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Abstract: We present a new exact solution of the thermal diffusion equations for steady-state shear
flows of a binary fluid. Shear fluid flows are used in modeling and simulating large-scale currents
of the world ocean, motions in thin layers of fluid, fluid flows in processes, and apparatuses of
chemical technology. To describe the steady shear flows of an incompressible fluid, the system of
Navier–Stokes equations in the Boussinesq approximation is redefined, so the construction of exact
and numerical solutions to the equations of hydrodynamics is a very difficult and urgent task. A non-
trivial exact solution is constructed in the Lin-Sidorov-Aristov class. For this class of exact solutions,
the hydrodynamic fields (velocity field, pressure field, temperature field, and solute concentration
field) were considered as linear forms in the x and y coordinates. The coefficients of linear forms
depend on the third coordinate z. Thus, when considering a shear flow, the two-dimensional velocity
field depends on three coordinates. It is worth noting that the solvability condition given in the article
imposes a condition (relation) only between the velocity gradients. A theorem on the uniqueness of
the exact solution in the Lin–Sidorov–Aristov class is formulated. The remaining coefficients of linear
forms for hydrodynamic fields have functional arbitrariness. To illustrate the exact solution of the
overdetermined system of Oberbeck–Boussinesq equations, a boundary value problem was solved to
describe the complex convection of a vertical swirling fluid without its preliminary rotation. It was
shown that the velocity field is highly stratified. Complex countercurrents are recorded in the fluid.

Keywords: Soret effect; Dufour effect; convection; diffusion; thermal diffusion; exact solution;
overdetermined system; counterflow

1. Introduction

World science knows the difficulty of integrating the Navier–Stokes equations for
incompressible fluids (with constant density) [1–4]. The complexity of the analytical
and numerical integration of the equations of motion of dissipative continuous media is
a generally recognized Sixth Millennium Problem [5]. There is no doubt about the relevance
of finding new classes of exact solutions of the three-dimensional Navier–Stokes equations
for approaching the formulation of the existence and uniqueness theorem. It is clear that
when describing real fluids and flows in technological, technical, natural, and biological
processes, one must take into account that density is a thermodynamic medium (it depends
on one or more physical parameters).
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The functional dependence of density on temperature determines the basis for describ-
ing the convective motion of a fluid [6–8]. The first equations to describe the convective
motion of a viscous fluid were obtained experimentally and theoretically from the Oberbeck–
Boussinesq equations. In their derivation, a linear dependence of density on temperature
was used [7–14]. It was further established that an impurity (solute) in a fluid similarly
causes convection [15–17]. It should be noted that the thermal and concentration mech-
anisms of convection generation are fundamentally different physically. Mathematically
speaking, the Oberbeck–Boussinesq equations for thermal convection and concentration
convection differ only in dissipative coefficients in the heat conduction equation and in
the diffusion equation, respectively [14,18–24]. These coefficients differ from each other by
several orders of magnitude; therefore, one should expect differences in the structure and
evolution of thermal and thermal solution flows.

Binary fluids (mixtures) are characterized by the appearance of a new source for the
Archimedes force (heterogeneity of the concentration of a dissolved substance) and the
competition of dissipative effects, due to which, unlike a pure medium, even the state of
mechanical equilibrium in a mixture can be unstable. The interaction between convection,
thermal conductivity, and diffusion is complicated by the presence of reverse effects: the
appearance of a concentration gradient due to a change in temperature (thermal diffusion
or the Soret effect) and the appearance of a temperature gradient due to a change in the
concentration field (diffusion thermal conductivity or the Dufour effect) [15–17]. This
physical mechanism further complicates the study of the Oberbeck–Boussinesq equations
for thermal diffusion and the construction of exact solutions. A typical example illustrating
the reasoning given above is seawater.

To solve problems, one can often use the reduction in the dimension of the velocity
vector for three-dimensional fields of pressure, temperature, and concentration. In this
case, mathematical models based on unidirectional and shear flows are used [18–21,25–31].
Exact solutions for unidirectional thermal diffusion flows are built on the basis of the
Ostroumov–Birich class of exact solutions for a horizontal fluid layer or the Gershuni–Bachelor
family of exact solutions for a vertical fluid layer [7,32–38]. Reviews on exact solutions
for problems of convective, concentration, and thermal diffusion flows are contained in
bibliographic sources [39–45].

In the transition to the study of shear flows, the researcher encounters an overdeter-
mined Oberbeck–Boussinesq system [14,20,26,46,47]. The overdetermination of the system
of equations arises due to the existence of a zero component of the velocity vector. For
isothermal flows, first, in the Lin–Sidorov–Aristov class, the first non-trivial exact solution
for isobaric flows was constructed [48–50]. Next, exact solutions were constructed for gra-
dient and convective flows. In articles [20,21], the exact solutions for the thermal diffusion
equations were obtained taking into account one of the Soret and Dufour effects. It was
shown that these solutions differ due to different dissipative coefficients.

In this article, a new exact solution is constructed for steady-state shear thermal diffu-
sion flows of viscous fluids, taking into account both cross effects (the Soret–Dufour effect).
The corresponding theorem on the existence of a solution as a solution of the obtained
overdetermined system in the class of functions linearly dependent on a part of spatial
coordinates is formulated and proved. It is shown that the results obtained generalize
the conclusions made by the authors earlier when analyzing more particular cases (taking
into account only one of the thermal diffusion effects or completely ignoring them). The
relevance of finding a new exact solution for describing shear flows of a viscous incom-
pressible fluid is due to the fact that pioneering exact solutions for describing unidirectional
Ostroumov–Birich and Gershuni–Butchelor flows are used as a basic flow for studying
the hydrodynamic stability of convective and thermal diffusion flows [7,32–38]. It is clear
that it is important to have an exact solution for a two-dimensional velocity field with
a dependence on three coordinates in order to describe new non-trivial physical effects for
steady flows, followed by a study of the hydrodynamic stability of new exact solutions for
classical and non-classical perturbations.
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2. Problem Statement

We consider the steady-state thermal diffusion flow of a Newtonian incompressible
fluid, taking into account the cross-dissipative Soret and Dufour effects. The motion of
a binary fluid is described by a system of thermal diffusion equations [7]:

(V · ∇)V = −∇P + ν∆V + g(β1T + β2C)k, (1)

∇ ·V = 0, (2)

(V · ∇)T = χ∆T + χδ∆C, (3)

(V · ∇)C = d∆C + αd∆T. (4)

To study the binary fluid flows, a three-dimensional rectangular Cartesian coordinate
system was chosen. In the system of Equations (1)–(4), the following notations are intro-
duced: V(t, x, y, z) =

(
Vx, Vy, Vz

)
is fluid velocity; P(t, x, y, z) is the deviation of pressure

from hydrostatic, normalized to the average constant density of the fluid ρ; T(t, x, y, z) is
the temperature deviation from the equilibrium state; C(t, x, y, z) is the deviation of the
concentration of the light phase (impurity) of the binary fluid mixture from the equilibrium
value; g is the gravitational acceleration, β1 and β2 are the coefficients of thermal and
concentration expansion, respectively; k is the unit vector of the Oz axis (applicate); ν is
kinematic (molecular) viscosity; χ is the thermal diffusivity, d is the diffusion coefficient;
α is the thermal diffusion coefficient (the Soret parameter); δ is the Dufour parameter;
∇ =

(
∂

∂x , ∂
∂y , ∂

∂z

)
is the Hamilton operator; (V · ∇) = Vx

∂
∂x + Vy

∂
∂y + Vz

∂
∂z is the convective

derivative; and ∆ = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is the Laplace operator.
We note that in the Navier–Stokes Equation (1), the last term describes the influence

of the Archimedes force on the Boussinesq [9] approximation. System (1)–(4) is closed,
since the number of equations in it coincides with the number of unknown functions for
describing the distribution of hydrodynamic fields.

Next, we consider the shear flow of a fluid. In this case, the velocity vector contains
one zero coordinate: Vz = 0. The use of shear flows is justified in describing large-scale
fluid flows, taking into account the geometric anisotropy of the fluid layer (thin fluid
layer). For large-scale fluid flows (in the world ocean), free-fall acceleration is a weakly
changing parameter (up to 1% of the average value). Despite the fact that the real movement
of the fluid is three-dimensional, for small values of one of the velocity components, it
can be set equal to zero in the initial studies. The study of fluid motions for boundary
conditions such as a “solid” cover can be carried out exhaustively using the model of shear
flows [18–21,25–31].

We now write the reduced Equations (1)–(4) in coordinate form, taking into account
the equality Vz = 0 [21,51]:

Vx
∂Vx
∂x + Vy

∂Vx
∂y = − ∂P

∂x + ν
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
Vx,

Vx
∂Vy
∂x + Vy

∂Vy
∂y = − ∂P

∂y + ν
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
Vy,

∂P
∂z = g(β1T + β2C),

∂Vx
∂x +

∂Vy
∂y = 0,

Vx
∂T
∂x + Vy

∂T
∂y = χ

(
∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2

)
+ χδ∆C,

Vx
∂C
∂x + Vy

∂C
∂y = d

(
∂2C
∂x2 + ∂2C

∂y2 + ∂2C
∂z2

)
+ αd∆T.

(5)

The nonlinear overdetermined system (5) describes the flows of a binary fluid with
a two-dimensional velocity field. Note that all hydrodynamic fields are three-dimensional.
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System (5) does not contain an isolated equation for the hydrodynamic field that could
be used to find the compatibility condition (resolvability condition). Next, we pose the
problem of obtaining an exact solution to the nonlinear overdetermined system (5) that
differs from the trivial (zero) solution.

We find a nontrivial solution to the system (5) in the Lin–Sidorov–Aristov class [48–50].
Let hydrodynamic fields be represented by linear forms in terms of the coordinates:

Vx = U(z) + u1(z)x + u2(z)y,
Vy = V(z) + v1(z)x + v2(z)y,
T = T0(z) + T1(z)x + T2(z)y,
C = C0(z) + C1(z)x + C2(z)y,
P = P0(z) + P1(z)x + P2(z)y.

(6)

The linear forms that define class (6) describe the nonlinear properties of a moving
fluid due to the complex dependence of the coefficients of the exact solution (6) on the
vertical coordinate z.

The structure of the family of exact solutions (6) using the method of indefinite co-
efficients makes it possible to make an equivalent transition from system (5) to a system
of ordinary differential equations. To perform this, it suffices to substitute expressions (6)
into each of the equations of system (5) and equate the coefficients in the resulting re-
lations for the same degrees of horizontal coordinates x and y. As a result, we obtain
a system of ordinary differential equations written in a way convenient for integrating the
overdetermined system:

u1
2 + u2v1 = νu1

′′ ,
u1u2 + u2v2 = νu2 ′′ ,
u1v1 + v1v2 = νv1

′′ ,
u2v1 + v2

2 = νv2 ′′ ,
u1 + v2 = 0;

(7)

u1T1 + v1T2 = χT1
′′ + χδC1

′′ ,
u2T1 + v2T2 = χT2

′′ + χδC2
′′ ;

(8)

u1C1 + v1C2 = dC1
′′ + αdT1

′′ ,
u2C1 + v2C2 = dC2

′′ + αdT2
′′ ;

(9)

P1
′ = g(β1T1 + β2C1),

P2
′ = g(β1T2 + β2C2);

(10)

Uu1 + Vu2 = −P1 + νU′′ ,
Uv1 + Vv2 = −P2 + νV ′′ ;

(11)

UT1 + VT2 = χT0
′′ + χδC0

′′ ,
UC1 + VC2 = dC0

′′ + αdT0
′′ ;

(12)

P0
′ = g(β1T0 + β2C0). (13)

The prime in system (7)–(13) denotes taking the total derivative with respect to the
variable z. System (7)–(13) inherits from system (5) the properties of nonlinearity and
overdetermination. Note that the balance between the number of unknowns and the
number of equations is violated only in system (7). In other words, if it is possible to find
a non-trivial joint solution of the overdetermined subsystem (7), then a solution to any of
the systems (8)–(13) can be found by successive integration.

In [14], a theorem was formulated and proved that determines the conditions for the
existence of a necessary joint solution to subsystem (7). According to this theorem, the
overdetermined system (7)–(13) has a non-trivial exact solution in class (6), which is an
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exact solution of system (5) if and only if the spatial accelerations u1, u2, v1, and v2 satisfy
the relations:

u1 = u cos θ sin θ = −v2, u2 = u cos2 θ, v1 = −u sin2 θ, (14)

where u = c1z+ c2 is a function that satisfies the simplest second-order differential equation
u′′ = 0; and θ is a real number.

A similar problem of finding a non-trivial joint solution of an overdetermined non-
linear system of constitutive relations arises not only when solving problems of thermal
diffusion [20,51], but also when considering both convective flows [14] and isothermal
flows [46] of a viscous incompressible fluid.

3. Construction of the Exact Solution

Furthermore, it will be established that the exact solution describing the steady flow
of a binary fluid in class (6) is described by a polynomial in three variables. To perform this,
we prove the following theorem.

Theorem 1. For any values of the parameters θ, c1, c2, defining the set of functions (14), for
1− αδ 6= 0 the overdetermined system of differential Equations (8)–(13) has a unique solution.

For the case α = 0 considered in [20], and in the case δ = 0 considered in [51], the
condition 1− αδ 6= 0 is automatically satisfied. In other words, the problem posed in
this article can be considered a generalization of the results obtained in [20,51]. Note that
both dissipative coefficients (the Soret coefficient and the Dufour coefficient) are small in
magnitude; therefore, the assumption of the theorem on the fulfillment of the condition
1− αδ 6= 0 is physically justified and interesting [52].

System (1)–(4) is used both for describing incompressible fluids and for modeling
the flows of incompressible gases, which, in a certain range of physical conditions, is
applicable to real (i.e., compressible) gases. It is for this reason that none of the coefficients
are neglected in this case, and both dissipative coefficients are used in writing the basic
equations of the model to create the most symmetrical form of writing, suitable for both
fluid and gas flows.

We will prove the formulated theorem in a constructive way, i.e., we indicate an
algorithm for integrating the equations of system (7)–(13). After the joint solution (14)
of the overdetermined system (7) is obtained, the difficulty in obtaining a solution to
system (8)–(13) lies only in constructing the order of integration of the remaining equations.
For this reason, further proof of the formulated theorem with an indication of the order
of integration of the equations and comments are given regarding the properties of the
resulting solution.

Proof. Equations (8) and (9) will be considered jointly since they constitute an isolated
subsystem, taking into account expressions (14):

χT1
′′ + χδC1

′′ = u cos ϑ sin ϑT1 − u sin2 ϑT2,
χT2

′′ + χδC2
′′ = u cos2 ϑT1 − u cos ϑ sin ϑT2.

dC1
′′ + αdT1

′′ = u cos ϑ sin ϑC1 − u sin2 ϑC2,
dC2

′′ + αdT2
′′ = u cos2 ϑC1 − u cos ϑ sin ϑC2;

(15)

We transform Equation (15) as follows: we multiply the first equation of the system by
and subtract from it the multiplied by the second equation of this system. After that, we
integrate the resulting equation:

cos ϑT1 + δ cos ϑC1 − sin ϑT2 − δ sin ϑC2 = γ1z + γ2. (16)
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From the third and fourth equations of system (15), by analogous transformations, we
obtain the following expression:

cos ϑC1 + α cos ϑT1 − sin ϑC2 − α sin ϑT2 = γ3z + γ4. (17)

Let us solve relations (16), (17) with respect to horizontal gradients T2 and C2:(
− sin ϑ −δ sin ϑ
−α sin ϑ − sin ϑ

)(
T2
C2

)
=

(
− cos ϑT1 − δ cos ϑC1 + γ1z + γ2
−α cos ϑT1 − cos ϑC1 + γ3z + γ4

)
, (18)

The main determinant of the resulting matrix Equation (18) is as follows:∣∣∣∣ −sinϑ −δ sin ϑ
−α sin ϑ − sin ϑ

∣∣∣∣ = sin2 ϑ(1− αδ).

The last factor is assumed to be different from zero due to the conditions of the theorem
being proved. Thus, the solvability of Equation (18) (and hence other equations of the
system (10)–(13)) depends on the value of the parameter ϑ.

When sin ϑ = 0, system (15) is greatly simplified and contains an isolated subsystem
with respect to gradients T1 and C1:

T1
′′ + δC1

′′ = 0, C1
′′ + αT1

′′ = 0;
χT2

′′ + χδC2
′′ = uT1, dC2

′′ + αdT2
′′ = uC1.

(19)

The first two equations of system (19) are a system of homogeneous linear equations
with respect to derivatives T1

′′ and C1
′′ , with a non-degenerate (due to the conditions of

the theorem) matrix. Hence, linear functions are its solution:

T1 = c3z + c4, C1 = c5z + c6. (20)

The last two equations of system (19) are (taking into account expressions (20)) a system
of already inhomogeneous linear equations with respect to derivatives T2

′′ and C2
′′ , which

is uniquely integrated:

C2
′′ =

u
χd(αδ− 1)

(αdT1 − χC1), (21)

T2
′′ =

u
χd(αδ− 1)

(−dT1 + χδC1). (22)

The solution of the Equations (21) and (22) is a set of fourth-order polynomial func-
tions. Thus, the solution of Equations (8) and (9) is constructed. The exact solution of
Equation (10) for horizontal pressure gradients is easily obtained after a single solving
of Equations (8) and (9). They are described by a polynomial of the fifth degree.

Equation (11) for the case are written more compactly:

νU′′ = Vu2 + P1, νV ′′ = P2. (23)

First, the isolated equation of system (23) for the velocity V is integrated. A seventh-
order polynomial is obtained, further substitution of which into the first equation of
system (24) (presented below) makes it possible to determine the form of the velocity U as
a tenth-order polynomial.

After this, we represent Equation (12) as a non-homogeneous matrix algebraic equation
with respect to the second derivatives of the background components T0 and C0 of linear
forms (6) with known polynomial homogeneity and a nonsingular matrix:(

χδ χ
d αd

)(
C0
′′

T0
′′

)
=

(
UT1 + VT2
UC1 + VC2

)
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Having inverted the matrix of the system, we construct a solution after double in-
tegration and obtain a solution for the homogeneous components of the concentration
and pressure fields. Then, based on them, we integrate Equation (13) and obtain a unique
solution for the background pressure. The above-mentioned exact solutions for the compo-
nents of class (6) are not given because of their cumbersomeness and elementary nature
of calculations.

Let us return to the general case of Equation (19), setting sin ϑ 6= 0. The matrix of the
system will be non-degenerate, which means that the equation is solvable in a unique way:

T2 = cot ϑT1 +
(−γ1+γ3δ)z+(−γ2+γ4δ)

(1−αδ) sinϑ ,

C2 = cot ϑC1 +
(αγ1−γ3)z+(αγ2−γ4)

(1−αδ) sinϑ .
(24)

Substituting expressions (24) into the first and third equations of system (15), we reach
the following relations:

χT1
′′ + χδC1

′′ = sinϑ((γ1−γ3δ)z+(γ2−γ4δ))u
1−αδ ,

dC1
′′ + αdT1

′′ = sinϑ((−αγ1+γ3)z+(−αγ2+γ4))u
1−αδ .

(25)

Resolving system (33) (its matrix is again non-singular) with respect to the second
derivatives of the gradients T1 and C1, we obtain:

T1
′′ = sinϑ((d(γ1−γ3δ)+δχ(αγ1−γ3))z+d(γ2−γ4δ)+δχ(αγ2−γ4))u

d(1−αδ)2χ
;

C1
′′ = sinϑ((dα(−γ1+γ3δ)+χ(−αγ1+γ3))z+dα(−γ2+γ4δ)+χ(−αγ2+γ4))u

d(1−αδ)2χ
.

(26)

The right-hand sides of system (26) contain polynomials of the second degree, so it
can be easily integrated. After the exact solutions for the gradients T1 and C1 are found,
according to (26), expressions for the gradients T2 and C2 are easily written out. Thus,
system (8) and (9) are completely solved.

Further proof of the theorem is reduced to sequential integration of systems (10)–(13),
the algorithm of which (and the justification for the uniqueness of the resulting solution)
is given above when considering the case. Thus, the formulated theorem is completely
proved. �

4. Boundary Value Problem

As an interpretation of the structure of the exact solution obtained by proving the
theorem formulated above, we formulate a boundary value problem. We will consider
a steady thermal diffusion shear flow of a viscous incompressible fluid in a horizontal
infinitely extended layer with both non-deformable boundaries (Figure 1).

The solution of system (7)–(13) we will look for the exact solution of the Oberbeck–
Boussinesq system (5) in the following form:

Vx = U(z) + u2(z)y, Vy = V(z),
T = T0(z) + T1(z)x + T2(z)y,
C = C0(z) + C1(z)x + C2(z)y,
P = P0(z) + P1(z)x + P2(z)y.

(27)

Class (27) is a special case of class (6), when the spatial gradients u1, v1, and v2 are
assumed to be equal to zero. In this case, the overdetermined system (7) is reduced to one
isolated equation for determining the only non-zero spatial acceleration:

u2
′′ = 0.
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This solution satisfies relations (14) for sin ϑ = 0. Previously, the exact solution (27)
was proposed to study a vertically swirling fluid in the absence of rotation for isothermal,
gradient, and convective flows [14,18,25,26,51]. In articles [19–21,46,47,51], it was shown
that the velocity field (27) can be used to model and simulate equatorial countercurrents.
The formulas given below will take into account not only the effect of heat on the structure
of the ocean, but also the distribution of salt in water.

To determine the constants of integration arising in the process of constructing a solu-
tion to system (27), we formulate the boundary conditions. We will assume that the no-slip
condition is satisfied at the lower boundary (bottom):

Vx(0) = Vy(0) = 0.

In addition, the lower boundary will be considered impenetrable and thermally insu-
lated:

C′ = 0, T′ = 0.

On the upper boundary, we consider that the inhomogeneous distribution of the given
velocities corresponds to the movement of the upper boundary as a solid surface:

Vx(h) = W cos ϕ + Ωy, Vy(h) = W sin ϕ.

Here, W is the value of the velocity at the upper boundary and ϕ is the angle that the
velocity vector forms with the abscissa axis Ox.

We represent the boundary condition for pressure in the following form:

P(h) = S0 + S1x + S2y,

where S0 corresponds to the atmospheric pressure.
In addition, we assume that the temperature and concentration are distributed nonuni-

formly at the upper boundary of the layer:

T(h) = ax + by, C(h) = mx + ny.

According to the representation (27) for hydrodynamic fields, the formulated boundary
conditions are reduced to the following conditions:

U = u2 = V = 0, T′0 = T′1 = T′2 = 0, C′0 = C′1 = C′2 = 0 (28)
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on the lower border;

U = W cos ϕ, u2 = Ω, V = W sin ϕ, T0 = 0, T1 = a, T2 = b,
P0 = S0, P1 = S1, P2 = S2, C0 = 0, C1 = m, C2 = n

(29)

at the upper boundary of the considered layer.
The solution of the boundary value problem (27)–(29) is a set of polynomial functions:

u2 = ΩZ,
U = Z

51840dh2(αδ− 1)ν2χ

[
gΩ2h7Z8(β2(adα−mχ) + β1(mδχ− ad))+

+48gh5ΩZ5{β1
(
6bd(−1+αδ)χ + h2(ad−mδχ)Ω

)
+

+β2
(
h2mχΩ + d

(
6n(−1+αδ)χ− ah2αΩ

))}
+

+162h4Z4{ghΩβ2
(
−h2mχΩ + d

(
−8n(−1 + αδ)χ + ah2αΩ

))
+

+8dS2(−1 + αδ)χΩ− ghΩβ1
(
8bd(−1 + αδ)χ + h2(ad−mδχ)Ω

)}
+

+h2Z3{−12gh3Ωβ2
(
−13h2mχΩ + d

(
−120n(−1 + αδ)χ + 13ah2αΩ

))
+

+12gh3Ωβ1
((

120bd(−1 + αδ)χ + 13h2(ad−mδχ)Ω
))
−

−2160d(−1 + αδ)χΩ
(
h2S2 − 2Wν sin ϕ

)}
+

+8640dgh3Z2(aβ1 + mβ2)(−1 + αδ)νχ−
−25920dh2Z(−S1 + gh(aβ1 + mβ2)))(−1 + αδ)νχ+

+
{
−864dh3(−1 + αδ)χ

(
30S1ν− h2S2Ω

)
+

+51840dhW(−1 + αδ)ν2χ cos ϕ− 4320dh3W(−1 + αδ)νχΩ sin ϕ+

+gh4β2

(
41h4(−mχ + adα)Ω2 + 432(−1 + αδ)dχ(40mν− nh2Ω

)
+

+gh4β1
(
h2χΩ

(
−432bd(−1 + αδ) + 41h2mδΩ

)
+

+ad
(

17280(−1 + αδ)νχ− 41h4Ω2
))}]

;

V = Z
720d(−1+αδ)νχ

[
gh5Z5(ad(−β1 + αβ2) + m(−β2 + β1δ)χ)Ω+

+20gh3Z2{6bdβ1(−1 + αδ)χ + h2m(β2 − β1δ)χΩ+
+d
(
6nβ2(−1 + αδ)χ + ah2(β1 − αβ2)Ω

)}
−

−45h2Z
{

gh3m− (β2 − β1δ)χΩ − 8dS2(−1 + αδ)χ+
+ghd

(
8(bβ1 + nβ2)(−1 + αδ)χ + ah2(β1 − αβ2)Ω

)}
+

+{360d(S2d− 2Wν sin ϕ)(1− αδ)χ+
+2gh3(120dn(1− αδ)χ− 13h2( mχ− adα)Ω

)
+

+2gh3β1
(
120bd(−1 + αδ)χ + 13h2(ad−mδχ)Ω

)
+

+2gh3β2
(
13h2(mχ− adα)Ω + 120nd(−1 + αδ)χ

)}]
.

(30)

In the representation of solution (30), a dimensionless vertical coordinate Z = z/h
is introduced, the values of which vary within the considered layer in the range [0, 1].
This makes it possible to analyze the behavior of flows in layers of different thicknesses
from a unified standpoint. Note that the solution to the boundary value problem is given
incompletely due to two circumstances:

(1) the expressions for the fields of temperature, concentration, and pressure turn out
to be too cumbersome;

(2) the main interest is the structure (profile) of the velocity field and its mapping onto
the phase space.

The homogeneous components of the velocity field (27) are described by high-order
polynomials, which indicates the possibility of the existence of several stagnant points of
the field. Passing through the latter, the fluid flow is able to change the direction of the flow.
In other words, multiple stratification of the velocity field is possible due to the mutual
influence of thermal and diffusion factors.

The velocity U is described by a polynomial of the ninth degree; however, the number
of zero points of this speed does not exceed seven, and one of these zero points is located
on the lower boundary of the layer. Similar conclusions are given for the velocity V: this
polynomial of the sixth degree vanishes within the considered layer no more than three
times. The corresponding profiles are shown in Figures 2 and 3, respectively.
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Note that the view of the hodograph {U, V}, shown in Figure 4 is valid only for the
cross-section y = 0, since, strictly speaking, due to expressions (27), it is also necessary
to take into account the inhomogeneous terms in the expression for the velocity Vx. The
corresponding term u2y, according to solution (30), is a linear dependence on the vertical
coordinate Z, which leads to a “straightening” of the velocity profile U with distance from
the control section y = 0 (Figures 5–10).
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Figure 10. The hodograph of the velocity field.

An interesting effect of localization of vortex structures can be observed on the graph of
the stream function corresponding to the constructed solution (Figure 11). It illustrates the
complex flow structure. Counterflows with several zones of return flows are registered in
the fluid. Such a complex flow structure is due to the inhomogeneous velocity distribution,
thermal convection, concentration convection, and thermal diffusion.
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The stream function characterizes the value of the volumetric flow rate of the fluid
through the cross-section of the channel built on streamlines. The curves in Figure 11
illustrate the non-uniformity of this flow rate. Consideration of both dissipative Soret
and Dufour effects when describing thermal diffusion flows leads to the appearance of
an additional stagnation point for the velocity field (29) and (30) if we consider the exact
solutions only with the Soret effect [21] or only with the Dufour effect [51] taken into
account. Thus, the competing interaction of the Soret and Dufour effects leads not only
to quantitative changes for hydrodynamic fields, but also to a qualitative (topological)
change in the stratification of the velocity field, pressure field, temperature field, and solute
concentration field.

5. Conclusions

This article considers the problem of describing thermal diffusion flows, taking into
account both cross effects (the Soret–Dufour effect) for shear flows. It is shown that con-
sideration of shear flows simplifies the structure of the velocity field; however, it leads to
overdetermination of the system of model equations. The solution of the overdetermined
system is sought in the class of functions that can be represented as complete linear forms in
two spatial coordinates. This class is capable of describing the nonlinear effects observed in
a fluid in view of the nonlinear dependence of the coefficients of the mentioned linear forms
on the third coordinate, despite the external simplicity of its structure. A theorem on the
solvability of the resulting overdetermined nonlinear system is formulated and proved un-
der the compatibility conditions presented in the earlier studies of the authors [14,20,26,51]
and the fulfillment of an additional condition on thermal diffusion coefficients. The study
(the formulated solvability theorem and its proof) generalizes the results obtained by the
authors earlier [20,51] for thermal diffusion shear flows. In addition, while proving the
central theorem of the article, we identified the conditions under which branching into
the structures of the constructed exact solution of the overdetermined system appears. To
illustrate the exact solution found, we consider a boundary value problem for describing an
inhomogeneous shear flow of a vertically swirling fluid. The field of velocities described by
polynomials for the ninth degree is investigated. It is shown that the velocity field is strati-
fied depending on the boundary conditions and dissipative coefficients in different ways.
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In this case, counterflows are recorded in the liquid, and the flow itself is spiral. In addition,
an example of velocity profiles that differ from studies [21,51] is given. Accounting for both
the Soret and Dufour effects leads to the appearance of new effects even for steady flows
with subsequent ones. Thus, it will be important to use the exact solution obtained in the
article as a basic flow for studying hydrodynamic instability. Let us also mention works
among [53–85], where these refs. are within the framework of the analytical approach to
the study of mathematical hydrodynamical models.
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