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Abstract: This paper explores the realm of fractional integral calculus in connection with the one-
dimensional Dunkl operator on the space of tempered functions and Lizorkin type space. The
primary objective is to construct fractional integral operators within this framework. By establishing
the analogous counterparts of well-known operators, including the Riesz fractional integral, Feller
fractional integral, and Riemann–Liouville fractional integral operators, we demonstrate their ap-
plicability in this setting. Moreover, we show that familiar properties of fractional integrals can be
derived from the obtained results, further reinforcing their significance. This investigation sheds
light on the utilization of Dunkl operators in fractional calculus and provides valuable insights into
the connections between different types of fractional integrals. The findings presented in this paper
contribute to the broader field of fractional calculus and advance our understanding of the study of
Dunkl operators in this context.
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1. Introduction

On the real line, for a positive real number κ, the Dunkl operator Dκ provides a
one-parameter deformation of the ordinary derivative d

dx . It is defined as:

Dκ :=
d

dx
+

κ

x
(1− s), (1)

where s is the reflection operator acting on a function f (x) of a real variable x as s f (x) := f (−x).
The Dunkl operator incorporates the additional term κ

x (1− s), which accounts for reflection
symmetry and introduces a dependence on the parameter κ. This operator plays a funda-
mental role in generalizing various classical results in harmonic analysis and approximation
theory, as explored in the works of Dunkl [1,2] Trimeche [3], de Jeu [4], Rosler [5–7], and
others.

Fractional calculus [8–15] has gained significant importance in recent decades as a
powerful tool for developing advanced mathematical models involving fractional differen-
tial and integral operators. When applied to the Dunkl operator, fractional calculus offers
a fresh perspective by incorporating the effects of reflection and asymmetry within the
underlying space.

A notable feature of the Dunkl setting is the existence of a natural Riesz transform,
which shares similarities with classical singular integrals. In the multidimensional case,
S. Thangavelu and Y. Xu [16,17] established the Lp-boundedness of the associated Riesz
transform. This study was further extended by Amri and Sifi [18], who considered the
general case for 1 < p < ∞. Additionally, investigations into singular integrals and
multipliers were carried out in [18–22]. These contributions have significantly enriched our
understanding of the Dunkl operator and its associated Riesz transform.
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In this study, our main focus is on the comprehensive exploration of the one-dimensional
fractional Dunkl integral within Lizorkin type spaces [10–12], with a specific emphasis on
analytic continuation techniques. The obtained operators go beyond the conventional Riesz
fractional integral [9] and Feller fractional integral [8,11], as they are specifically tailored to
operate within the Dunkl setting. By extending the applicability of these operators to the Dunkl
context, we aim to unlock new possibilities and gain deeper insights into the realm of fractional
calculus.

To address the challenges posed by the divergence of fractional Dunkl operators, we
adopt a unique approach that incorporates the regularization technique for divergent integrals,
inspired by the work described in the book by Samko [11,12]. Our methodology involves
utilizing specific segments of the Taylor formula associated with the Dunkl operator, as originally
formulated by Mourou [23]. This regularization technique plays a pivotal role in extending
the fractional integral operators to the domain of <(α) > 0. As a result, we introduce an
alternative normalization scheme for tempered power functions, offering a fresh and insightful
perspective on fractional calculus within the Dunkl setting. It is important to note that while
Soltani [24] relies on the conventional Taylor series, our approach, based on the Taylor formula
of Mourou [23], better suits the specific requirements of the Dunkl operator.

Our paper is organized as follows: In Section 2, we begin by collecting some essential
facts about the Dunkl operator and the Lizorkin space. Section 3 focuses on studying the
generalized power function and its analytic continuation. Moving on to Section 4, we
dedicate that section to the study of extensions of well-known fractional integrals such as
the Riesz fractional integral, the Feller fractional integral, and the Weyl fractional integral.

2. Preliminaries

In this section, we introduce some notations and gather some facts about the one-
dimensional Dunkl operator.

2.1. The One-Dimensional Dunkl Operator

Let κ ≥ 0, and f be a differentiable function on R. The Dunkl derivative Dκ f (x) is
defined by

Dκ f (x) =


f ′(x) + κ

f (x)− f (−x)
x , if x 6= 0,

(2κ + 1) f ′(0), if x = 0.
(2)

We denote by Lp
κ (R) (1 ≤ p), the Lebesgue space associated with the measure

σκ(dx) =
|x|2κ

2κ+1/2Γ(κ + 1/2)
dx (3)

and by ‖ f ‖κ,p the usual norm given by

‖ f ‖κ,p =
( ∫

R
| f (x)|p σκ(dx)

)1/p
. (4)

Now, consider the so-called nonsymmetric Bessel function, also called Dunkl type Bessel
function, in the rank one case (see [25]) [§10.22(v)]:

Eκ(x) := Jκ−1/2(ix) +
x

2κ + 1
Jκ+1/2(ix). (5)

where the normalized Bessel functions is defined by

Jκ(x) := Γ(κ + 1) (2/x)κ Jκ(x)

=
∞

∑
n=0

(−1)n

n!Γ(κ + n + 1)
(

x
2
)2n+κ , x > 0.
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It is evident to the reader that the Dunkl kernel Eκ(iλx) coincides with the exponential
function when the parameter κ is equal to zero, i.e., E0(iλx) = eiλx. This function also has a
close connection with the Wright function.

Eκ(x) = Γ(κ + 1/2)
[
W1,κ+1/2(

x2

4
) +

x
2

W1,κ+3/2(
x2

4
)
]
, (6)

where the Wright function is defined by the series representation, valid in the whole
complex plane [26]

Wα,β(z) :=
∞

∑
n=0

zn

n!Γ(αn + β)
, α > −1, β ∈ C. (7)

The Wright function provides a powerful tool for dealing with fractional calculus
problems, as it allows for the analysis of fractional differential and integral equations in a
unified framework, see [26,27].

The function Ek(iξx) satisfies the following eigenvalue problem

Dκ(Ek(iξx)) = i ξ Eκ(iξx), Ek(0)) = 1 (8)

and has the Laplace representation

Eκ(ix) =
Γ(κ + 1/2)
Γ(1/2)Γ(κ)

∫ 1

−1
etx(1− t)κ−1(1 + t)κ dt. (9)

The Dunkl transform is defined by [1,3,4]

(Fκ f )(λ) :=
∫ ∞

−∞
f (x) Eκ(−iλx) σκ(dx). (10)

The Dunkl transform can be extended to an isometry of L2
κ(R), that is,∫

R
| f (x)|2 σκ(dx) =

∫
R
| f̂κ(λ)|2 σκ(dλ). (11)

For any f ∈ L1
κ(R) ∩ L2

κ(R), the inverse is given by

f (x) =
∫
R

f̂κ(λ) Eκ(iλx) σκ(dλ). (12)

As in the classical case, a generalized translation operator was defined in the Dunkl
setting side on L2

κ(R) by Trimèche [3]

Fκ{τy f (x); ξ} := Eκ(iξy)Fκ{ f (x); ξ}, y, ξ ∈ R. (13)

We also define the Dunkl convolution product for suitable functions f and g by

f ∗ g(x) =
∫
R

τ−x f (y)g(y)σκ(dy).

Explicitly, the generalized translation τx f (y) takes the explicit form (see [28] Theo-
rem 6.3.7):

τx f (y) :=
1
2

∫ 1

−1
f (
√

x2 + y2 − 2xyt)(1 +
x− y√

x2 + y2 − 2xyt
)hk(t)dt (14)

+
1
2

∫ 1

−1
f (−

√
x2 + y2 − 2xyt)(1− x− y√

x2 + y2 − 2xyt
) hk(t) dt,
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where

hκ(t) =
Γ(κ + 1/2)
22κ
√

πΓ(κ)
(1 + t)(1− t2)κ−1.

2.2. The Generalized Lizorkin Space

For a comprehensive treatment of the standard Lizorkin space, we recommend refer-
ring to the book [12] §2, where the authors provide a detailed and in-depth analysis of this
topic. Additionally, the study of the generalized Lizorkin space has been carried out by
Soltani [24]. While we cannot provide a detailed overview of the entire subject here, we can
highlight some important points for clarity.

We denote by S(R) the Schwartz space, which is the space of C∞-functions on R which
are rapidly decreasing as well as their derivatives, endowed with the topology defined by
the seminorms

‖ f ‖n,m = sup
x∈R, j≤m

(1 + x2)nD
j
κ ϕ(x), n, m ∈ N,

It is not difficult to check that

D f (x) = f ′(x) + κ
∫ 1

−1
f ′(xt)dt.

From this representation, we see that the operator D leaves S(R) invariant.
In the context of distribution theory, the space S′(R) denotes the topological dual

of S(R), which consists of generalized functions, also known as tempered distributions.
The value of a generalized function f as a functional on a test function ϕ ∈ S(R) is
denoted by ( f , ϕ).

A generalized function is said to be κ-regular if there exists a locally integrable function
f with respect to the measure σκ(dx), such that the integral

∫
R f (x)ϕ(x)σκ(dx) is finite for

every ϕ ∈ S(R). The action of the κ-regular generalized function f on a test function ϕ is
denoted as ( f , ϕ) or equivalently 〈 f , ϕ〉κ . Here, the integral on the right-hand side of the
equation is denoted by 〈 f , ϕ〉κ . It is important to note that the measure σκ(dx) depends on
the specific context and properties of the Dunkl operators. The notation and definitions
provided above establish a general framework for understanding κ-regular generalized
functions and their evaluation on test functions.

The Dunkl transform is a powerful mathematical tool that acts as a topological iso-
morphism between the Schwartz space S(R) and itself. This transform extends naturally
to generalized functions by considering the Dunkl transform of a generalized function
f ∈ S′(R). The definition of the Dunkl transform for generalized functions can be expressed
using duality as follows: for any ϕ ∈ S(R), the pairing between the Dunkl transform of f
and ϕ is given by

(Fκ f , ϕ) = ( f , Fκ ϕ), ϕ ∈ S(R).

In terms of integral notation, it can be written as:∫
R
(Fκ f )(x)ϕ(x)σκ(dx) =

∫
R

f (x)Fκ ϕ(x)σκ(dx), ϕ ∈ S(R), (15)

provided f and Fκ f are κ-regular.
The space S(R) itself is not invariant under multiplication by power functions. How-

ever, we can define an invariant subspace by utilizing the Dunkl transforms. This leads us
to the set Ψκ(R) consisting of functions ϕ ∈ S(R) that satisfy the conditions:

Dn
κ ϕ(0) = 0, for n = 0, 1, 2, . . . ,

where Dn
κ ϕ denotes the nth order Dunkl transform of ϕ. In other words, ϕ belongs to

Ψκ(R) if all the Dunkl transforms of ϕ evaluated at the origin are zero. By imposing these
conditions, we construct a space of functions that possess certain transformation properties
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with respect to the Dunkl operators. The generalized Lizorkin space Φκ(R) is introduced
as the Dunkl transform preimage of the space Ψκ(R) in the space S(R),

Φκ(R) =
{

ϕ ∈ S(R) : ϕ = Fκ(ψ), ψ ∈ Ψκ(R)
}

. (16)

According to this definition, any function ϕ ∈ Φκ(R) satisfies the orthogonality
conditions ∫

R
xn ϕ(x)σκ(dx) = 0, n = 0, 1, 2, . . . . (17)

3. Regularization of Integrals with Power Singularity

In this section, we examine two types of power functions defined on the entire real line

• Even, |x|α;
• Odd, sgn(x) |x|α; where

sgn(x) :=
{

1, if x > 0
−1, if x < 0.

Other types of tempered power functions can be defined as follows

xα
± =

1
2
[
|x|α ± |x|αsgn(x)

]
,

(±i x)α = |x|α
(

cos(πα/2)± i sgn(x) sin(πα/2)
)
.

These tempered power functions capture different aspects of fractional calculus and
are used to generalize the concept of differentiation and integration to noninteger orders.

3.1. Taylor–Dunkl Formula

To facilitate the forthcoming discussion on analytic continuation, we begin by present-
ing an additional formula that proves to be valuable in the process.

Let f ∈ C∞(R); for every n ∈ N, we have [19]

τy f (x) =
n−1

∑
j=0

bj(x)D j
κ f (x) + rn(x, y; f ), (18)

where 
rj+1(x, y; f ) =

∫ |y|
−|y|

( sgn(y)
2|y|2κ +

sgn(u)
2|u|2κ

)
rj(x, u; Dκ f ) |u|2κdu,

r1(x, y; f ) = τy f (x)− f (x)

and

bj+1(x) =
∫ |y|
−|y|

( sgn(y)
2|y|2κ

+
sgn(u)
2|u|2κ

)
bj(u) |u|2κdu, b0(x) = 1. (19)

Then,

b2s(x) =
Γ(κ + 1/2)

Γ(κ + s + 1/2)
x2s

s!
, b2s+1(x) =

Γ(κ + 1/2)
Γ(κ + s + 3/2)

x2s+1

s!
, s = 0, 1, 2, . . . .

From the work of Mourou [23], we can extract the following proposition, which
provides a complete asymptotic expansion for τκ f (x) as x approaches a.



Symmetry 2023, 15, 1725 6 of 13

Lemma 1. Let f ∈ C∞(R) and a ∈ R; then, one has

τa
κ f (x) ∼

∞

∑
s=0

bs(x)D s
κ f (a), as x→ a, (20)

3.2. Generalized Power Functions

By considering |x|−α and sign(x)|x|−α as elements of Ψ′κ(R), we recognize them as
κ-regular generalized functions for all α ∈ C, that is,

〈|x|−α, ϕ〉κ =
∫
R

1
|x|α ϕ(x)σκ(dx), (21)

〈sgn(x)|x|−α, ϕ〉κ =
∫
R

sgn(x)
|x|α ϕ(x)σκ(dx). (22)

When considering the functions |x|−α and sign(x)|x|−α as elements of S′(R) or Φ′κ(R),
they are not κ-regular if <(α) ≥ 2κ + 1. To handle these generalized functions, let α ∈ C
such that α 6= 2κ + 2s + 1 for s = 0, 1, 2, . . . . For ϕ ∈ S(R), we can define the generalized
power function |x|−α as follows:

(|x|−α, ϕ) =
∫
|x|<1

1
|x|α

[
ϕ(x)−

m

∑
s=0

bs(x)D s
κ ϕ(0)

]
σκ(dx) (23)

+
[ m

2 ]

∑
s=0

D2s
κ ϕ(0)

2κ−1/2Γ(κ + s + 1/2), s!
1

2κ + 2s + 1− α

+
∫
|x|≥1

ϕ(x)
|x|α σκ(dx),

where m > Re(α)− 2κ − 1. It is important to note that the right-hand side of Equation (23)
does not depend on the choice of m as long as m > <(α)− 2κ− 1. Since ϕ ∈ S(R), Lemma 1
guarantees that

ϕ(x)−
m

∑
s=0

bs(x)D s
κ ϕ(0) = O(xm+1) (as x → 0).

This property ensures the well-definedness of the expression. The mapping α →
(|x|−α, ϕ) from C to S′(R) can be extended to a holomorphic function on C− {2κ + 2s + 1 :
s = 0, 1, 2, . . . }, with simple poles at α = 2κ + 2s + 1. The residues of the function at these
poles are given by

Res
(
(|x|−α, ϕ); 2κ + 2s + 1

)
= − 2−κ+1/2D2s

κ ϕ(0)
Γ(κ + s + 1/2) s!

. (24)

When α = 2κ + 2s + 1 with s = 0, 1, 2, . . . , we define the even, tempered power
function |x|−2κ−2s−1 as

(|x|−2κ−2s−1, ϕ) = lim
α→2κ+2s+1

{
(|x|−α, ϕ) + D2s

κ ϕ(0)
2κ−1/2Γ(κ+s+1/2) s!

1
α−2κ−2n−1

}
. (25)

This provides a definition for the even, tempered power |x|−α for all α ∈ C.
Similarly, for α ∈ C such that α 6= 2κ + 2s + 2 with s = 0, 1, 2 . . . , we define the odd

tempered power function |x|−αsgn(x) by
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(
sgn(x)
|x|α , ϕ) =

∫
|x|<1

sgn(x)
|x|α

[
ϕ(x)−

m

∑
s=0

bs(x)D s
κ ϕ(0)

]
σκ(dx) (26)

+

[m−1
2 ]

∑
s=0

D2s+1
κ ϕ(0)

2κ−1/2Γ(κ + s + 3/2) s!
1

2κ + 2s + 2− α

+
∫
|x|≥1

sgn(x)
|x|α ϕ(x) σκ(dx) (m > <(α)− 2κ − 2).

It follows that the mapping α → (|x|−αsgn(x), ϕ) is analytic on C − {2κ + 2s + 2,
s = 0, 1, 2, . . . }, with simple poles at α = 2κ + 2s + 2 and

Res
(
(|x|−αsgn(x), ϕ); 2κ + 2s + 2

)
= −2−κ+1/2D2s+1

κ ϕ(0)
Γ(κ + s + 3/2) s!

.

For α = 2κ + 2s+ 2, with s = 0, 1, 2, . . . , we define the odd, tempered powers function
sgn(x)|x|−2κ−2s−2 as

(sgn(x)|x|−2κ−2s−2, ϕ) = lim
α→2κ+2s+2

{
(sgn(x)|x|−α, ϕ) + D2s+1

κ ϕ(0)
2κ−1/2Γ(κ+s+3/2) s!

1
α−2κ−2s−2

}
. (27)

4. Fractional-Type Integral and Derivative for the Dunkl Operator

In this section, we embark on a comprehensive exploration of fractional-type integral
operators associated with the Dunkl operator. These operators transcend the conventional
Riesz fractional integral, Feller fractional integral, and Liouville fractional integral, as they
are specifically designed to operate within the Dunkl setting.

4.1. The Riesz–Dunkl Fractional Integral

In this section, our focus lies on extending the Riesz fractional integral to any arbitrary
value of <(α) > 0. As a reminder, the Riesz fractional integral Iα f is defined by

(Iα f )(x) =
1

γ(α)

∫
R

kα(x− y) f (y)dy, (28)

where kα(x) is defined as:

kα(x) =

{
|x|α−1, α 6= 1, 3, 5, . . . ,
−|x|α−1 ln |x|, α = 1, 3, 5, . . . .

(29)

The normalization factor γ(α) depends on the value of α and is given by:

γ(α) =


2α−1/2 π1/2Γ( α

2 )

Γ( 1−α
2 )

, α 6= 2s + 1, s = 0, 2, . . . ,

(−1)ss!π1/222sΓ(s + 1/2), α = 2s + 1, s = 0, 2, . . . .
(30)

Lemma 2. Let κ < α < 2κ + 1. Then, the Dunkl transform of |x|α−2κ−1 exists in the usual sense,
and it is given by

F−1
κ (|x|−α) =

Γ(κ + 1−α
2 )

2α−κ−1/2Γ( α
2 )
|x|α−2κ−1.

Proof. By using (5), we obtain

F−1
κ

(
|x|−α

)
(x) =

∫ ∞

−∞
|u|−αEκ(iux)σκ(du)

=
2

2κ+1/2Γ(κ + 1
2 )

∫ ∞

0
Jκ−1/2(|x|u)u−α+2κ du.
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Making the substitution t = |x|u yields

F−1
κ (|x|−α)(x) = |x|α−2κ−1

∫ ∞

0

Jκ−1/2(u)
uα−κ−1/2 du.

The result follows from the following Weber formula [29] §13.24:

∫ ∞

0

Jν(t)
tν−µ+1 dt =

1
2ν−µ+1

Γ( µ
2 )

Γ(ν− µ
2 + 1)

, 0 < <(µ) < <(ν) + 3
2

. (31)

Proposition 1. The Dunkl transform of |x|−α ∈ Ψ′κ(R) is given by

F−1
κ

(
|x|−α

)
=

1
γκ(α)



|x|α−2κ−1, α 6= −2s, α 6= 2κ + 2s + 1, s ∈ N0,

|x|α−2κ−1 ln 1
|x| , α = 2κ + 2s + 1, s ∈ N0,

(−1)sD2s
κ δ, α = −2s, s ∈ N0,

where

γκ(α) =



2α−κ−1/2Γ( α
2 )

Γ(κ+ 1−α
2 )

α 6= −2s, α 6= 2κ + 2s + 1,

(−1)ss!2κ+2s+1/2Γ(κ + s + 1/2), α = 2κ + 2s + 1,

1, α = −2s

and δ is the Dirac delta distribution.

Proof. From Lemma 2, it is evident that by analytic continuation, for α ∈ C such that
α 6= 2κ + 2s + 1 and α 6= −2s for s = 0, 1, 2, . . . , we have:

1
|x|α =

Γ(κ + 1−α
2 )

2α−κ−1/2Γ( α
2 )

Fκ(|x|α−2κ−1). (32)

The case α = −2s for s = 0, 1, 2, . . . follows from the fact that

(FκD
2s
κ ϕ)(x) = (−1)s|x|2s(Fκ ϕ)(x), ϕ ∈ S(R).

It remains to consider the case α = αs = 2κ + 2s + 1 for s ∈ N0. From Equation (32),
we have

∂

∂α

(
(α− αs)(|x|−α, Fκ ϕ)

)
=

∂

∂α

(
η(α)(|x|α−2κ−1, ϕ)

)
, η(α) =

α− αs

γκ(α)
. (33)

By considering (23) and (25), the limit as α → αs of the left-hand side of (33) can be
evaluated as follows:

lim
α→αs

∂

∂α

(
(α− αk)(|x|−α, Fκ ϕ)

)
= (|x|−2κ−2s−1, Fκ ϕ).

The limit of the right-hand side of Equation (33) as α→ αs can be evaluated as follows:

lim
α→αs

∂

∂α

(
η(α) (|x|α−2κ−2, ϕ)

)
= lim

α→αs
((η′(α) + η(α) ln |x|)|x|α−2κ−1, ϕ).
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A straightforward computation shows that

lim
α→αs

η(α) =
(−1)s+1

s!2κ+2s−1/2Γ(κ + s + 1/2)
. (34)

Taking into account Equation (17), in the limit as α approaches αs, we obtain the
following expression:

(|x|−2κ−2s−1, Fκ ϕ) =
(−1)s

s!2κ+2s−1/2Γ(κ + s + 1/2)
(|x|2s ln

1
|x| , ϕ). (35)

Definition 1. For <(α) > 0, we define the Riesz–Dunkl fractional integral I α
κ f of f ∈ Φκ(R) as:

(I α
κ f )(x) =

∫
R

τ−yKκ,α(x) f (y)σκ(dy) (36)

where

Kκ,α(x) =
1

γκ(α)


|x|α−2κ−1, α 6= −2s, α 6= 2κ + 2s + 1

ln( 1
|x| ) |x|

α−2κ−1, α = 2κ + 2s + 1.
(37)

The following theorem states that the space Φκ(R) is closed under the action of the
operator I α

κ . This result ensures the consistency and coherence of the space Φκ(R) under
the Riesz–Dunkl fractional integral. Moreover, the proposition establishes the relationship
between the Dunkl transform Fκ and the fractional integral operator I α

κ and shows the
compatibility of the fractional integral operators I α

κ under composition.

Theorem 1. The space Φκ(R) is invariant under the operator I α
κ , i.e.,

f ∈ Φκ(R) ⇒ I α
κ f ∈ Φκ(R).

Furthermore,

(FκI
α

κ f ) =
1
|x|α Fκ f ,

and
I α

κ I
β

κ = I
α+β

κ , <(α), <(δ) > 0.

The proof of this theorem is omitted, but it can be established by utilizing Lemma 2
and Proposition 1 mentioned earlier, which provide the necessary tools and results to
derive these conclusions.

Utilizing the reflection formula for the gamma function, we have:

Γ(z)Γ(1− z) =
πz

sin πz
, z /∈ Z.

In the limit when κ ↓ 0, we retrieve the classical Riesz and Feller fractional integral
(see, [11]) §12.1

lim
κ ↓0

I α
κ f (x) =

1
2Γ(α) cos(πα/2)

∫ ∞

−∞

1
|x− y|1−α

f (y)dy. (38)

4.2. Feller–Dunkl Fractional Integral

In this section, we aim to establish an analogous version of the classical Feller fractional
integral within the framework of Dunkl operators. The Feller fractional integral, denoted
as Jα

κ f (x), is defined as follows:



Symmetry 2023, 15, 1725 10 of 13

Jα
κ f (x) =

1
2Γ(α) sin(πα/2)

∫ ∞

−∞

sgn(x− y)
|x− y|1−α

f (y)dy. (39)

The following lemmas play a crucial role in establishing an extension of the Feller
integral within the framework of the Dunkl operator.

Lemma 3. Let κ < α < 2κ + 2. Then, the Dunkl transform of sgn(x) |x|−α exists in the usual
sense, and it is given by

F−1
κ (sgn(x)|x|−α) = i

Γ(κ + 2−α
2 )

2α−κ−1/2Γ( 1+α
2 )

sgn(x) |x|α−2κ−1.

Proof. Using (5), we have

F−1
κ

(
sgn(x)|x|−α

)
(x) =

∫ ∞

−∞
sgn(u)|u|−αEκ(iux)σκ(du)

=
2 i x

(2κ + 1)2κ+1/2Γ(κ + 1
2 )

∫ ∞

0
Jκ+1/2(xu) u−α+2κ+1 du

= i sgn(x) |x|α−2κ−1
∫ ∞

0

Jκ+1/2(t)
tα−κ−1/2 dt.

The Weber Formula (31) achieves the result.

Lemma 4. The following holds: for α 6= 2κ + s + 1 with s ∈ Z−, we have

Dκ |x|−α = −α |x|−α−1sgn(x).

Proof. Let κ < <(α) < 2κ + 1 and ϕ ∈ S(R), we have

< Dκ |x|−α, ϕ >κ = − < |x|−α, Dκ ϕ >κ

= −
∫
R
|x|−αDκ ϕ(x)σκ(dx)

= −α
∫
R
|x|−α−1sgn(x)ϕ(x)σκ(dx)

= −α < |x|−α−1sgn(x), ϕ >κ .

By analytic continuation for α ∈ C such that α 6= 2κ + s + 1, s ∈ N, we have

Dκ |x|−α = −α |x|−α−1sgn(x),

which is the required result.

Proposition 2. The Dunkl transform of sgn(x) |x|−α ∈ Ψ′κ(R) is given by

F−1
κ

(
− i |x|−αsgn(x)

)
=

1
δκ(α)


sgn(x) |x|α−2κ−1, α 6= −2s− 1, α 6= 2κ + 2s + 2, s ∈ N0,

−|x|2s+1 ln |x|, α = 2κ + 2s + 2, s ∈ N0,

(−1)sD2s+1
κ δ, α = −2s− 1, s ∈ N0.
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where

δκ(α) =



2α−κ−1/2Γ( α+1
2 )

Γ(κ+ 2−α
2 )

α 6= −2s− 1, α 6= 2κ + 2s + 2,

(−1)ss!2κ+2s+3/2Γ(κ + s + 3/2), α = 2κ + 2s + 2,

1, α = −2s− 1.

Proof. The proof of the proposition can be achieved by utilizing the above lemmas.

Definition 2. For <(α) > 0, we define the Riesz–Dunkl fractional integral J α
κ f of f ∈ Φκ(R) as:

(J α
κ f )(x) =

∫
R

τ−yGκ,α(x) f (y)σκ(dy) (40)

where

Gκ,α(x) =
1

δκ(α)


sgn(x) |x|α−2κ−1, α 6= 2κ + 2s + 2

sgn(x) ln( 1
|x| )|x|

α−2κ−1, α = 2κ + 2s + 2.
(41)

In the limit when α ↓ 0, we obtain

lim
α ↓0

(J α
κ f ) := Hκ f (x) :=

Γ(κ + 1)√
πΓ(κ + 1/2)

lim
ε↓0

∫
|y|≥ε

τ
−y
κ f (x)

dy
y

, (42)

and
(FκHκ f )(x) = −i sgn(x)(Fκ f )(x), f ∈ Φκ(R).

For the special case of κ = 0 and α = 0, the Feller–Dunkl fractional integral coincides
with the Hilbert transform. The Hilbert transform is a well-known operator in harmonic
analysis and signal processing. It acts as a multiplier with the symbol −isign(x).

It can be easily seen from Propositions 1 and 2 that the operators I α
κ and J α

κ are
connected by

I α
κ = HκJ

α
κ .

4.3. Riemann–Liouville–Dunkl fractional integrals

The Riemann–Liouville fractional integrals are given by [12] formulas (5.1) and (5.2)

Iα
+ f (x) :=

1
Γ(α)

∫ x

−∞
(x− y)α−1 f (y)dy (43)

and
Iα
− f (x) :=

1
Γ(α)

∫ ∞

x
(y− x)α−1 f (y)dy (44)

They are related to the Riesz fractional integral Iα and its conjugate Jα by

Iα f (x) =
Iα
+ f (x) + Iα

− f (x)
2 cos(πα

2 )
,

Jα f (x) =
Iα
+ f (x)− Iα

− f (x)
2 sin(πα

2 )
.

Similarly, the correspondent definition of the Riemann–Liouville–Dunkl fractional
integral can be given as follows:

I α
κ,+ f (x) := cos(απ/2)I α

κ f (x) + sin(απ/2J α
κ f (x),

I α
κ,− f (x) := cos(απ/2)I α

κ f (x)− sin(απ/2J α
κ f (x).
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Proposition 3. The following holds:

(1) For f ∈ Φ, we have
(FκI

α
κ,± f ) = (∓ix)−α (Fκ f )(x).

(2) For f ∈ Φ and <(α),<(β) > 0, we have

I α
κ,±I

β
κ,± = I

α+β
κ,± .

(3) Integration by parts:∫
R

I α
κ,+ f (x) g(x)σκ(dx) =

∫
R

f (x)I α
κ,−g(x)σκ(dx), f , g ∈ Φκ(R).
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