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Abstract: Research on how to pose good problems in mathematical science is rarely touched. Inspired
by Kilpatrick’s “Where do good problems come from?”, the current research investigates the problem
of the specific problem posed by mathematicians in mathematical sciences. We select a recent
mathematical conjecture of Yang related to periodic functions in the field of functions of one complex
variable. These problems are extended to complex differential equations, difference equations,
differential-difference equations, etc. Through mathematical analysis, we try to reproduce the
effective strategies or techniques used by mathematicians in posing these new problems. The results
show that mathematicians often use generalization, constraint manipulation, and specialization when
they pose new mathematical problems. Conversely, goal manipulation and targeting a particular
solution are rarely used. The results of the study may have a potential impact and promotion on
implementing problem-posing teaching in primary and secondary schools. Accordingly, teachers
and students can be encouraged to think like mathematicians, posing better problems and learning
mathematics better. Then, we give some examples of mathematical teaching at the high school level
using problem-posing strategies, which are frequently employed by mathematicians or mathematical
researchers, and demonstrate how these strategies work. Therefore, this is a pioneering research
that integrates the mathematical problem posing by mathematicians and the mathematical problem
posing by elementary and secondary school math teachers and students. In addition, applying
constraint manipulation and analogical reasoning, we present four unsolved mathematical problems,
including three problems of complex difference-related periodic functions and one problem with
complex difference equations.

Keywords: Yang’s conjecture; periodic function; entire function; problem posing; problem solving;
problem-posing strategy

MSC: 97D50; 97I80; 30D20; 39A45

1. Introduction

The development of mathematics is often driven by innovative problems. Many
mathematicians have noted the importance of posing mathematical problems. The twenty-
three most influential mathematical questions presented by David Hilbert stimulated a
significant amount of progress [1]. Albert Einstein advocated that “posing a new question
and a new possibility to regard an old problem from a new angle need creative imagination
and led to a real advance in science” [2]. Paul Halmos advocated “I do believe that
problems are the heart of mathematics” [3]. “Cantor and Klamkin be convinced that posing
a problem is more important and valuable than solving” [4]. Recently, research on problem
posing has been focused on students or teachers in school education; for instance, see [5].
However, problems related to how mathematicians find problems, pose problems, think
about problems, and solve problems in mathematical science have rarely been touched
upon until now. Therefore, “Where do good problems come from?” [6]. The motivation of
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the current paper is to start an attempt to uncover the magic box of how mathematicians
find and pose problems, and what strategies are used in posing relevant mathematical
problems, answering how to integrate problem posing into mathematics teaching, and how
to encourage students to pose high-quality problems. Therefore, we aim to investigate how
the problems or theorems of the periodicity of the entire functions of one complex variable
and Yang’s conjecture are formulated.

In Section 2, we conduct a literature review containing the concept of problem posing
and the demonstration of the relevant studies. In Section 3, we introduce some math-
ematical definitions. In Section 4, we introduce some problems or theorems related to
the periodicity of functions and Yang’s conjecture selected from some recently published
papers. In Section 5, we put the main results of how mathematicians pose better mathe-
matical problems. In Section 6, we give some examples of mathematical teaching using
the problem-posing strategies which are frequently employed by mathematicians or math-
ematical researchers, and describe how these strategies work. In Section 7, we give the
discussions and limitations.

2. Literature Review

Let us start our statements from the famous Korteweg–de Vries (KdV) equation.
In August 1834, a young Scottish engineer John Scott Russell (1808–1882) observed a
mysterious phenomenon in a narrow channel (Union Canal at Hermiston, Edinburgh):
the wave of translation (solitary wave). This led directly to the famous KdV equation.
Throughout his life, Russell was convinced of the fundamental importance of his wave
of translation.

We invite each reader of this article to imagine the mathematical problems we would
ask if we happened to be standing by the same canal today and also saw this phenomenon.

The KdV equation reads ut + auux + uxxx = 0, and is a nonlinear partial differential
equation arising in many areas of physics. The number a is arbitrary, and often equals to
a = ±6,±1. This equation depicts the long-time evolution of small amplitude and long
wavelength in shallow water [7]. Many researchers have contributed to finding properties
of the KdV equation, such as constructing exact solutions, soliton solutions, and the asymp-
totic behavior of solutions. At the same time, by modifying the form or numbers of the
KdV equation, researchers converted this equation into a variety of KdV-like equations,
for instance, see [8–10], such as the third-order KdV equations ut + g(u)ux + uxxx = 0,
where g(u) can be αu, αu2, αun, αux, 2αu− 3βu2; the K(n, n) differential equation, such as
ut + a(un)x + b(un)xxx = 0; the modified KdV equation ut + 6αu2ux + uxxx = 0, α = ±1;
the generalized KdV equation ut + σunux + uxxx = 0, n > 2; the potential KdV equa-
tion ut + au2

x + uxxx = 0; the Gardner equation ut + 2αuux − 3βu2ux + uxxx = 0, α > 0,
β > 0; the generalized KdV equation ut + (aun − bu2n)ux + uxxx = 0; the modified equal
width equation ut + 3u2ux − uxxt = 0; the Sawads–Kotera equation ut +

( 5
3 u3 + 5uuxx

)
x +

uxxxxx = 0; the seventh-order KdV equation ut + 6uux + u3x − u5x + αu7x = 0; the ninth-
order KdV equation ut + 45uxu6x + 45uu7x + 210u3xu4x + 210u2xu5x + 1575ux(u2x)

2 +
3150uu2xu3x + 1260uuxu4x + 630u2u5x + 9450u2uxu2x + 3150u3u3x + 4725u4ux + u9x = 0;
and many other types. As a result, we can find that by modifying the forms of the KdV equa-
tion, changing even just one parameter will affect the properties of the solutions, and a very
large number of new KdV-like differential equations can be obtained, greatly advancing the
development of nonlinear differential equations. Consequently, many kinds of analytical or
numerical methods for solving differential equations have been used, for instance, the Bäck-
lund transformation method [11], Darboux transformation method [12], physics-informed
neural networks method [13], Hirota bilinear method [14], inverse scattering method [15],
Homotopy analysis method [16], and complex method [17–20].

However, by changing the numbers and forms in a mathematical expression, a com-
pletely new mathematical expression can be obtained, for example, by modifying the
numbers and forms of the KdV equation, which means that it will pose a new mathematical
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problem and quite possibly a new discovery in mathematics. Problem posing plays a key
role in scientific research. In this section, we mainly introduce three aspects:

• What is the problem posing?
• Why problem posing?
• How does problem posing work?

2.1. What Is the Problem Posing

A few definitions specifically describe problem posing by mathematicians. Below are
some selected definitions.

Silver (1994) [21] defined problem posing as “the generation of new problems based
on a given situation or the reformulation of given problems”. Silver emphasized that
problem posing can arrive before problem solving, during problem solving, or after solving
a particular problem. This definition emphasizes the source of posing new problems.

Stoyanova (1997) [22] defined problem posing as “the process by which, on the basis
of their mathematical experience, students construct personal interpretations of concrete
situations and formulate them as meaningful well structured mathematical problems”.
The definition emphasizes the situation, which is classified as a free, semi-structured or
structured situation.

Cai et al. (2013) [23] stated that “problem-posing tasks as those which require teachers
or students to generate new problems based either on given situations or on mathematical
expressions or diagrams”. They defined “problem posing” as consisting of three specific
intellectual activities: “(1) teachers pose mathematical problems based on given situations
or mathematical expressions or diagrams, (2) teachers predict the types of problems that
students can pose based on given situations or mathematical expressions or diagrams,
and (3) teachers design mathematical problem-posing tasks for students”.

Xu et al. (2013) [24] defined problem posing as the generation of new problems from a
given problem situation in two aspects: students pose problems and teachers foresee the
problems posed by students. The definitions from Xu et al. (2013) and Cai et al. (2013)
are very similar; both consider the problem posed by teachers and students. Additionally,
the teachers’ problem posing contains the following: (1) teachers pose mathematical prob-
lems according to given situations, and (2) teachers foresee the problems that students will
likely present according to certain situations.

Considering problem posing in mathematics education, Cai and Hwang (2020) [25]
pointed out that “problem posing are several related kinds of activity that help teachers
and students formulating (or reformulating) and presenting a problem or task based on a
particular situation (which we refer to as the problem context or problem situation)”. Their
definition emphasizes problem posing as a teaching or learning activity. Their definition
considers teachers’ and students’ problem posing by ways of formulations, expressions,
and tasks. Cai and Hwang describe the definitional framework of mathematical problem
posing as two separate aspects. For students, (1) they pose problems on the basis of given
situations which may contain mathematical expressions or diagrams, and (2) they pose
problems by changing (or reformulating) given problems. The following specific intellectual
activities are defined as problem posing for teachers: (1) teachers pose mathematical
problems based on given problem situations; (2) teachers predict the types of problems
that students can pose based on given problem situations; (3) teachers pose problems by
changing existing problems; (4) teachers create mathematical problem posing situations for
students; and (5) teachers pose problems for students to solve [25].

Most recently, Cai (2022) [26] refined the definition of problem posing as follows:
Problem posing is defined as four activities: (1) students pose problems on the basis of
given problem situations, (2) students pose problems by changing (reformulating) existing
problems, (3) teachers generate mathematical situations for students to pose problems,
and (4) teachers predict problems that students can pose on the basis of given situations.

The current paper adopts the definition by Silver. This is because mathematicians often
pose new problems on the basis of given conditions or by changing the given problems.
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2.2. Why Problem Posing

Problem posing is located variously in different places in mathematical education.
Mathematical problem posing is considered (1) an ingredient of problem solving, (2) a
cognitive activity, (3) a target of learning unto itself, and (4) a way of teaching [5,27].

The first aspect sees mathematical problem posing as a means of solving mathematical
problems or examining the relationship between them. For example, in Polya’s problem-
solving techniques, Polya suggests considering (posing) a related problem in the process of
problem solving.

The second aspect focus deals with problem posing as a cognitive activity, such as
the study of the capacity and process of posing problems with a focus on cognitive and
affective aspects, and as a measurement tool to assess the thinking and creativity of humans
by disclosing the process of posing problems when they pose problems.

The third aspect focuses on the products of the problem posers, and the posers are
encouraged to learn how to pose problems and become good posers. The opening literature
shows that both teachers and students can become better problem posers.

The fourth aspect focuses on school teaching mathematics by using problem posing.
Considering how to include problem-posing tasks into mathematics instruction and study
encourages teachers and students to pose problems in lessons, stimulates the problem-
posing potential of teachers and students, and encourages research into the methods of
using mathematical problem posing to improve mathematics learning and teaching.

In fact, there is no unique viewpoint about the classification of problem posing.
In the problem tasks, students will discover and pose problems on the basis of existing

contexts. Students find something they want to know. In this framework, the problem-
posing research focuses on what kinds of problems students can pose, what kinds of
processes students use therein, and the assessments of thinking and creativity of the stu-
dents. Therefore, researchers have not only examined the capacity of students and teachers
to pose mathematical problems but also the cognitive and affective processes of problem
posing [28]. However, the above definition of problem posing centers on the relationship
between teachers and students. One shortcoming of the above definitions is that they do
not take into account problem posing by mathematicians and mathematics researchers (not
problem posing in mathematics education). Although little is known about how math-
ematicians identify problems and solve problems, it is necessary to extend the scope of
problem posing to mathematicians and mathematical researchers. However, the mentioned
definition of mathematical problem posing lacks mathematicians’ problem posing.

2.3. How does Problem Posing Work

Many researchers are dedicated to developing heuristics and strategies of problem
posing, aiming to motivate and empower people to pose better problems, occurring in
school education (from primary school to high school) or educational investigations, such
as service and pre-service teachers and students, or mathematics textbooks.

As we know, in traditional elementary and secondary math classrooms, in order for
students to effectively acquire the teaching content, teachers will require students to pose
problems, or students will pose problems to the teacher. These problems may include
mathematical problems, and non-mathematical problems (e.g., problems due to difficulties
in understanding mathematical contents, or problems without mathematical elements).
In a first-year high school math problem posing task, the following problem situation
was given:

Giving a function f (x) = x + 1
x . From this, pose some mathematical problems.

From the problems posed by the students, we chose the following 13 responses:

1. What is x?
2. If x = 8, find the maximum value of f (x).
3. Find the values of f (x) for x = 5 and x = 7.
4. Find out the domain of of f (x).
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5. Find out the range of f (x).
6. What is the minimum value of f (z)?
7. Find out the monotonicity of f (x).
8. Find out the monotonicity of f(x) on [−1, π

2 ].
9. Find out the expression of f (2x).
10. How’s the image?
11. What quadrant is it in?
12. Find the image of f (x) if it is shifted parallel to the left by y units.
13. If x + 1

x = 30, find the value of x2 + 1
x2 .

Responses 1–4 are not good mathematical problems, as they do not deepen thinking.
Obviously, from the point of view of complexity and mathematical significance, compared
to problems 1–4, problems 5–13 are better and are basic and important for high school
students. Therefore, these are good problems. Responses 10–12 consider the geometric
properties of f (x), which need more knowledge of the rational function f (x). Answering
questions 5 and 6 requires the use of basic inequalities, and answering question 13 requires
some transformation techniques. In order to promote the ability of students to pose good
math problems, it is necessary to train students in problem-posing strategies or techniques.
Therefore, we would like to demonstrate some common problem posing strategies next.

Heuristics are useful organizational units for planning, monitoring, and executive
control [29]. The problem-posing strategies we use here refer to some specific techniques
that problem posers can adopt when they pose better mathematical problems. They can be
used independently or jointly. We should note that the strategies are not heuristics only,
but also the approaches adopted by problem posers when they execute a task of problem
posing. However, so far, problem posing has not resulted in a model comparable to the
problem-solving model—Polya’s problem-solving techniques. There are several problem-
posing strategies scattered in the different opening works in the literature, for instance,
see [30]. We collected some of the strategies as follows:

• Symmetry, for example, asking a new problem through the swap of conditions and
goal between the given problem [31].

• Constraint manipulation, for example, posing a new problem using manipulations
with the conditions or implicit assumptions involved in the problem situation [31],
containing the following:

– Numerical variation, for example, asking a new problem using changing the
given numerical values into the new ones [32].

– What-if-not, for example, posing a new problem through systematically asking
the question “What if a particular condition or implicit assumption would be
different” [33].

• Chaining, for example, we have the following:

– Extending a given problem such that a solution to a new problem requires solving
a given one first [31].

– Extending a given problem such that a solution to the old problem requires
solving a new one first. For example, we have an existing problem:
Prove that (1) if a > 0, b > 0, then

√
ab ≤ a+b

2 .
To prove this problem, we need the following:
(2) If a > 0, b > 0, then 0 ≤ (

√
a−
√

b)2.

• Goal manipulation, for example, the formulation of a new problem by manipulating
the goals of an existing or beforehand formulated problem, in which the original
assumptions of the question are retained without adjustment [31].

• Targeting a specific solution, for example, constructing a new problem, whose solution
requires using a specific theorem, solution, or mathematical approach [34].

• Generalization generates a problem for which the existing problem is a special
case [35].

• Specialization considers some special, extreme, or exceptional situations.
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• Association generates a new problem that closely connects the given problem. For ex-
ample, if the existing problem is “A numerical series an = 1, 2, 22, 23, · · · , 2n−1, find
the sum of the first n terms”, then one may pose the problem “If {an} is a geometric
progression, then what series is {log2 an}?”.

• Analogical reasoning uses analogical reasoning to create a new problem based on the
existing problem. For example, according to “find the formula of the distance from a
point to a straight line in the plane”, create the new problem of “find the formula of
the distance from a point to a straight line in the 3-dimensional space”.

For more background on the mathematical problems posing, the readers can easily
find relevant papers for further reading.

3. Preliminary

For the following discussion, we need to introduce some relevant mathematical con-
cepts using the standard notations of Nevanlinna theory [36–38].

Define the growth order, low growth order and hyper order as

ρ(g) = lim sup
r→∞

log T(r, g)
log r

, µ(g) = lim inf
r→∞

log T(r, g)
log r

, ρ2(g) = lim sup
r→∞

log log T(r, g)
log r

.

Define the shift by gc(z) = g(z+ c), and define the first-order difference and n-th-order
difference operators by

4cg(z) = g(z + c)− g(z),4n
c g(z) = 4n−1

c (4cg(z)).

As is widely known, if g(z + t) = g(z) for all z ∈ C, where t ∈ C, and t 6= 0, then we
call g(z) a periodic function with period t. Obviously, a non-constant polynomial is not
a periodic function, for example, w(z) = zn is not periodic. We call a complex non-zero
number t the basic period or fundamental period of the function g(z) if all periods of g(z)
are integer multiples of t. Let kw and lw be two periods of g(z), then their ratio l/k must
be rational. No nonconstant entire function has two periods for which the ratio is not
rational ([39], pp. 69–70).

4. Problems Related to the Periodicity of Functions

The periodicity of functions is an essential area in the study of functions theory. Many
mathematicians have made important contributions to this field. Yang’s conjecture gave
an impetus for research in this area. In this section, we survey some of these results to
facilitate our analysis of how mathematicians formulate their mathematical problems by
applying the strategies. If more than one strategy is used in posing a problem, we prioritize
the most central strategy.

In the mathematical research, researchers are very interested in exploring whether the
sufficient necessary conditions for a mathematical statement and the inverse problem of
a given problem are still correct. For example, for the entire function, f (x) = sin x, then
(sin x)′ = cos x, (sin x)′′ = (cos x)′ = − sin x; therefore, we have (sin x)′′ sin x = − sin2 x.
In this direction, we guess that Titchmarsh, by symmetry and generalization, posed the
following result ([40], pp. 263).

Theorem 1 ([40], pp. 263). The differential equation f (u) f ′′(u) = − sin2 u has no real entire
functions of a finite order except f (u) = ± sin u.

Applying generalization on Theorem 1, Titchmarsh posed the following problem.

Problem 1 ([40], pp. 267). Find out the real transcendental entire solutions of

f (z) f (k)(z) = m(z) sin2 z,
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where m(z) is a non-zero polynomial. The real entire function f (z) means that f : R→ R.

By generalization on Theorem 1, Li, Lü, and Yang [41] removed the condition that f (z)
is real and of a finite order, and obtained the following result.

Theorem 2 ([41]). Suppose that f (z) is an entire function satisfying

f (z) f ′′(z) = m(z) sin2 z,

where m(z) is a non-zero polynomial with real coefficients and real zeros, then m(z) must
be a non-zero constant p and f (z) = a sin z, where a is a constant satisfying a2 = −p.

Applying generalization on Theorem 2 with f f (k) and f = α sin z, it is easy to pose
the following problem.

Problem 2. If f is a transcendental entire function, k is a positive integer. If f is a periodic function,
then f f (k) is also periodic.

Applying symmetry on Problem 2, it is easy to obtain Problem 3.

Problem 3 (Yang’s Conjecture, 2018 [42,43]). Let f be a transcendental entire function and k a
positive integer. If f f (k) is a periodic function, then f is also periodic.

From the point of view of differential equations, applying the association on Problem 3, it is
easy to find that the conjecture is connected to the equation f (z + c) f (k)(z + c) = f (z) f (k)(z),
which involves difference and differential operators. Therefore, applying association, it is easy
to pose the following.

Problem 4 ([44]). Solve the differential equation

f (z) f (k)(z) = f (z + c) f (k)(k + c),

where f (z) f (k)(z) is a periodic function with period c, and c is a non-zero constant.

By using specialization, it is easy to reduce Problem 4 to the following special case:

Problem 5. Solve f (z + c) = f ′(z), where c is a non-zero constant.

By using constraint manipulation (numerical variation) on Problem 5, it is easy to pose
the following special case, for example.

Problem 6. Solve f (z + c) = f ′′(z), where c is a non-zero constant.

Applying constraint manipulation (what-if-not) on Problem 3, most likely, Wang and
Hu [42] created and proved the following.

Theorem 3 ([42]). Suppose that f is a transcendental entire function and assume that k is a
positive integer. If ( f 2)(k) is a periodic function, then f is also.

Applying specialization on Problem 3, Theorem 3 is degraded into Theorem 4.

Theorem 4 ([42]). Assuming that k = 1, then ( f 2)′ = 2 f f ′, and f 2 is a periodic function, and
then f is also. This is a special case of Yang’s conjecture (Problem 3) as k = 1.

Applying specialization on Problem 3, if f is a transcendental entire function with a
nonzero Picard exceptional value, Liu and Yu [43] prove the following result:
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Theorem 5 ([43]). Let f be a transcendental entire function with a nonzero Picard exceptional
value, and let k be a positive integer. Suppose that f f (k) is a periodic function, then f is also.

Applying generalization on Theorem 3, it is easy to obtain the following results.

Theorem 6 ([43]). Suppose that f is a transcendental entire function, k and n are positive integers
and n ≥ 2. Supposing that ( f n)(k) is a periodic function, then f is also periodic.

Applying constraint manipulation (what-if-not) on Problem 3, it is easy to obtain the
following.

Problem 7 ([43]). Suppose that f (z) is a transcendental entire function, n ≥ 2, k is a positive
integer, ai are constants, and an 6= 0. Is f also a periodic function if (an f n + · · ·+ a1 f )(k)(n ≥ 2)
is a periodic function?

Applying specialization on Problem 7, it is easy to obtain the following theorem.

Theorem 7 ([43]). Let f be a transcendental entire function and k a positive integer. Let a1 and a2
be two constants and a2 6= 0. If (a2 f 2 + a1 f )(k) is a periodic function, then f is also periodic.

Applying constraint manipulation (what-if-not) on Problem 7, it is easy to obtain the
following theorem.

Theorem 8 ([43]). Assume that k and n are positive integers with n ≥ 2. Let f be a transcendental
entire function with ρ2( f ) < 1 and N(r, 1/ f ) = S(r, f ). Suppose that (an f n + · · ·+ a1 f )(k) is a
periodic function and a 6= 0, then f is also periodic.

Applying generalization on Problem 3, the generalized Yang’s conjecture (Problem 8)
was posed by Liu, Wei, and Yu [45].

Problem 8 (Generalized Yang’s conjecture [45]). Suppose that f is a transcendental entire
function and n, k are two positive integers. Suppose that f n(z) f (k)(z) is a periodic function, then f
is also periodic.

By specialization, Liu, Wei, and Yu posed and proved the following special case of
Problem 8:

Theorem 9 ([45]). Suppose that f (z) is a transcendental entire function and n, k are positive
integers. Suppose that one of the following conditions holds:

(i) k = 1;
(ii) f (z) = eh(z), where h(z) is a non-constant polynomial;
(iii) f (z) has a non-zero Picard exceptional value, f (z) is of a finite order, and f (z)n f (k)(z)

is also a periodic function with period c;
then, f (z) is also a periodic function.

Applying associations on Problem 8, Liu et al. posed the following problem.

Problem 9 ([45]). Supposing that f n f (k) and f n f (l) are periodic functions, do they have the same pe-
riod?

Applying the specialization to Problem 9, it is easy to obtain the following.

Theorem 10 ([45]). Suppose that f (z) is a transcendental entire function and n, k are positive
integers. Suppose that f (z)n f (k)(z) and f (z)n f (k+1)(z) are periodic functions with the same
principal period c, then f (z) is also a periodic function with period c, 2c or (n + 1)c.
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Applying the association on Problem 8, it is easy to obtain Theorem 11.

Theorem 11 ([45]). Supposing that f (z) is a transcendental entire function and n ≥ 2, k is a
positive integer. Suppose that f n + f (k) is a periodic function with period c and one of the following
conditions holds:

(i) k = 1;
(ii) f (z + c)− f (z) without zeros;
(iii) The zero multiplicity of f (z + c)− f (z) is greater than or equal to k; then f (z) is also a

periodic function with period c or 2c.

Applying the specialization on Problem 8, it is easy to obtain the following.

Theorem 12 ([46]). Suppose that f is a transcendental entire function of hyper-order strictly
smaller than 1, and n, k are positive integers. If f (z) has a finite Borel exceptional value b,
and f (z)n f (k)(z) is a periodic function, then f (z) is also a periodic function.

Applying generalization on Theorem 11, it is easy to obtain the following theorem.

Theorem 13 ([46]). Let f be a transcendental entire function of hyper-order strictly less than 1,
and n(≥ 2), k(≥ 1) be integers. If f (z)n + a1 f ′(z) + · · ·+ ak f (k)(z) is a periodic function, where
a1, · · · , ak are constants, then f (z) is also a periodic function.

Applying generalization on Problem 8, it is easy to obtain the following problems.

Problem 10 ([47]). Suppose that f (z) is a transcendental entire function. Assuming that
f (z)n f (k)(z+ η) is a periodic function, then is f (z) also a periodic function, where n, k are integers?

In Theorem 10, the case of η = 0 is the generalized Yang’s conjecture.
Applying the specialization k = 0 on Problem 10, it is easy to obtain the following.

Theorem 14 ([47]). Suppose that f (z) is a transcendental entire function with ρ2( f ) < 1, and
n ≥ 2 is a positive integer. Assume that f (z)n f (z + η) is a periodic function with period c, then
f (z) is a periodic function with period (n + 1)c.

When n = 1, suppose that f (z + η) f (z) is periodic and the period c = η, then f (z) is
also periodic with period 2η. Furthermore, applying constraint manipulation (what-if-not)
mainly on Theorem 14, it is easy to obtain the following problem.

Problem 11 ([47]). Supposing that f (z) f (z + η) is a periodic function with period c( 6= η), then
f (z) is also a periodic function.

Applying generalization on Theorem 14, it is easy to obtain the following problem:

Problem 12 ([47]). Suppose that f (z) is a transcendental entire function and n, k are positive
integers. Supposing that [ f (z)n f (z + η)](k) is a periodic function, does it follow that f (z) is also a
periodic function?

Applying the specialization on Problem 12, it is easy to obtain the following.

Theorem 15 ([47]). Suppose that f (z) is a transcendental entire function with ρ2( f ) < 1 and
n ≥ 4 is a positive integer. Assume that [ f (z) f (z + η)](k) is a periodic function with period c, and
then f (z) is a periodic function with period (n + 1)c.

Applying generalization on Theorem 15, it is easy to obtain the following.
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Theorem 16 ([47]). Assume that [ f (z)n f (z + η)](k) is a periodic function with period η. If f (z)
is a transcendental entire function of finite order and n ≥ 1, then f (z) is a periodic function with
period (n + 1)η. If f (z) is a transcendental entire function of infinite order and n = 1, k = 1, then
f (z) is a periodic function with period 2η.

Applying analogical reasoning on Theorem 16, it is easy to obtain the following.

Problem 13 ([47]). Suppose that f (z) is a transcendental entire function and ∆η := f (z + η)−
f (z). If [ f (z)n∆η f ](k) is a periodic function, does it follow that f (z) is also a periodic function?

Applying specialization on Problem 13, it is easy to obtain the following.

Theorem 17 ([47]). Suppose that f (z) is a transcendental entire function with ρ2( f ) < 1 and
n ≥ 5 is a positive integer. If [ f (z)n∆η f ](k) is a periodic function with period η, then f (z) is also a
periodic function with period (n + 1)η.

Applying generalization on Problem 8, it is easy to obtain the following problem.

Problem 14 ([48]). Suppose that f (z) is a transcendental meromorphic function, n ∈ Z, and
k ∈ N. If f (z)n f (k)(z) is a periodic function, does it follow that f (z) is also a periodic function?

Applying specialization on Problem 14, it is easy to obtain the following theorem.

Theorem 18 ([48]). Let f (z) be a transcendental meromorphic function and n ∈ Z. Suppose
that f (z)n f ′(z) is a periodic function with period c. Then f (z) is also periodic, or a function of a
periodic function.

Applying generalization on Theorem 18, it is easy to obtain the following problem.

Problem 15 ([48]). Suppose that f (z) is a transcendental meromorphic function, and n ∈ Z,
k ∈ N. If f (z)n f (k)(z) is a periodic function, does it follow that f (z) is also periodic?

Applying constraint manipulation (what-if-not) on Problem 3, it is easy to obtain
Theorem 19.

Theorem 19 ([48]). Suppose that f is a transcendental entire function with a Picard exceptional
value 0. If f ′′

f is a periodic function with period c, then f (z) = eh1(z)+Az/(2c), where h1(z) is a
periodic function with period 2c, and A is a constant.

Applying generalization on Theorem 19, it is easy to obtain the following.

Theorem 20 ([48]). Suppose that f is a transcendental entire function with a Picard exceptional
value 6= 0. If f (k)/ f is a periodic function with period c, then f (z) is a periodic function with
period c.

Applying generalization on Theorem 20, it is easy to obtain the following.

Problem 16 ([48]). Suppose that f is a transcendental entire function and n, k are positive integers.

If f (k)
f n is a periodic function, then f is also periodic.

Applying constraint manipulation (what-if-not) on Problem 16, it is easy to obtain
Theorem 21.
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Theorem 21 ([48]). Suppose that f (z) is a transcendental meromorphic function, n ∈ Z, and

k ∈ N. Suppose that f (k)(z)
f (z)n and f (k+1)(z)

f (z)n are periodic functions with period c. Then, f (z) is also
periodic or a function of a periodic function.

Applying constraint manipulation (numerical variation and what-if-not) on Theorem 3,
it is easy to obtain the following.

Theorem 22 ([49]). Suppose that f is a transcendental entire function with finite order, zero is a

Picard exceptional value of f , and k is a positive integer. If ( f 2)
(k) is a periodic function with a

period of c, then f is also a periodic function with a period of 2c; furthermore, f (z) = eaz+b, where
a 6= 0, b are constants and e2ac = 1.

Theorem 22 gives the expression of the function f .

Applying constraint manipulation (what-if-not) on Theorem 22, replace ( f 2)
(k) with

f ( f 2)
(k), and Theorem 22 is changed into the following.

Theorem 23 ([49]). Suppose that f is a transcendental entire function of a finite order, zero is a

Picard exceptional value of f , and k is a positive integer. If f ( f 2)
(k) is a periodic function with a

period of c, then f is also a periodic function with a period of 3c; furthermore, f (z) = eaz+b, where
a 6= 0, b are constants and e3ac = 1.

Applying constraint manipulation (what-if-not) on Theorem 23, it is easy to obtain the
following theorem.

Theorem 24 ([49]). Suppose that f is a transcendental entire function of a finite order, zero is a

Picard exceptional value of f , and k is a positive integer. If f ( f (k))
2

is a periodic function with a
period of c, then f is also a periodic function with a period of 3c.

Applying constraint manipulation (what-if-not) on Theorem 24, it is easy to obtain
the following.

Theorem 25 ([49]). Suppose that f is a transcendental entire function with finite order, zero is a
Picard exceptional value of f , and k is a positive integer. If Q( f ) = f n0( f ′)n1( f ′′)n2 · · · ( f (k))

nk is
a periodic function with a period of c, then f is also periodic with a period of (n0 + n1 + · · ·+ nk)c.

Note that if use the strategy of specialization, set n0 = 1, nk = 2, and n1 = · · · = nk−1
vanishes. Then, Theorem 25 degrades to Theorem 24.

Suppose that f (z) is a periodic function with period c, then f (k) is also a periodic func-
tion with the same period c. But the symmetric problem is not true; see f (z) = eez

+ z and
f (z) = sin z+ z. Therefore, applying generalization on Theorem 8, Wei, Liu, and Liu [50] ob-
tained the following.

Theorem 26 ([50]). If f is a transcendental entire function, k, n are positive integers and
a1, a2, · · · , an( 6= 0) are constants. If (an f n + · · · + a1 f )(k) is a periodic function and n ≥ 2,
then f is also a periodic function.

Applying specialization on Theorem 26, the following corollary is obtained immedi-
ately by operation of the polynomial 1

n+m+1 f n+m+1 − 1
n+1 f n+1 in the above Theorem 26.

Theorem 27 ([50]). Let f be a transcendental entire function. If f n( f m − 1) f ′ is a periodic
function, then f is also a periodic function.

Applying generalization on Theorem 27, it is easy to obtain Theorem 28.
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Theorem 28 ([50]). Let f be a transcendental entire function with n, m, and k being positive
integers. If f n( f m − 1) f (k) is a periodic function with period c, and one of the following is satisfied,
then f (z) is also a periodic function:

(i) f (z) = eh(z), where h(z) is an entire function;
(ii) f (z) has a non-zero Picard exceptional value and f (z) is of a finite order;
(iii) f n( f m − 1) f (k+1) is a periodic function with period c;

Applying association on Theorem 28, it is easy to obtain the following problem.

Problem 17 ([50]). If f is a transcendental entire function, k is a positive integer. If f (k)

f n( f m−1)
(m, n ≥ 1) is a periodic function, is it true that f is also a periodic function?

Applying Problem 17, it is easy to obtain the following theorem.

Theorem 29 ([50]). Let f is a transcendental entire function. If f ′

f ( f−1) is a periodic function, then
f is also periodic.

Applying generalization on Problem 29, it is easy to obtain the following theorem.

Theorem 30 ([50]). Let f be a transcendental entire function and n, m, k be positive integers.

If f (k)

f n( f m−1) and f (k+1)

f n( f m−1) are periodic functions, then f is also periodic.

Applying analogical reasoning, the paper [51] considered the difference version of
Problem 3, then obtained Theorem 31.

Theorem 31 ([51]). Let f be a transcendental entire function with finite order, and d be a Picard
exceptional value of f . If f (z)∆c f (z) is a periodic function, then f is also.

Applying analogical reasoning on Theorem 22, substituting ( f 2)
(k) to ∆c( f 2), Deng

and Yang [51] obtained the following.

Theorem 32 ([51]). Let f be a transcendental entire function with finite order, and d be a Picard
exceptional value of f . If ∆c( f 2) is a periodic function, then f is also periodic.

Theorems 31 and 32 indicate the connections of periodicity between a transcendental
entire function and its differences. Furthermore, applying generalization, Ren and Dang [49]
put out the following.

Theorem 33 ([49]). Let f be a transcendental entire function of a finite order and d be a Picard
exceptional value of f . If f (z)∆n

c f (z) is a periodic function, then f is also a periodic function.

In this direction, applying constraint manipulation on Theorem 33, we would like to
pose the following new problems for the readers regarding future research.

Problem 18. Suppose that f is a transcendental entire function of a finite order and d is a Picard
exceptional value of f . If f ′(z) + ∆n

c f (z) is a periodic function, then f is also periodic.

Problem 19. Let f be a transcendental entire function of a finite order and d be a Picard exceptional
value of f . If f ′(z)∆n

c f (z) is a periodic function, then f is also a periodic function.

Problem 20. Let f be a transcendental entire function with finite order and d be a Picard exceptional
value of f . If ∆n

c f (z)
f (z) is a periodic function, then f is also periodic.
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Applying analogical reasoning on Problem 4, we obtain the following new problem
for the readers regarding future research.

Problem 21. Solve the following difference equation:

f (z)∆n
c f (z) = f (z + η)∆n

c f (z + η),

where f (z)∆n
c f (z) is a periodic function with period η.

5. Results

There are many published papers on the study of the periodicity of entire functions
and Yang’s conjecture, and we analyzed only a few of them. In total, there are 54 problems
or theorems collected in the current research. The mathematicians may use more than one
strategy when posing their problems. However, we assume that they usually use one main
strategy when creating new problems or theorems. Then, the following Table 1 is obtained.

Table 1. The statistics of used strategies.

Strategies 1 Times

symmetry 2
constraint manipulation 15

goal manipulation 0
targeting a particular solution 0

generalization 17
specialization 12

association 4
analogical reasoning 4

Total 54
1 We treat the authors posing multiple theorems and problems in one paper as though the authors are using the
chaining strategy once. So, we omit chaining here.

The results show that mathematicians often use constraint manipulation, generaliza-
tion, and specialization to make new problems of mathematical science, and association,
analogical reasoning, and symmetry are less used. Generalization being used more fre-
quently is due to mathematicians’ proclivity to generalize existing results to more general
situations, giving proof if they are correct and counterexamples if they are not. The con-
straint manipulation is used many times when mathematicians solve difficult problems in
mathematics, such as Yang’s conjecture in this paper. This is because, in solving difficult
problems, mathematicians often have to restrict the situations to make the problem specific
and easier to solve.

The number of times that goal manipulation and targeting a particular solution are
used here is zero. Actually, it is not surprising because the two strategies are often used
when students learn math and take exams. Teachers use them to teach students to pose
more math problems, solve a series of exercises, or acquire mathematics knowledge.

6. Examples

Today, more and more mathematics teachers are recognizing that integrating problem
posing into their teaching has many advantages, but they also encounter many difficulties,
such as a lack of confidence in implementing problem posing, a lack of knowledge about
how to create high-level problems, and a lack of knowledge about how to respond to the
challenges that arise in problem-driven lessons [5]. For students, they also face challenges,
such as whether they can adapt to being integrated into the classroom with problem posing,
whether they can pose high-quality mathematical problems, and whether problem posing
will have a proactive impact on their academic performance.
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Most recently, to facilitate the easy integration of problem posing into mathematics
instruction, Dang et al. developed a model of problem-driven teaching (PDT) [5]. The model
includes three stages: “(1) The preparation of the problems (generating new problems
based on textbooks; generating new problems based on mathematical, scientific, and life
situations; and imagining the solutions of the prepared problems; (2) The implementation
of teaching (teachers teaching based on prepared problems and posing new problems in
real-time, and students solving them or posing new problems); (3) The evaluation and
reflection stage (evaluating the quality of teaching and the quality of problems, improving
the instruction)”.

We divided the problems into two categories: mathematical and non-mathematical
problems. In the first stage, mathematical teachers should prepare for the given situations of
problems or the given problems according to the teaching goal of a lesson using the model
of PDT. We suggest that mathematics teachers obtain problems or situations of problems
from mathematics textbooks, instructional materials, exercises, examinations, or other
related sources. Teachers need to transform the existing problems in these materials into
problem-posing tasks designed to integrate math instruction based on instructional goals.
Importantly, teachers should be able to foresee that in prepared problem-posing tasks,
teachers and students should be able to pose problems using the strategies or techniques
often used by mathematicians as mentioned above.

In the second stage, the math teacher begins to implement classroom instruction.
The math teacher presents a problem-posing task (including a given problem or problem
situation). The teacher then guides students to generate problems and pose problems. This
is a good time to use the strategies mentioned above, which are often used by mathemati-
cians. The teacher evaluates the problem posing, guides students to improve the problem,
and then selects high-quality problems for problem solving based on the instructional
goals. Problem solving can be performed by the teacher, by the students, or jointly. There
may be more than one problem-posing task in a lesson. Students will acquire math knowl-
edge and achieve math understanding through the interweaving of problem posing and
problem solving.

Next, we give some cases of problem posing.

6.1. The Quadratic Equations and Roots

This case demonstrates how math exercises from instructional materials can be trans-
formed into a class of problem posing. The initial problem is as follows:

Problem A. Find the range of values of m when a quadratic equation
(m − 1)x2 + 2(m + 1) − m = 0 with respect to x is assumed to satisfy the follow-
ing conditions, respectively:

1. Both roots are greater than 0.
2. One root is greater than −1 and the other is less than −1.
3. One root is in (1, 2), the other in (−1, 0).
4. One root is in (−1, 1) and the other is not in (−1, 1).
5. One root is less than 1 and the other is greater than 2.
6. Both roots are in [−1, 3).
7. Both roots are less than 1.
8. There is a root in (1, 2).
9. Both roots are in (1, 2).

The problem examines the distribution of roots of quadratic equations. Students have
previously studied knowledge, such as Veda’s theorem, quadratic functions, and quadratic
inequalities. The learning goal of this lesson is to understand the distribution of roots
of quadratic equations in order to achieve a deep understanding of quadratic equations.
Knowledge about Veda’s theorem, the formula for finding the roots of a quadratic equa-
tion, the image of a quadratic function, and fractional inequalities, is used in solving
these problems.
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However, in the actual process of teaching mathematics, teachers often do not integrate
problem posing into teaching but directly show the behavior of the distribution of the roots
of quadratic equations and the relevant theorems, and students have significant obstacles
and confusion in understanding and memorizing this knowledge. This way of teaching
and learning is very direct, memorized and force fed. It makes it difficult for students
to understand and memorize the knowledge and techniques, theorems and conclusions.
The learning effect of the students and the effectiveness of the teacher may not be high, and
it is difficult to achieve the intended teaching goals.

Therefore, we suggest that teachers begin their instruction by showing a simple
distribution of Problem B in front of Problem A as follows.

Problem B. Suppose that the two real roots of a quadratic equation ax2 + bx + c = 0,
(a 6= 0) are x1, x2, and x1 < x2.

(The teacher anticipates the following sub-problems, which the students pose according to
the given situation, aiming to explore the sufficient and necessary conditions. Let k, k1, k2
be constants, k1 < k2.)

1. Both roots are positive, x1 > 0, x2 > 0.
2. Both roots are negative, x1 < 0, x2 < 0.
3. Both roots are greater than k, x1 > k, x2 > k.
4. Both roots are smaller than k, x1 < k, x2 < k.
5. One root is smaller than k and the other is greater than k, x1 < k < x2.
6. If and only if k1 < x1 < k2.
7. If and only if k1 < x2 < k2.
8. There is and only one root in (k1, k2).
9. Both roots are in (k1, k2).

In Problem B, the nine problems do not need to be presented by the teacher all at
once. Instead, students are required to identify the problems themselves on the basis
of the problem situation and the sample problem given by the teacher (e.g., the teacher
gives only the sub-problem 1 “Both roots are positive”). Then, the students pose problems
that may be contained within the scope of these nine problems or maybe other problems
that are out of scope. At this point, the teacher needs to consider how to evaluate the
students’ problems posing, explain how these strategies work well and, further, select some
high-quality problems for problem solving.

In Problem B, we can see that applying constraint manipulation (what-if-not, if it
is not 0) on 1 will result in 2, applying generalization (from 0 to k) on 1 will result in
3, applying generalization (from 0 to k) on 2 will result in 4, and applying constraint
manipulation (what-if-not if it is not k, x1 > k, x2 > k, but others) on 3 and 4 will result in 5
to 9. Teachers need to consider how to help students practice using these strategies in their
problem-posing tasks.

After solving the basic Problem B, the teacher is ready to lead their students to posing
and solving Problem A. This kind of pedagogical process, which imitates mathematicians’
process of identifying, problem posing, and problem solving, can facilitate good action for
students’ mathematical understanding.

6.2. Linear Programming

We are going to give another example of how a math exercise can be transformed into
a problem-posing task and what problem-posing strategies might be used. The exercise is
as follows.

Problem C. Consider that x, y satisfy the following constraint:
x ≥ 1
x− 3y + 4 ≤ 0
3x + 5y− 30 ≤ 30.
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1. Calculate the minimum and maximum values of the function z = 2x− y.
2. Calculate the minimum and maximum values of the function z = 2x + y.
3. If there are infinitely many optimal solutions for the function z = ax + y to

maximize, find the value of the real number a.
4. Calculate the range of the function z = y+5

x+5 .
5. Calculate the range of the function z = x2 + y2.
6. Calculate the range of the function z = |x + y + 1|.

During instruction, it is recommended that math teachers show students only the
problem situation and the first sub-problem, and not the last five problems that follow.
When students pose problems with the situation and the sample sub-problems, teachers
can encourage students to use the strategies on the basis of the given information and the
given problems.

However, in order to accomplish the teaching and learning goals, teachers should
remind students of the following six points. First, the problem posing should focus on
the learning content of the lesson (e.g., viable domain for linear programming, optimal
solutions, and ranges of relevant expressions). Second, students are encouraged to use
the frequent problem-posing strategies mentioned above, such as constraint manipulation,
generalization, specialization, and so on. Third, when students have difficulties in problem
posing, teachers should give more hints and examples. Fourth, evaluate the quality by
comparing students’ products with the original problems in the exercise and give them
positive feedback. Fifth, solve the problems in the exercise. Sixth, select some novel
problems posed by students for problem solving. The following are some problems that
students may pose:

1. Calculate the minimum and maximum values of the function z = 2x− 2y. (Constraint ma-
nipulation.)

2. Calculate the minimum and maximum values of the function z = 2x + 3y. (Constraint ma-
nipulation.)

3. If there are infinitely many optimal solutions for the function z = x + by to maximize, find
the value of the real number b. (Constraint manipulation and goal manipulation.)

4. If there are infinitely many optimal solutions for the function z = x + ay to minimize, find
the value of the real number a. (Constraint manipulation.)

5. Calculate the range of the function z = y+1
x+2 . (Constraint manipulation.)

6. Calculate the range of the function z = |x + 2y + 1|. (Constraint manipulation.)
7. Calculate the area of the variable domain. (Association.)

After the given problem has been solved, mathematical problems can also be posed by
students according to the solutions or their experience in the processes of problem solving.
For example, the answer to sub-problem 1 is zmax = 7, zmin = − 17

5 . Teachers can suggest
the following prompt:

If we make use of the symmetry strategy and switch the knowns and unknowns
of the sub-problem 1, will we get a new problem?

In other words, teachers and students need to reorganize the following statements to
generate new mathematical problems (for example, see Problem D and Problem E) through
strategies such as symmetry, constraint manipulation, goal manipulation.

Given that x, y satisfy the constraint that
x ≥ 1
x− 3y + 4 ≤ 0
3x + 5y− 30 ≤ 0.

the maximum and minimum values of the objective function z = 2x− y are zmax = 7,
zmin = − 17

5 .
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Problem D. Given that x, y satisfy the constraint that
x ≥ k
x− 3y + 4 ≤ 0
3x + 5y− 30 ≤ 0.

the maximum and minimum values of the objective function z = 2x− y are zmax = 7,
zmin = − 17

5 . Then, find the value (scope) of k.

Problem E. Given that x, y satisfy the constraint that
x ≥ 1
x− 3y + 4 ≤ 0
3x + 5y− 30 ≤ 0.

find the integer solutions (x, y).

The teacher encourages students that they can go along with the idea of posing more
problems. Further, after training in problem posing, the level and complexity of the students’
mathematical products will increase.

6.3. The Tangent

We intend to distill a case of problem posing from a Chinese high school mathematics
textbook in order to show teachers and students how a simple mathematical formula can be
expanded into a more meaningful one through utilizing the strategies. By simply using the
strategies, the original problem is expanded into a more complex one. Therefore, the pro-
cess involved in mathematics problem posing is also a kind of experience of discovering
mathematical principles. It is the process by which students improve their mathematical
performance, and mathematical thinking develops and evolves.

As we all know, for each high school student, the following formula is very familiar:

tan(a + b) =
tan a + tan b

1− tan a tan b
.

Then, applying specialization, we can obtain

tan(1◦ + 44◦) =
tan 1◦ + tan 44◦

1− tan 1◦ tan 44◦
.

So, what is the relationship between tan 1◦ + tan 44◦ and tan 1◦ tan 44◦?
Applying constraint manipulation (numerical variation), we can pose another problem:

what is the relationship between tan(−1◦) + tan 46◦ and tan(−1◦) tan 46◦?
Applying generalization, we can pose the following problem: if a + b = π

2 , then
tan a + tan b + tan a tan b =?

Applying constraint manipulation (numerical variation), we can pose the following
problem: if a + b = π

2 , then (1 + tan a)(1 + tan b) =?
Applying generalization, we can pose the following problem:

(1 + tan 1◦)(1 + tan 2◦) · · · (1 + tan 43◦)(1 + tan 44◦) =?

Teachers can continue with the following question: can students pose any other relevant
problems?

Consider this one:

(1 + tan−1◦)(1 + tan−2◦) · · · (1 + tan 47◦)(1 + tan 46◦) =?
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To high school students, these questions seem very simple, but they are much more
interesting. If students are trained in problem-posing strategies, they will be capable of pos-
ing these or similar questions when they are faced with this problem-posing task. Perhaps
they will be challenged to pose high-quality problems. With positive encouragement and
guidance from the teacher, every student will be able to come up with good math problems
of their own. As a result, every student in the problem posing classroom will be able to
develop accordingly.

7. Discussions and Limitations
7.1. Discussions

We investigate which strategies are frequently used by mathematicians in their works.
According to the opening literature on problem posing that we analyzed, there are relatively
very few studies on problem formulation for mathematicians, so our results fill the gap.
At the micro level, the results of the study show how mathematicians apply these strategies
to pose complex mathematical problems and solve them, even mathematical conjectures.
In particular, at the end of Section 4, the authors of this paper also posed four interesting
mathematical problems that remain to be solved.

These 54 theorems and problems reflect well the progress in the study of the periodicity
and Yang’s conjecture, as well as the path of research. The strategies used here are also
positive for solving other mathematics problems.

At the same time, the results also provide some help and real examples of effective
mathematical problem solving and even mathematical conjecture solving. This is because
problem posing as a component of problem solving can effectively contribute to problem
solving under the framework of Polya’s problem-solving technique.

Cai and Hwang (2020) [25] put forward two key questions: Are teachers equipped to
pose important and valuable math problems? How can teachers be supported in posing
important and valuable math problems? In Section 4, we pose four new pure mathematics
problems on the periodicity of entire functions. In Section 6, by reformulating and restruc-
turing pre-existing problem situations or pre-existing problems that are slightly randomly
selected in the math textbooks or exercises, new math problems are posed. Therefore, our
results give partial answers to the questions asked by Cai and Hwang. Also, we give some
classical examples of transforming “fixed” teaching resources into “active” problem-posing
tasks in math teaching.

There is a great need for research on how to encourage secondary school students to
imitate mathematicians in posing worthwhile problems, and how to integrate mathematical
problem posing in instruction using these strategies. Subsequent research may therefore
focus on how to foster primary and secondary school students to raise good mathematical
problems in math classroom—just like mathematicians do.

7.2. Limitations

There are some limitations of the current research. First, since there is a large body
of literature on the topic of the periodicity of complex functions, this paper analyzes only
some of them. Second, the chaining strategy is more often used to prove theorems and
solve problems. Therefore, we omit it here. Third, in many cases, we do not know what is
really in the mind of the mathematician at the time of posing these mathematical problems
or theorems. Therefore, when analyzing the strategies used to formulate these problems,
we determine them based on the mathematical expressions, conditions, and conclusions in
the problems or theorems. Four, although some researchers have shown cases of problem
posing in statistics courses, for instance, see [5], few case studies have integrated prob-
lem posing into the teaching of geometry, probability, or other topics. Therefore, future
research should cover a wider range of cases, or extend problem posing to university math
teaching. This paper attempts to provide a case study research paradigm for studying
how mathematicians formulate and pose new mathematical problems and gives some
interesting examples of teaching with problem posing. Therefore, this is a pioneering study
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that integrates the mathematical problem posing of mathematicians with the mathematical
problem posing by elementary and secondary school math teachers and students, which is
of great importance in the field of mathematical problem posing.
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