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Abstract: The plasma edge of a tokamak configuration is characterized by turbulent dynamics
leading to enhanced transport. We construct a simplified 3D Hasegawa–Wakatani model reducing
to a single partial differential equation for the turbulent electric potential dynamics. Simulations
demonstrate how the 3D turbulence relaxes on a 2D axisymmetric profile, corresponding to the
so-called interchange turbulence. The spectral features of this regime are found to be strongly
dependent on the initialization pattern. We outline that the emergence of axisymmetric turbulence is
also achieved when the corresponding mode amplitude is not initialized. Then, we introduce the
symmetries of the magnetic X-point of a tokamak configuration. We linearize the governing equation
by treating the poloidal field as a small correction. We show that it is not always possible to solve
the electric potential dynamics following a perturbative approach. This finding, which is due to
resonance between the modes of the background and the poloidal perturbation, confirms that the
X-point symmetries can alter the properties of turbulent transport in the edge region.

Keywords: nonlinear fluid dynamics; axisymmetric modes; plasma turbulence; tokamak edge
physics

1. Introduction

One of the most important ingredients characterizing the nature of the heat and
particle transport in a tokamak device consists of the turbulent dynamics of the electric
field in the edge region and, in particular, close to the X-point [1–3]. Since, in the tokamak
edge region, the plasma has a significant collisional character, and the turbulence scale is
super Debye-sized, we can represent the plasma dynamics via a two-fluid model (ions and
electrons) for which the current density vector is divergence-free.

In this framework, the plasma turbulent transport is mainly associated with the so-
called nonlinear drift response [1,4,5], and the corresponding basic coupling between the
dynamics of the different variables is due to the parallel (to the background magnetic field)
current. The basic features of the electrostatic turbulence (i.e., the magnetic fluctuations
are neglected for sufficiently large values of the plasma’s β parameter) are captured by the
so-called Hasegawa–Wakatani model [6–8], which corresponds to a coupling between the
dynamics of the number density and the electric vorticity (i.e., the Laplacian of the electric
potential). In two dimensions, when the tokamak axisymmetric structure is extended to
the turbulent fluctuations, the electric potential field dynamics is isomorphic to that of the
stream function in the Euler equation for an incompressible fluid [9–11]. However, in such
a limit, if the magnetic field is assumed to be along the z direction, then the drift coupling
is absent, and the steady state of the system is associated with an enstrophy cascade and, in
some cases, also responsible for an inverse energy cascade (known as the “condensation
phenomenon”), which allows for the formation of large-scale eddies [12]. Studies on the
properties of the three-dimensional turbulence relaxation on a two-dimensional profile
were discussed in [11,13] but were for when the axisymmetric mode was always initialized
in the numerical analysis.

Symmetry 2023, 15, 1745. https://doi.org/10.3390/sym15091745 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15091745
https://doi.org/10.3390/sym15091745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-3811-2545
https://orcid.org/0000-0002-2550-5553
https://orcid.org/0000-0001-8008-9268
https://doi.org/10.3390/sym15091745
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15091745?type=check_update&version=2


Symmetry 2023, 15, 1745 2 of 17

In this respect, in this work, we consider a reduced model equivalent to a Hasegawa–
Wakatani scenario but assume that the linear drift instability trigger is negligible (i.e.,
treating the background plasma density as a constant parameter). In this context, we
simulate the dynamics for when the magnetic field of the background configuration is
taken along the z axis and the axisymmetric fluctuation is not initialized. Our study
demonstrates that the three-dimensional turbulence is destined to decay, and apart from
the viscous damping, all the energy is transferred, exciting the axisymmetric mode, which
manifests a spectral feature compatible with a constant energy distribution which would
correspond to a two-dimensional initialization with a random amplitude.

Furthermore, we study the properties of the linearized plasma dynamics when the
X-point geometry is considered [14] so that a parallel derivative is now also present in
the axisymmetric case, which is the object of our investigation in light of the previous
analyses on the 3D case. As a novel result of this study, we see that if we treat the poloidal
magnetic field as a small perturbation, then a separation of the linearized equation is
possible, and the stability properties can be properly discussed. More precisely, we see that
when the perturbative approach remains valid, the stability of the dynamics is ensured.
However, in the more external region of the edge plasma, the perturbation scheme fails.
This is a consequence of a secular relative increase in the perturbation with respect to the
background evolution. The two terms become of the same order in a time scale shorter than
the damping rate. This result clearly suggests that, although close enough to the X-point,
the poloidal magnetic field is very small in comparison with the toroidal contribution, but
its presence can deeply influence the linear and nonlinear stability properties of the plasma
because it cannot always be treated on a perturbative level.

This paper is organized as follows. In Section 2, we start by describing the physical
scheme and the fundamental hypotheses we address in the paper. The 3D reduced model
for turbulence is derived. In Section 3, a closed equation describing the dynamics of the
electric potential fluctuations is discussed when the magnetic field is assumed to be along
the toroidal direction. We develop the numerical simulations of the reduced model by
implementing a truncated Fourier approach. We neglect nonideal effects. The system
dynamics is evolved until the thermal equilibrium is reached, and we show how the
axisymmetric mode behaves as an attractor. In Section 4, we assume a nonzero poloidal
magnetic field, and we analyze, by resorting only to analytical techniques, the linearized
equation ruling the reduced 2D dynamics also having the form of a single equation in this
case. We show that a perturbative approach in the construction of regular solutions is not
always feasible. This is due to a resonance phenomenon which can lead to secular growth
for low-wavenumber modes, according to the specific values of the physical parameters
characterizing the system. Our concluding remarks follow.

2. 3D Turbulence Reduced Model

In this section, we construct the reduced model for the turbulent dynamics represent-
ing a standard scheme for the nonlinear low-energy drift response, which can be recast
in a single equation for the electric fluctuations. We start by addressing the morphology
properties of the local equilibrium corresponding to the background of our dynamical
perturbative approach. Specifically, we consider a small poloidal region close to the X-point
of a tokamak configuration described by the Cartesian coordinates (x, y, z) centered in the
null, thus neglecting the effects of toroidal curvature. The magnetic field B can be expressed
via the magnetic flux function ψ(x, y) as

B = −∂yψêx + ∂xψêy + Btêz , (1)

where Bt = const. can be thought as the toroidal magnetic component of a tokamak and is
taken as the dominant contribution. Under the assumption of dealing with a low-density
and sufficiently cold plasma, we impose the Ampère law [14] to the flux function (i.e.,
∂2

xψ + ∂2
yψ = 0), obtaining ψ = (x2 − y2)Bp/2. Here, Bp is of the dimensions B/length.

In Figure 1, we present a qualitative sketch of the poloidal plane of a typical double-null
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tokamak configuration together with a zoomed-in section representing the zone close
to an X-point implementing the above mentioned form of the magnetic flux function in
arbitrary units.

Figure 1. Representation of a tokamak double-null poloidal magnetic configuration and a zoomed-
in section with the contour plot, in arbitrary units, of ψ ∝ (x2 − y2). The red line represents the
separatrix (the last closed magnetic surface) taken at ψ = 0 (color online).

By introducing the directional versor b̂, the background magnetic field in Equation (1)
can be rewritten as

B = B b̂ , B(x, y) = Bt

√
1 + B2

p(x2 + y2)/B2
t , b̂ =

Bpy
B

êx +
Bpx

B
êy +

Bt

B
êz . (2)

We remark that we identify the parallel and perpendicular directions of the dynamics
using the magnetic field versor b̂. This provides specific expressions for the operator
∇ ≡ ∇⊥ +∇‖, where ∇‖ = b̂(b̂ ·∇) and ∇⊥ = ∇−∇‖, which will be introduced in
detail below.

In this work, we consider a homogeneous and isotropic hydrogen-like plasma, and
we adopt a two-fluid model. The following assumptions are implemented [8,10]: plasma
quasi-neutrality (since the turbulence scale is much larger than the Debye length) (i.e.,
Ni = Ne ≡ N , with Ni/e indicating the ion/electron number density), and thus we also
consider pi = pe = p = NKBT (where the temperature T is equal for ions and electrons, in
which KB is the Boltzman constant); the ion polarization drift velocity is taken as the only
relevant contribution affecting the ortogonal current density; we neglect the diamagnetic
effects (i.e., the pressure gradient effects on the electron and ion velocities); and the parallel
ion velocity is negligible.

Finally, as the relevant hypothesis of the model, in the following we assume neglecting
of the spatial gradients of the background density by addressing a background charac-
terized by N = const., p = const. and T = const. Thus, in this work, all the dynamical
quantities are perturbations denoted by a δ symbol.

Let us start by writing down the continuity equation under the hypotheses above,
which is the same for electrons and ions by virtue of the charge conservation:

dδN
dt
−D∇2

⊥δN =
1
e
∇‖ · δJ‖ . (3)

Here, we have neglected the parallel ion velocity and introduced a diffusion coefficient
D able to phenomenologically model distinct transport regimes [15]. Moreover, J‖ denotes
the parallel current density, with e indicating the electron charge, and we adopt Gaussian
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units. The Lagrangian derivative d/dt = (∂t + δve
⊥ ·∇) is defined by means of the electron

E× B drift velocity:

δve
⊥ =

c
B2 E× B =

c
B

b̂×∇⊥δφ =

=
c

B2

(
(Bpx∂zδφ− Bt∂yδφ)êx + (Bt∂xδφ− Bpy∂zδφ)êy + (Bpy∂yδφ− Bpx∂xδφ)êz

)
, (4)

where c denotes the light speed, while δφ is the fluctuating electric field potential. When
neglecting the parallel components of the viscous stress, the fluctuating ion perpendicular
velocity δvi

⊥ obeys the following equation:

d δvi
⊥

dt
=

e
mi

(
−∇⊥δφ + δvi

⊥ × B/c
)
+ ν∇2

⊥ δvi
⊥ , (5)

where ν is the specific ion viscosity and mi is the ion mass. By implementing the assumption
Ni = N , the (constant) viscosity coefficient assumes the following form [6,16]:

ν =
1

miN
(3/10) NKBT

Ω2
i τii

, τii =
3
√
N (KBT)3/2

4
√

π e4N lnΛii
, (6)

where we set lnΛii = 21 and we introduced the ion gyrofrequency Ωi = eBt/cmi related to
Bt (the ion Larmor radius results ρ2

i = KBT/miΩ2
i ). Such a frequency represents, in general,

an upper bound for turbulence, and we can thus safely assume δvi
⊥ = δve

⊥ + ṽi
⊥, with ṽi

⊥
being a small correction. The leading order of Equation (5) thus provides the expression for
the correction ṽi

⊥:

ṽi
⊥ =

cmi
Be

( d
dt
− ν∇2

⊥

)
( b̂× δve

⊥) = −
c2mi
Be

( d
dt
− ν∇2

⊥

) 1
B
∇⊥δφ . (7)

In this scheme, the orthogonal current is δJ⊥ ≡ N e(δvi
⊥ − δve

⊥) = N e ṽi
⊥. Thus, the

charge conservation ∇ · δJ = 0 can be recast as

∇⊥ ·
(

1
B

d
dt

1
B
∇⊥δφ

)
− ν∇⊥ ·

(
1
B
∇2
⊥

1
B
∇⊥δφ

)
=

1
N c2mi

∇‖ · δJ‖ , (8)

Let us now discuss the parallel electron momentum balance. If we take into account
only a constant parallel conductivity coefficient σ ≡ 1.96N e2/meνei, where νei is the
electron-ion collision frequency (with me being the electron mass), the momentum balance
reads as follows:

δJ‖ =
σ

N e
∇‖δp− σ∇‖δφ , (9)

where, according to the assumptions described above, we can link the pressure and density
using δp = KBTδN .

Let us move to the dimensionless coordinates τ ≡ Ωit, u ≡ (2π/Lp)x, v ≡ (2π/Lp)y,
w ≡ (2π/Lt)z (where Lp and Lt are two spatial scales with Lt � Lp). We thus find (w, u, v)
running in [0, 2π). We also introduce the parameter

ε =
Bp

Bt

( Lp

2π

)
, (10)

thus gaining from Equation (2)

B = γBt , γ(u, v) =
√

1 + ε2(u2 + v2) (11)
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In this scheme, the dimensionless parallel gradient D‖ = (Lp/2π)∇‖ reads as follows:

D‖ =
( ε

γ
(v∂u + u∂v) +

Lp/Lt

γ
∂w

)
b̂ , (12)

from which the orthogonal gradient D⊥ and the Laplacian operators D2
‖ and D2

⊥ can be
easily derived. Here, for the sake of simplicity, we do not write down their explicit forms,
but we directly introduce the reduced expressions in the following sections.

By setting Φ ≡ e δφ/KBT, N̄ = δN/N and Y‖ = (2π/Lp)δJ‖/N eΩi,
Equations (3) and (8) can be rewritten as

d
dτ
N̄ − D̄D2

⊥N̄ = D‖ · Y‖ , (13)

α1D⊥ ·
(

1
γ

d
dτ

1
γ

D⊥Φ
)
− α1α2D⊥ ·

(
1
γ

D2
⊥

1
γ

D⊥Φ
)
= D‖ · Y‖ , (14)

while, from Equation (9), we obtain

D‖ · Y‖ = α3(D2
‖N̄ − D2

‖Φ) . (15)

Here, we have defined the following dimensionless constants:

α1 = ρ2
i

(2π

Lp

)2
, α2 =

ν

Ωi

(2π

Lp

)2
, α3 =

v2
Aρ2

i
ηBΩi

(2π

Lp

)2
, D̄ =

D
Ωi

(2π

Lp

)2
, (16)

where we have used the notation vA = Bt/
√

4πNmi, indicating the Alfvén velocity
constructed with the toroidal magnetic field, and ηB = c2/4πσ denotes the magnetic
diffusivity.

The constructed simplified model is depicted in Equations (13) and (14) and corre-
sponds to a reduction in the Hasegawa–Wakatani scheme for the plasma turbulence [6].
The relevant assumption is related to neglecting the background number of density spatial
gradients.

Relevance for Tokamak Physics

We now discuss to which extent the present model is, in practice, relevant for de-
scribing the edge plasma physics of a tokamak machine. First of all, we observe that the
two-fluid description adopted above is appropriate to describe the edge plasma dynamics
because, immediately out of the separatrix, the lower temperature makes the mean free
path of ions and electrons much smaller than the magnetic connection length [15,17,18].
Therefore, the collisionality increases enough with respect to the core of a tokamak plasma
that a fluid model is viable, and the kinetic and gyrokinetic effects remain small for as far
as we are considering turbulence phenomena (for which the time scale is much longer than
the inverse of the ion gyrofrequency). In other words, a significant range of the operation
parameters for present day and incoming tokamak devices [19] is associated to physical
conditions addressed well by a low-frequency drift fluid model, such as the one traced
above [1]. Furthermore, we stress that the typical spatial scales of the turbulence phenom-
ena in a tokamak are from few millimeters up to 10 centimeters. Thus, such processes
are typically on a super Debye spatial scale so that the quasi-neutrality assumption is
well posed.

Finally, we stress that we consider here only electrostatic turbulence in the sense that
we neglect the possible magnetic fluctuations due to a nonzero parallel vector potential
contribution (see [5]). It is well known that the electrostatic turbulence is able to capture
the dominant features of heat and particle transport in the tokamak edge plasma when
the β plasma parameter is sufficiently low. In fact, for many operation regimes of present
day tokamaks, the magnetic pressure is a dominant contribution in the plasma equilibrium
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with respect to the thermal phenomena, and this fact guarantees a sufficient freezing out of
the magnetic turbulent fluctuations.

The considerations above state that the so-called Hasegawa–Wakatani model [6] is
a valuable tool for capturing the basic features of the tokamak edge turbulent transport,
as is also consolidated in the literature. However, in principle, other smaller effects can
be included to make the picture of the edge physics more detailed, like diamagnetic or
magnetic curvature contributions. Evaluating in which physical situations deviations
from the Hasegawa–Wakatani scenario need to be accounted for is out of the scope of the
present manuscript, and it has been widely discussed in the literature [1,8]. Instead, we
now provide a brief discussion concerning the predictivity of our reduced model for the
tokamak edge dynamics.

With respect to a standard Hasegawa–Wakatani model, in order to deal with a single
equation for the electric field, we simply neglect the background density gradient, which
is responsible for the linear triggering of the drift instability. Actually, this assumption is
justified by previous analyses [5], which clarified how the nonlinear drift response (being
the basic tool to describe the edge plasma turbulence) is an intrinsic nonlinear self-sustained
phenomenon. In other words, the emergence of a fully developed drift turbulence regime
is even favored by the smallness of the linear triggering, since the nonlinear interaction
of small drift-like fluctuations is sufficient to guarantee the onset of turbulence. Thus, we
can reliably claim that the present reduced model has significant physical content, since
it offers a genuine representation of the basic features of the turbulent transport in the
tokamak’s edge. In this sense, the proposed paradigm is the most simple but exhaustive
representation of a drift fluid nonlinear response.

A separate discussion deserves the introduction of a local geometry for the background
magnetic X-point concerning the linearized system analysis. The proposed representation
of the background magnetic configuration describes the plasma region immediately outside
the separatrix and laying in the proximity of the null of the poloidal field component well.
The size of the region we investigate near the X-point has been fixed according typical values
of the operation of the incoming DTT tokamak [19], and it corresponds to a small portion
of the plasma region between the null configuration and the machine walls. Actually, here,
the plasma–wall interaction has not been considered in detail, but it can be figured out
as an effective increase in the dissipation phenomena. We also remark that the available
spatial scales we can deal with in the considered model must not exceed this mentioned
depth, but they must remain much greater than the ion’s Larmor radius; otherwise, the
low-frequency drift fluid approximation addressed here is no longer fully satisfied.

The analysis is restricted to the X-point region because a significant magnetic shear is
present, and this makes the physical and dynamical properties of the electrostatic turbulence
quite peculiar. The predictivity of global turbulent codes (like TOKAM3X and GRILLIX)
in the tokamak edge region is currently under investigation, and the most important
deviations in comparison to the data just concern the region near the divertor [2] and close
to the null configuration [20].

Here, we concentrate our attention on the linearized dynamics in order to give some
physical insights on how the X-point morphology can affect the linear stability of the
background configuration. This is a valid starting point for which generalization to the
nonlinear dynamics will shed light on the peculiar nature of the turbulence close to a null
point and how its presence affects the global profile of the heat and particle transport,
a perspective of basic interest in the development of efficient fusion devices. In fact,
turbulent transport is considered the most relevant ingredient in generating the so-called
anomalous transport [21,22], still remaining the most concrete obstacle to reach stable
plasma configurations for self-sustained fusion reactions.

3. Reduced Turbulence Simulations in the Presence of a Pure Toroidal Field

In this section, we address a pure constant toroidal magnetic field taken along w
(i.e., Bp = 0 and B = Bt = const). This implies setting ε = 0 (γ = 1) in the scheme
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previously described, and simplified expressions for the Laplace operators are derived
from Equation (12):

D2
‖ → (Lp/Lt)

2 ∂2
w , D2

⊥ → ∂2
u + ∂2

v . (17)

Also the (normalized) Lagrangian derivative expressed by means of Equation (4) takes
the following simplified form:

d
dτ

= ∂τ + α1(∂uΦ∂v − ∂vΦ∂u) . (18)

Equations (13) and (14) can be reduced to a single evolutive equation for the vorticity
D2
⊥Φ. In fact, when comparing the two equations, the constitutive relation can easily be

obtained:

N̄ = α1D2
⊥Φ , (19)

provided that the diffusion coefficient is set to D = ν. In this scheme, Equation (14) can be
rewritten as

∂τ D2
⊥Φ + α1

(
∂uΦ∂vD2

⊥Φ− ∂vΦ∂uD2
⊥Φ
)
= α2 D4

⊥Φ + α3 D2
‖D

2
⊥Φ− α4 D2

‖Φ , (20)

where α4 = α3/α1 = v2
A/ΩiηB. We stress that in this equation, the first term on the left

hand side corresponds to the time evolution of the vorticity (Laplacian of the electric
field), while the second one is a pure advection term, in which nonlinearity is the basic
ingredient of the 2D interchange-like turbulence. The term on the right hand side is due
to the presence of ion viscosity when the expression of the E× B drift is considered. The
last two terms are noted more than the drift coupling term once it is expressed via the
parallel electron force balance (i.e., Equation (15)) and the constitutive relation between
the vorticity and the number density (i.e., Equation (19)). Our model is a 3D formulation
as the Hasegawa–Wakatani model, and we aim just at investigating what the steady fate
of the turbulent transport is when the non-axisymmetric modes (no longer excited by the
linear trigger neglected here) are properly initialized. We will see below via a numerical
analysis how the axisymmetric mode becomes an attractor for the turbulent dynamics so
that the pure drift coupling term on the right hand side of Equation (20) is ruled out due
to its decaying over time. The relic’s turbulent dynamics thus has a 2D nature, and the
spectrum naturally induces the corresponding number’s density behavior as discussed
in [11].

We now study a small plasma region close to the X-point. In Figure 2, we show a
sketch of the poloidal box we are considering (compare with Figure 1) and where the
assumption Bp = 0 can be safely addressed.

Figure 2. Qualitative scheme of the poloidal box for simulations where we are assuming Bp = 0
(color online).
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We implement periodic boundary conditions and thus can numerically simulate
Equation (20) (with the expressions in Equation (17)) by using a Fourier approach. This
hypothesis is actually mainly justified for what concerns the w direction, which reflects the
toroidal symmetry of a tokamak machine. In this sense, we consider the following Fourier
expansion:

Φ(u, v, w) = ∑
n,`,m

ϕn,`,m ei(nw+`u+mv) , (21)

where the mode numbers (n, l, m) are negative or positive integers, the reality condition of
the field ϕ reads ϕ−n,`,m = ϕ∗n,`,m and ϕ0,−`,−m = ϕ∗0,`,m. Moreover, the mode numbers are
bounded above to satisfy the natural turbulence cut-off related to the ion Larmor radius
scale [11], thus resulting in a truncated Fourier expansion. In order to better underline the
spectral dynamics of the system without the relevant damping effects, we neglect the ion
viscosity by considering α2 = 0 in the numerical analysis of this section. Equation (20) is
thus rewritten as

∂τ ϕn,`,m =
α1

`2 + m2 Θn,`,m − n2
(

ᾱ3 +
ᾱ4

`2 + m2

)
ϕn,`,m , (22)

with the scaled constants defined as ᾱ3,4 = α3,4(Lp/Lt)2. Here, we denote with Θn,`,m
the 3D convolution (Cauchy product) of the nonlinear term in Equation (20). In the
numerical simulations, it will be implemented using a pseudo-spectral approach. (The
explicit expression can be easily obtained by applying the Fourier expansion.) This consists
of resolving the nonlinearity of the system (i.e., the products of evolving variables) directly
in the physical space by using inverse fast Fourier transform algorithms. After the product
is evaluated in the (u, v, w) space, it is moved back to the spectral space using the direct
Fourier transform. This procedure leads to a relevant reduction in the computational time
with respect to the direct implementation of the 3D convolution in the (n, `, m) space. The
anti-aliasing 2/3 technique (zero padding) is also implemented. This technique ensures
the validity of the pseudo-spectral approach by removing the issue due to the fact that
solving a product in the physical space may induce corresponding sums of modes which
fall outside the considered spectral domain. For the time evolution of the components
ϕn,`,m, a fourth-order Runge–Kutta algorithm was chosen. The time step has been set by
ensuring the “energy” conservation (of O(10−8)) of the n = 0 mode.

We recall that by ruling out the dependence on w in the whole scheme, the model
is actually isomorphic to a 2D incompressible fluid [10], where the electric fluctuations
correspond to the stream functions [12]. The relevant difference between the two schemes
relies in the low spatial scale cut-off described above. Moreover, in [11], it was shown
theoretically and numerically how the general dynamical system described by Equation (22)
actually collapses to an axially symmetric structure if the problem is initialized with
a dominant contribution from the component ϕ0,`,m. In fact, the governing equations
linearized around ϕ0,`,m � ϕn 6=0,`,m lead to the constant vorticity solution ϕ0,`,m ∝ 1/(`2 +
m2) for the dominant component and to a time decaying solution for ϕn 6=0,`,m. In this
section, we point out how this feature is actually a global property of the dynamical system
described by Equation (22), since the axial symmetry represents a general attractor of the
dynamics even when the ϕ0,`,m initial contribution is negligible.

For this purpose, let us now initialize the simulations of Equation (22) with a random
noise n 6= 0 contribution while the ϕ0,`,m components are set zero. Typical tokamak
parameters were implemented: T = 100 eV, Bt = 3 T and N = 5× 1019 m−3 [23]. Thus,
Ωi ' 1.4× 108 s−1 and ρi ' 0.048 cm. In the poloidal plane, we considered a periodicity box
Lp = 1 cm in length, while Lt ' 1300 cm. The physical cut-off for the small spatial scales
was safely set to 2ρi, and for mere numerical reasons, but without losing the generality
of the results, we address only n = −5, ... , 5. We remark that, as discussed above, the
choice of a small (compared with typical divertor legs to the order of 30 cm) poloidal
box was due to the assumption of treating a pure toroidal magnetic field. This implies a
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boundary threshold for the small poloidal mode numbers. Actually, due to the relevant
cut-off threshold related to the Larmor radius for the large mode numbers, the box size did
not quantitatively affect the physical results, since only a few more modes would be taken
into account in the dynamics.

In Figure 3, the contour plot in arbitrary units of |ϕn,`,m| are presented. We considered
the initial states of the simulation and subsequent fixed times indicated over the plots
(please note the different time scales). As a result, the n = 0 component is shown to be
excited although not initialized, while the n 6= 0 fluctuations exhibited a decaying behavior
(only n = 1, 2 are plotted, since the other n 6= 0 modes behaved accordingly). The mode
n = 0 was the only surviving component of the turbulent dynamics due to an energy
transfer from the higher n components. Thus, it can be argued how the axial symmetry
scheme emerged as an attractor of the turbulent regime. In this sense, the dynamics was
reduced to a pure 2D model in a rather short time compared with the achievement of ther-
mal equilibrium (considered here as a given state for which no deviations of the spectrum
emerged, letting the system evolve over time). The “energy” spectrum morphology of the
ϕ0,`,m component is shown in Figure 4. The quantity (`2 + m2)|ϕ0,`,m|2 was plotted versus
the poloidal wave number (averages over equal (`2 + m2) values were implemented) at
a fixed time taken after thermal equilibrium was reached. The outlined profile can be
reasonably considered random but bounded above by a constant value. It is well known
from 2D turbulence studies, starting from the pioneering works [9,12], that the equilib-
rium energy spectral profiles strongly depend on the given initial conditions, and they
are reached through energy and enstrophy cascades (the two conserved quantities of the
inviscid 2D picture). Specifically, by implementing the canonical ensemble statistics, it is
possible to outline a behavior ∝ 1/(a1 + a2(`

2 + m2)) of the 2D energy spectra. (Here, a1,2
indicate two constant inverse “temperatures” associated with the constant of motion.) We
can thus argue how, in the 3D dynamics analyzed in this work, the n 6= 0 components
play the role of a trigger for the axisymmetric instability and then rule out the dynamics
due to the decaying behavior. In this sense, the obtained spectrum for the n = 0 modes
corresponds to an initialized 2D profile, such as a1 � a2. A study of the effects of different
initial conditions of the n 6= 0 components on the related spectra is not in the scope of the
present paper and should be developed for future works.
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Figure 3. Contour plot of |ϕn,`,m| (arbitrary units) for n = 0, 1, 2 at different τ, as denoted over the
graphs. Data are provided by integrating Equation (22) in the truncated Fourier space with the spatial
scale cut off at 2ρi (color on line).

Figure 4. Plot (in log scale) of the instantaneous spectrum taken after thermal equilibrium at τ = 1000.
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4. Linearized Theory and the Role of X-Point Symmetries

In this section, we are interested in characterizing the role of the geometry dependence
induced by the poloidal field on the turbulent dynamics in the proximity of the X-point. To
this aim, we restrict our analysis to the axisymmetric scheme, which in the previous section
was shown to be the only surviving contribution. We can thus focus our analysis on the 2D
dynamics only (i.e., on the (u, v) plane representing a poloidal section), hence neglecting
the dependence of the dynamical quantities on the toroidal coordinate w. By considering a
small region of a size Lp around the X-point, we can safely retain ε � 1. In this way, we
can treat the contribution given by the poloidal field as a small perturbation. By expanding
the parallel gradient D‖ and the directional versor b̂ at lowest order in ε, we obtain

D‖ → ε(v∂u + u∂v)b̂ , b̂→ εvêx + εuêy + êz . (23)

It is now immediate to recast the Laplacian operators in the following form:

D2
‖ → ε2

(
v2∂2

u + u2∂2
v + 2uv∂u∂v + u∂u + v∂v

)
, (24)

D2
⊥ → ∂2

u + ∂2
v − ε2

(
v2∂2

u + u2∂2
v + 2uv∂u∂v

)
, (25)

where it can be noticed that the correction due to the poloidal field is O
(
ε2), while the

O
(
ε4) terms have been dropped.

In order to gain insight on the problem through analytical techniques, we now in-
vestigate the linearized version of the governing equations. As can be noticed from
Equations (13) and (14), the only nonlinearity of the system comes from the Lagrangian
derivative applied to the electric potential fluctuations. Thus, in the following, we approxi-
mate

d
dτ
' ∂τ . (26)

Moreover, in light of the perturbative approach we are implementing, we assume
neglecting the background magnetic field gradients according to the drift ordering scheme
(i.e., the fluctuation of the second gradients lead the dynamics). This can easily be seen
directly from the first term of Equation (8), where it can be noticed how the magnetic field
gradients would be multiplied by first-order derivatives in the fluctuating field. These
terms are safely considered to be of a higher order with respect to the corresponding second
derivatives of the fluctuations. These considerations can also be applied to the second term,
provided that the viscous parameter is sufficiently small. Equations (13) and (14) are thus
simplified as follows:

∂τN̄ − D̄D2
⊥N̄ = D‖ · Y‖ , (27)

α1∂τ D2
⊥Φ− α1α2D4

⊥Φ = γ2D‖ · Y‖ ' D‖ · Y‖ , (28)

where, for the approximation in Equation (28), we expanded the parameter γ for small ε
values and ruled out O(ε4) by means of Equation (24). It is now easy to recognize that in
this simplified 2D scheme as well, the dynamics can be reduced to a single equation for
the electric potential vorticity. In fact, the constitutive relation in Equation (19) is still valid
here (considering D = ν), and the dynamics of the electric potential is governed by

∂τ D2
⊥Φ = α2D4

⊥Φ + α3D2
‖D

2
⊥Φ− α4D2

‖Φ . (29)

This equation corresponds to the 2D linearization at O(ε2) of the dynamical system
in Equations (13)–(15) (we recall that α4 = α3/α1). Its form is clearly equal to that of
Equation (20), apart from the nonlinear term, but the Laplacian operators are now expressed
in Equations (24) and (25). It can be stressed how the X-point geometry (particularly the
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presence of a small but nonzero poloidal field) introduces a parallel gradient, taken here at
O(ε2), which naturally emerges in the 3D modeling. This approximation leads to a good
description of the dynamics as long as the quadratic terms in the vorticity are much smaller
than the linear terms retained here.

In order to calculate the regular solutions of the dynamics, we followed a perturbative
approach. Specifically, we are interested in characterizing the role of the X-point geometry,
which is treated as a small contribution able to slightly modify the profile of the background
solution obtained by setting the small parameter ε = 0. To this end, we split the electric
potential into two contributions:

Φ = Φ(0)(τ, u, v) + ε2Φ(1)(τ, u, v) , (30)

and we additionally require that ε2|Φ(1)| � |Φ(0)| for all times. By substituting and
separating the zero and first order in ε2, we obtain the following two equations, where
the first one determines the Φ(0) term (i.e., the background solution corresponding to the
absence of any contribution from the X-point geometry):

∂τ(∂
2
u + ∂2

v)Φ
(0) − α2(∂

2
u + ∂2

v)
2Φ(0) = 0. (31)

Meanwhile, the second one

∂τ(∂
2
u + ∂2

v)Φ
(1) − α2(∂

2
u + ∂2

v)
2Φ(1) = ∂τ

(
v2∂2

u + u2∂2
v + 2uv∂u∂v

)
Φ(0)−

− 2α2

(
v2∂4

u + u2∂4
v +

(
u2 + v2

)
∂2

u∂2
v + 2uv∂u∂v

(
∂2

u + ∂2
v

)
+

+ 4u∂u∂2
v + 4v∂v∂2

u + ∂2
u + ∂2

v

)
Φ(0)−

− α4

(
v2∂2

u + u2∂2
v + 2uv∂u∂v + u∂u + v∂v

)
Φ(0)+

+ α3

(
v2∂2

u + u2∂2
v + 2uv∂u∂v + u∂u + v∂v

)(
∂2

u + ∂2
v

)
Φ(0) , (32)

provides the profile of the perturbation Φ(1), which is the first-order contribution given by
the adopted magnetic configuration displayed in Equation (1). We selected the solution
of the zero-order problem in Equation (31), which is nothing more than a heat equation,
satisfying the Dirichlet boundary conditions. Without loss of generality, we set such a
solution to be

Φ(0)(τ, u, v) = e−α2(`
2
0+m2

0)τ sin(`0u) sin(m0v) (33)

with (`0, m0) as two positive integers. By inserting this explicit form into Equation (32), we
obtain for the perturbation Φ(1)

∂τ(∂
2
u + ∂2

v)Φ
(1) − α2(∂

2
u + ∂2

v)
2Φ(1) = e−α2(`

2
0+m2

0)τ F(u, v), (34)

where we have introduced

F(u, v) ≡ 2`0m0uv
(
(α2 − α3)

(
`2

0 + m2
0

)
− α4

)
cos(`0u) cos(m0v)+

+ `0u
(

8α2m2
0 − α4 −

(
`2

0 + m2
0

)
α3

)
cos(`0u) sin(m0v)+

+ m0v
(

8α2`
2
0 − α4 −

(
`2

0 + m2
0

)
α3

)
sin(`0u) cos(m0v)+

+

((
(α3 − α2)

(
`2

0 + m2
0

)
+ α4

)(
m2

0u2 + `2
0v2
)
+ 2α2

(
`2

0 + m2
0

))
sin(`0u) sin(m0v). (35)
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It can be noticed that even when starting from a background solution Φ(0) showing
the property of being null on the square boundaries, we obtained a source term F(u, v) for
which

F(0, v) = 0 F(2π, v) 6= 0 (36)

F(u, 0) = 0 F(u, 2π) 6= 0. (37)

We solved Equation (34) by expanding the spatial part of Φ(1) in the Fourier series and
performing a Laplace transform on the time coordinate τ. For what concerns the treatment
of the spatial part, we will apply the 2D version of the Fourier expansion displayed in
Equation (21). For completeness, we report the formula through which we calculated the
mode amplitudes in the Fourier space for a generic real-valued function of the spatial
coordinates, namely

f`,m =
1

4π2

∫ 2π

0
du
∫ 2π

0
dv e−i(`u+mv) f (u, v), (38)

where (`, m) are indices running on the entire set of integer numbers. The Laplace transform
of a real-valued function is defined as

gs =
∫ ∞

0
dτ e−sτ g(τ) , g(τ) =

1
2πi

∫
P

ds esτ gs , (39)

with s ∈ C and P being a path in the complex s plane such that any s ∈ P results in
<(s) > <(sk), where sk represents the poles of the Laplace transform gs. We proceed by
applying the aforementioned transform on both sides of Equation (34) so that a solution
can be calculated through simple algebraic manipulations, resulting in

Φ(1)
s,`,m =

Φ(1)
`,m(0)

s + α2(`2 + m2)
−

F`,m

(`2 + m2)(s + α2(`2 + m2))
(
s + α2

(
`2

0 + m2
0
)) , (40)

where Φ(1)
`,m(0) and F`,m are the Fourier amplitudes of the initial datum Φ(1)(0, u, v) and

the external source F(u, v), respectively. (The explicit forms of F`,m can be found in
Appendix A). Hence, the perturbation Φ(1) in the coordinate space reads as follows:

Φ(1)(τ, u, v) =
1

2πi

∫
P

ds esτ ∑
`,m

ei(`u+mv)Φ(1)
s,`,m. (41)

Now, a simple consideration holds: When evaluating the inverse Laplace transform,
we noticed that the term containing the initial datum Φ(1)

`,m(0) was characterized by a single
pole located at s = −α2

(
`2 + m2), whereas the term related to the external source F`,m

featured a supplemental pole in s = −α2
(
`2

0 + m2
0
)
, as can easily be inferred from the

inspection of Equation (40). In both cases, we dealt with poles located on the negative
real semi-axis, and the path of integration P could be chosen to be coincident with the
imaginary axis (i.e., s = iω, with ω being a real variable ranging across all real numbers):

Φ(1)(τ, u, v) =
1

2π ∑
`,m

ei(`u+mv)×

∫
R

dω
eiωτ

i(ω− iα2(`2 + m2))

[
Φ(1)

`,m(0) +
iF`,m

(`2 + m2)
(
ω− iα2

(
`2

0 + m2
0
))]. (42)

Let us now focus on the second term inside the square brackets. When calculating
the integral through the application of the residue theorem, it must be taken into account
that the two poles characterizing this contribution are distinguished by `2 + m2 6= `2

0 + m2
0,
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whereas a double pole appears when `2 + m2 = `2
0 + m2

0 holds. To be more specific, in the
first case, when we calculated the perturbation Φ(1) in the coordinate space through an
inverse transform, we dealt with an integral of the form

I1 =
∫
R

dω
eiωτ

ω− iω0
, (43)

with ω0 > 0 being a positive real constant and t being a variable ranging across the positive
real semi-axis. The residue theorem allows an immediate evaluation of this quantity,
resulting in I1 = 2πi e−ω0τ . On the other hand, when the values of the Fourier momenta
` and m are such that `2 + m2 = `2

0 + m2
0, we have to treat an integral characterized by a

double pole, namely

I2 =
∫
R

dω
eiωτ

(ω− iω0)
2 , (44)

in which case the application of the residue theorem returns I2 = −2πτ e−ω0τ . Therefore,
the temporal dependence of all the terms for which `2 + m2 6= `2

0 + m2
0 will be e−α2k2τ ,

where we denote with k2 any possible combination of momenta. On the contrary, for all
the terms satisfying `2 + m2 = `2

0 + m2
0 and giving rise to the presence of a double pole,

we calculated a temporal dependence of the form τe−α2(`2
0+m2

0)τ . The arising of these latter
terms is due to a resonance phenomenon between the perturbation and the background
solution. Indeed, it is well known that the introduction in a differential equation of an
external force having a frequency close or coincident with one of the natural frequencies of
the associated homogeneous equation causes the presence of terms increasing the overall
amplitude on specific time scales. In our case, the secular growth of the resonant terms

took place on a time scale τRES = 1/ε2, whereas the exponential term e−α2(`2
0+m2

0)τ became
dominant for times of the order τEXP = 1/(α2

(
`2

0 + m2
0
)
). Therefore, it is straightforward

to recognize that for τRES � τEXP, we obtained a regular perturbative expansion satisfying
ε2|Φ(1)| � |Φ(0)| for all times. Conversely, if τRES . τEXP, then we noticed the appearance
of a region of times in which the ansatz underlying the expansion in Equation (30) was
violated. The two different behaviors of the solutions just described are shown in Figure 5.
Then, we claim that for τRES . τEXP, Equation (29) must be investigated without resorting
to a perturbative approach.

Figure 5. Time evolution of Φ(0) (orange) and ε2Φ(1) (blue) in arbitrary units. The parameter τEXP

is set to 1 in both cases, whereas τRES is set to 10 and 1 in the left and right panels, respectively
(color online).

Let us now be more specific and apply these findings to a concrete and realistic scenario.
Using the typical tokamak parameters introduced in the previous section, for the viscosity
constant, we obtained α2 ' 6.84× 10−6 from Equation (6). At the same time, the relevant
ratio of the poloidal to toroidal magnetic field can be deduced from the linear scaling in a
region close to the X-point. For instance, by considering a typical equilibrium configuration
(in the presence of a bottom single null), we found the ratio ' 10−2.1 in a region of ∼3 cm
around the X-point [19], and thus we can assume ε = 4.21× 10−4 in the poloidal box of a
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length Lp = 1 cm we are considering. The condition for which the perturbative expansion
results are valid (i.e., τRES � τEXP) can be recast as `2

0 + m2
0 � ε2/α2 = 2.6× 10−2, and

it is satisfied by any (`0, m0) in the set of positive integers. However, the ratio ε2/α2 is
extremely sensitive to the particular choice of the poloidal box size. Indeed, the dependence
on this parameter is ε2/α2 ∝ L4

p, and it is sufficient to slightly enlarge the considered
region around the X-point to exclude certain values for (`0, m0). For instance, by taking
Lp = 5 cm, we obtained the constraint `2

0 + m2
0 � 16, which is clearly not satisfied

by (`0, m0) = (1, 1), (2, 1), (1, 2) . . . (4, 2), (2, 4). For these low-wavenumber modes, the
perturbative expansion introduced in Equation (30) is not feasible, and one can gain insight
on the behavior of such solutions only through a direct inspection of Equation (29).

5. Concluding Remarks

We analyzed a reduced model for the turbulence in a tokamak plasma edge near the
X-point, based on a drift fluid approach to the ion and electron dynamics. More specifically,
we considered a Hasegawa–Wakatani formulation, and then, by neglecting the background
density gradient and suitably modeling the particle diffusion, we arrived to writing down
a single equation for the electric potential field for two specific cases. We deepened the two
different but complementary aspects of this reduced formulation (i.e., on the one hand, the
relaxation process of the 3D turbulence on the 2D interchange-like nonlinear dynamics and,
on the other hand, the presence of an X-point geometry in the linearized dynamics).

The numerical analysis of the 3D nonlinear drift turbulence clarified that even if
we initialized only the non-axisymmetric modes, after a given time, the only surviving
configuration was the n = 0 interchange-like fluctuation, which stresses how such 2D
physics can constitute a basic ingredient for determining the transport properties in the
edge plasma turbulence.

The study of an axisymmetric linearized system in the presence of the X-point ge-
ometry was developed via a perturbative approach with the small parameter ε and by
neglecting, according to the drift ordering scenario, the background magnetic field gra-
dients. We demonstrated that, being close enough to the null configuration, the system
remained stable, as it would be when the magnetic field was along the toroidal direction
only, but in the outer regions, the perturbation scheme failed due to a secular growth of the
contribution induced by the poloidal field. Thus, the presence of a small poloidal magnetic
component significantly influenced the global system dynamics, preventing consideration
of the constant homogeneous axial field as a dominant component sufficiently far from the
X-point. This result suggests that the presence of a null configuration can deeply alter the
turbulence properties with respect to the simplified standard picture, emerging when a
constant magnetic field lying in the z direction is present. In other words, we could expect
that some specific features of the so-called nonlinear drift response can be significantly
affected by the peculiar character of the X-point configuration.

To summarize, the present study individualizes the 2D turbulence in the presence of an
X-point geometry as the basic ingredient to be accounted for when constructing a reduced
model able to capture the most important aspects of the outward turbulent transport in the
tokamak edge.
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Appendix A

In this appendix, we report the explicit form of the amplitudes F`,m obtained from the
application of Equation (38) for any possible value of the Fourier momenta (`, m):

F`,m =
2`0m0`m

(
α3 −

(
`2

0 + m2
0
)
(α2 − α4)

)(
`2

0 − `2
)(

m2
0 −m2

) , ` 6= ±`0, m 6= ±m0 (A1)

F`0,m =
m0m

(
4`4

0(α2 − α4)− `2
0
(
4α3 + m2

0(3α2 + 4α4)− 7α2m2)+ α2m2
0
(
m2

0 −m2))
2
(
m2

0 −m2
)2 +

+ i

(
π`0m0(`0 + m)

(
α3 + (α4 − α2)

(
`2

0 + m2
0
))

m2
0 −m2

)
, m 6= ±m0 (A2)

F−`0,m = −
m0m

(
4`4

0(α2 − α4)− `2
0
(
4α3 + m2

0(3α2 + 4α4)− 7α2m2)+ α2m2
0
(
m2

0 −m2))
2
(
m2

0 −m2
)2 +

+ i

(
π`0m0(m− `0)

(
α3 + (α4 − α2)

(
`2

0 + m2
0
))

m2
0 −m2

)
, m 6= ±m0 (A3)

F`,m0 =
`0`
(
4m4

0(α2 − α4)−m2
0
(
4α3 + `2

0(3α2 + 4α4)− 7α2`
2)+ α2`

2
0
(
`2

0 − `2))
2
(
`2

0 − `2
)2 +

+ i

(
π`0m0(m0 + `)

(
α3 + (α4 − α2)

(
`2

0 + m2
0
))

`2
0 − `2

)
, ` 6= ±`0 (A4)

F`,−m0 = −
`0`
(
4m4

0(α2 − α4)−m2
0
(
4α3 + `2

0(3α2 + 4α4)− 7α2`
2)+ α2`

2
0
(
`2

0 − `2))
2
(
`2

0 − `2
)2 +

+ i

(
π`0m0(`−m0)

(
α3 + (α4 − α2)

(
`2

0 + m2
0
))

`2
0 − `2

)
, ` 6= ±`0 (A5)

F`0,m0 = −π2

6

(
2`2

0 + 3`0m0 + 2m2
0

)(
α3 + (α4 − α2)

(
`2

0 + m2
0

))
+

+
1

8`2
0m2

0

(
2α2`

2
0m2

0

(
`2

0 + m2
0

)
+ α3

(
`4

0 − `2
0m2

0 + m4
0

)
+ (α4 − α2)

(
`6

0 + m6
0

))
+

+
iπ

4`0m0

(
(α2`0m0 + α3)

(
`3

0 + m3
0

)
+ (α4 − 8α2)`

2
0m2

0(`0 + m0) + (α4 − α2)
(
`5

0 + m5
0

))
, (A6)

F−`0,m0 =
π2

6

(
2`2

0 − 3`0m0 + 2m2
0

)(
α3 + (α4 − α2)

(
`2

0 + m2
0

))
+

+
1

8`2
0m2

0

(
2α2`

2
0m2

0

(
`2

0 + m2
0

)
+ α3

(
`4

0 − `2
0m2

0 + m4
0

)
+ (α4 − α2)

(
`6

0 + m6
0

))
+

+
iπ

4`0m0

(
(α2`0m0 − α3)

(
`3

0 −m3
0

)
+ (α4 − 8α2)`

2
0m2

0(m0 − `0) + (α4 − α2)
(

m5
0 − `5

0

))
. (A7)

The remaining amplitudes can be calculated using the reality condition F∗`,m = F−`,−m.
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