 measurements under different parameter configurations. It can be seen from
the table that under the same post-quantum security bits, the average operation time of
polynomial multiplication with MLWE parameters and RLWE parameters is almost the
same, and the public and private key generation with MLWE parameters is slightly more
expensive than that with RLWE parameters.

Table 1. Operation time of polynomial multiplication operation and public and private key
generation operations.

Operation Average Operation Time
(ms) with MLWE Parameters

Average Operation Time
(ms) with RLWE Parameters

Polynomial
multiplication operation 0.05337 0.05732

Public and private key
generation operations 0.11688 0.07364

6.3. Performance Comparison

Table 2 shows the comparison of the proposed tripartite PAKE scheme [21,34,35]. In
terms of security, all the schemes can resist the offline dictionary attack. Compared with
Choi’s scheme [34], in terms of communication overhead, the amount of communication
data of the proposed scheme is basically the same as that of other schemes [34,35]. In terms
of computational overhead, the proposed scheme is almost the same as Liu’s scheme. In
addition, the tripartite PAKE protocol implemented based on the RLWE hard problem
introduces a structured lattice which brings new security threats, while the proposed
scheme implemented on the MLWE hard problem has higher potential security than the
tripartite PAKE protocol implemented to solve the RLWE hard problem.

Symmetry 2023, 15, 1750 19 of 21

Table 2. Comparison of cost and security features.

Protocol
Choi

Scheme [34]

Wang Scheme [21]
Liu’s

Scheme [35]
Shu

Scheme [25]
Scheme of
This PaperImplicit

Authentication
Explicit

Authentication

Three-party
mutual authentication no yes yes yes yes yes

Offline
dictionary attack yes yes yes yes yes yes

Undetectable online
dictionary attack no no no yes yes yes

Difficult hypothesis RLWE RLWE RLWE RLWE MLWE
Public key length/byte 1536 1536 1536 1536 1536

Communication
overhead/byte 9504 14,144 11,104 15,870 9696 10,080

Compute
overhead/ms 0.63848 0.39228 0.39228 0.58116 0.75312 0.78774

Correspondence
rounds 6 4 5 7 6 4

Error reconciliation
mechanism DING type DING Pose DING Pose Peikert style Peikert style Peikert style

Security model BPR model BPR model BPR model BPR model UC model BPR model

7. Conclusions

The two-party PAKE protocol will bring huge overhead and management problems
when applied to a large number of user communication scenarios. Therefore, researchers
have proposed the three-party PAKE protocol. However, the current three-party PAKE
protocols are often designed based on traditional difficult mathematical problems, which are
vulnerable to quantum computing attacks. Therefore, it is urgent to study the three-party
PAKE protocols that can resist quantum computing attacks. Based on the MLWE problem,
this paper proposes a provably secure tripartite PAKE protocol under the BPR model for
the first time. The security analysis shows that the proposed tripartite PAKE protocol
realizes mutual authentication between three parties and can resist three types of dictionary
attacks, and has higher or equivalent security than the existing schemes. Compared with
the existing schemes, the proposed tripartite PAKE protocol has almost the same amount
of communication data, but has the lowest communication rounds. Computational cost
analysis shows that the computational cost of the proposed tripartite PAKE protocol is
almost the same as that of the existing tripartite PAKE protocol. Considering the potential
security problems of the tripartite PAKE protocol based on e RLWE hard problem, the
tripartite PAKE protocol based on the MLWE hard problem proposed in this paper has
higher practical value.

Author Contributions: Conceptualization, S.G. (Songhui Guo) and Y.S.; methodology, S.G. (Songhui
Guo) and Y.S.; software, S.G. (Song Guo); validation, Y.Y. and S.S.; formal analysis, Y.S.; writing—
original draft preparation, S.G. (Songhui Guo) and Y.S.; writing—review and editing, Y.Y. and S.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available on request to the authors.

Acknowledgments: The authors would like to thank anonymous reviewers for their valuable com-
ments, which helped improve the content, organization, and quality of this article.

Conflicts of Interest: The authors declare no conflict of interest.

Symmetry 2023, 15, 1750 20 of 21

References
1. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134.
2. Law, L.; Menezes, A.; Qu, M.; Solinas, J.; Vanstone, S.; Vanstone, S. An Efficient Protocol for Authenticated Key Agreement. Des.

Codes Cryptogr. 2003, 28, 119–134. [CrossRef]
3. Abdalla, M.; Fouque, P.A.; Pointcheval, D. Password-Based Authenticated Key Exchange in the Three-Party Setting. In Pro-

ceedings of the International Conference on Theory & Practice in Public Key Cryptography, Les Diablerets, Switzerland,
23–26 January 2005.

4. Dongna, E.; Cheng, Q.; Ma, C. Password authenticated key exchange based on RSA in the three-party settings. In Proceedings of
the Provable Security: Third International Conference, ProvSec 2009, Guangzhou, China, 11–13 November 2009; pp. 168–182,
Proceedings 3.

5. Lin, C.; Sun, H.; Hwang, T. Three-party encrypted key exchange: Attacks and a solution. ACM SIGOPS Oper. Syst. Rev. 2000,
34, 12–20. [CrossRef]

6. Chang, T.; Hwang, M.; Yang, W. A communication-efficient three-party password authenticated key exchange protocol. Inf. Sci.
2011, 181, 217–226. [CrossRef]

7. Steiner, M.; Tsudik, G.; Waidner, M. Refinement and extension of encrypted key exchange. ACM SIGOPS Oper. Syst. Rev. 1995,
29, 22–30. [CrossRef]

8. Ding, Y.; Horster, P. Undetectable on-line password guessing attacks. ACM SIGOPS Oper. Syst. Rev. 1995, 29, 77–86. [CrossRef]
9. Lin, C.; Sun, H.; Steiner, M.; Hwang, T. Three-party encrypted key exchange without server public-keys. IEEE Commun. Lett.

2001, 5, 497–499. [CrossRef]
10. Lee, T.; Hwang, T.; Lin, C. Enhanced three-party encrypted key exchange without server public keys. Comput. Secur. 2004,

23, 571–577. [CrossRef]
11. Lu, R.; Cao, Z. Simple three-party key exchange protocol. Comput. Secur. 2007, 26, 94–97. [CrossRef]
12. Huang, H.F. A simple three-party password-based key exchange protocol. Int. J. Commun. Syst. 2009, 22, 857–862. [CrossRef]
13. Lee, C.; Li, C.; Hsu, C. A three-party password-based authenticated key exchange protocol with user anonymity using extended

chaotic maps. Nonlinear Dyn. 2013, 73, 125–132. [CrossRef]
14. Zhao, J.; Gu, D. Provably secure three-party password-based authenticated key exchange protocol. Inf. Sci. 2012, 184, 310–323.

[CrossRef]
15. Lou, D.C.; Huang, H.F. Efficient three-party password-based key exchange scheme. Int. J. Commun. Syst. 2011, 24, 504–512.

[CrossRef]
16. Wu, S.; Chen, K.; Zhu, Y. Enhancements of a three-party password-based authenticated key exchange protocol. Int. Arab. J. Inf.

Technol. 2013, 10, 215–221.
17. Mao, Y. Password Authenticated Key Exchange Protocol in the Three Party Setting Based on Lattices. J. Electron. Inf. Technol. 2014,

35, 1376–1381.
18. Katz, J.; Vaikuntanathan, V. Smooth Projective Hashing and Password-Based Authenticated Key Exchange from Lattices; Springer:

Berlin/Heidelberg, Germany, 2009.
19. Xu, D.; He, D.; Choo, K.R.; Chen, J. Provably secure three-party password authenticated key exchange protocol based on ring

learning with error. Cryptol. ePrint Arch. 2017.
20. Ding, J.; Alsayigh, S.; Lancrenon, J.; Saraswathy, R.V.; Snook, M. Provably Secure Password Authenticated Key Exchange Based

on RLWE for the Post-Quantum World. In Proceedings of the Cryptographers Track at the RSA Conference, San Francisco, CA,
USA, 14–17 February 2017.

21. Wang, C.; Chen, L. Three-party password authenticated key agreement protocol with user anonymity based on lattice. J. Commun.
2018, 39, 21–30.

22. Yu, J.; Lian, H.; Tang, Y.; Shi, M.; Zhao, Z. Password-based three-party authenticated key exchange protocol from lattices.
J. Commun. 2018, 39, 87–97.

23. Zhang, J.; Yu, Y. Two-round PAKE from approximate SPH and instantiations from lattices. In Proceedings of the Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, 3–7 December 2017; pp. 37–67, Proceedings, Part III 23.

24. Gao, X.; Ding, J.; Liu, J.; Li, L. Post-quantum secure remote password protocol from RLWE problem. In Proceedings of the
Information Security and Cryptology: 13th International Conference, Inscrypt 2017, Xi’an, China, 3–5 November 2017; pp. 99–116,
Revised Selected Papers 13.

25. Shu, Q.; Wang, S.; Hu, B.; Han, L. Verifier-Based Three-Party Password-Authenticated Key Exchange Protocol from Ideal Lattices.
J. Cryptol. Res. 2021, 8, 294–306. [CrossRef]

26. Bai, S.; Lepoint, T.; Roux-Langlois, A.; Sakzad, A.; Stehlé, D.; Steinfeld, R. Improved security proofs in lattice-based cryptography:
Using the Rényi divergence rather than the statistical distance. J. Cryptol. 2015, 31, 610–640. [CrossRef]

27. Langlois, A.; Stehlé, D. Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 2015, 75, 565–599.
[CrossRef]

https://doi.org/10.1023/A:1022595222606
https://doi.org/10.1145/506106.506108
https://doi.org/10.1016/j.ins.2010.08.032
https://doi.org/10.1145/206826.206834
https://doi.org/10.1145/219282.219298
https://doi.org/10.1109/4234.974498
https://doi.org/10.1016/j.cose.2004.06.007
https://doi.org/10.1016/j.cose.2006.08.005
https://doi.org/10.1002/dac.1002
https://doi.org/10.1007/s11071-013-0772-4
https://doi.org/10.1016/j.ins.2011.07.015
https://doi.org/10.1002/dac.1172
https://doi.org/10.13868/j.cnki.jcr.000438
https://doi.org/10.1007/s00145-017-9265-9
https://doi.org/10.1007/s10623-014-9938-4

Symmetry 2023, 15, 1750 21 of 21

28. Bos, J.; Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schanck, J.M.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Kyber:
A CCA-secure module-lattice-based KEM. In Proceedings of the 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), London, UK, 24–26 April 2018; pp. 353–367.

29. Ding, J.; Lin, X. A Simple Provably Secure Key Exchange Scheme Based on the Learning with Errors Problem. Iacr Cryptol. Eprint
Arch. 2013.

30. Peikert, C. Lattice cryptography for the internet. In Proceedings of the Post-Quantum Cryptography: 6th International Workshop,
PQCrypto 2014, Waterloo, ON, Canada, 1–3 October 2014; pp. 197–219, Proceedings 6.

31. Bellare, M.; Pointcheval, D.; Rogaway, P. Authenticated Key Exchange Secure Against Dictionary Attacks. In Proceedings of the
International Conference on the Theory & Applications of Cryptographic Techniques, Bruges, Belgium, 14–18 May 2000.

32. Bellare, M.; Rogaway, P. Entity authentication and key distribution. In Proceedings of the Annual International Cryptology
Conference, Santa Barbara, CA, USA, 22–26 August 1993; pp. 232–249.

33. Albrecht, M.R.; Player, R.; Scott, S. On the concrete hardness of Learning with Errors. J. Math. Cryptol. 2015, 9, 169–203. [CrossRef]
34. Choi, R.; An, H.; Kim, K. AtLast: Another three-party lattice-based PAKE scheme. In Proceedings of the 2018 Symposium on

Cryptography and Information Security (SCIS 2018), Niigata, Japan, 23–26 January 2018.
35. Liu, C.; Zheng, Z.; Jia, K.; You, Q. Provably secure three-party password-based authenticated key exchange from RLWE. In

Proceedings of the Information Security Practice and Experience: 15th International Conference, ISPEC 2019, Kuala Lumpur,
Malaysia, 26–28 November 2019; pp. 56–72; Proceedings 15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1515/jmc-2015-0016

	Introduction
	Preliminaries
	Sampling Random Variables on Lattice
	MLWE Problem
	Reconciliation Mechanism
	PWE Assumption Based on MLWE
	Three-Party PAKE Security Model

	Our Protocol
	System Initialization Process
	Registration Process
	Authentication and Key Exchange Phase

	Proof of Correctness of the Protocol
	Security Analysis
	Security proof
	Security Properties

	Performance Analysis
	Parameter Selection
	Computational Efficiency
	Performance Comparison

	Conclusions
	References

