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Abstract: Motivated by the recent experiment on bosonic mixtures of atoms and molecules, we
investigate pairing superfluid–insulator (SI) transition for bosonic mixtures of atoms and molecules in
a one-dimensional optical lattice, which is described by an extended Bose–Hubbard model with atom–
molecule conservation (AMC). It is found that AMC can induce an extra pair–superfluid phase though
the system does not demonstrate pair-hopping. In particular, the system may undergo several pairing
SI or insulator–superfluid transitions as the detuning from the Feshbach resonance is varied from
negative to positive, and the larger positive detuning can bifurcate the pair–superfluid phases into
mixed superfluid phases consisting of single-atomic and pair-atomic superfluid. The calculation of
the second-order Rényi entropy reveals that the discontinuity in its first-order derivative corresponds
to the phase boundary of the pairing SI transition. This means that the residual entanglement in
our mean-field treatment can be used to efficiently capture the signature of the pairing SI transition
induced by AMC.

Keywords: bosonic mixtures; optical lattice; pair–superfluid

1. Introduction

Quantum gas mixtures in optical lattices provide an ideal testing ground to investigate
interaction-induced effects in condensed matter [1–3], such as the bosonic superfluid (SF) to
Mott-insulator (MI) transition in the presence of fermionic atoms [4–8] or molecules [9,10].
Recently, a coherent conversion between Cs atomic Bose–Einstein condensate (BEC) and
the condensate of molecules Cs2 was experimentally demonstrated by changing a magnetic
field in time that pushed the ultracold atoms across the Feshbach resonance [11]. The co-
herent coupling between atoms and molecules has been utilized to observe atom–molecule
Rabi oscillations [12,13], dynamics of matter waves [14], and predict quantum phase
transition between mixed atom–molecule and purely molecular condensates [9,15–23].
The fundamental characteristic of the atom–molecule coupling is its nonlinear nature; only
pairs of atoms can be converted to molecules, which can lead to a strong density depen-
dence of atom–molecule conversion (AMC) [24–26]. It is important that this aspect can
induce novel SF phase with both an atomic and a molecular condensate [17–19], super-Mott
phase [20,21], Feshbach insulator [22], and MI to SF transition [23,27–29].

Pair-SF phase has been observed in Bose–Hubbard models with explicit correlated or
pair-hopping processes [30–35], where a lesser known mechanism for pairing is correlated
to hopping that could lead to the formation of bound atom pairs. Motivated by the
possibility of stabilizing pairing phases of bosons in cold atomic gases, the pairing problem
of binary Bose mixtures in optical lattices has also been investigated [36–40], where strong
attractive mutual interaction can produce a dissipationless drag, and then the bosons
are tightly paired and transport is only via pair-SF. The phenomenon of bosonic pairing
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has recently been investigated in one-dimensional optical lattices containing mixtures of
bosonic atoms and molecules using the large-scale density matrix renormalization group
method [18]. The Feshbach resonant pairing interaction has been utilized to investigate the
nature of the SF phase transition between the molecular condensate and the coupled atomic–
molecular condensate. In this study, the von Neumann entropy was considered as indicative
of the quantum phase transition between these states. However, the effect of AMC on
pairing superfluid–insulator (SI) transition in the process of coherent conversion between
atomic BEC and the condensate of molecules is still unclear. In particular, knowledge on
how to efficiently and rapidly extract the signature of pairing SI transition is also lacking.

The entanglement entropy (EE) has been regarded as a typical signature of quantum
phase transition in various many-body quantum systems [41–55]. Recently, the second-
order Rényi EE in a bosonic SI transition has also been experimentally measured for
ultracold bosonic atoms in optical lattices [56]. Up to now, the density matrix renormaliza-
tion group method has been devoted to calculating the first-order EE (the von Neumann
entropy) in extended Bose–Hubbard systems with AMC [18]. While the calculation of von
Neumann entropy for infinite systems can effectively identify quantum phase transitions,
it requires substantial computational resources and a significant amount of time. The
mean-field (MF) approach, which is computationally efficient and time-saving, has been
successfully employed to predict the occurrence of numerous quantum phase transitions in
Bose–Hubbard systems. Can the MF approach capture the signature of EE in the emerged
pairing SI transition induced by AMC?

In this work, we investigate pairing SI transition and its MF signature of EE for
bosonic mixtures of atoms and molecules in a one-dimensional optical lattice by using
the MF approach. In addition to the SF and integer MI phases, it is found that AMC
can induce an extra pair-SF phase, though the system does not possess a pair-hopping.
Depending on the strength of the AMC and the single atomic hopping, the ground state
can be an MI, a mixed SF phase with both single-atomic and pair-atomic, or a pair-SF
phase. Especially, the ground-state can undergo several pairing SI or insulator-superfluid
transitions as the detuning is varied from negative to positive, and the larger positive
detuning can bifurcate the pair-SF phases into mixed SF phases consisting of single-atomic
and pair-atomic SF. Through the analysis of the second-order Rényi EE, we observe that
the discontinuity in its first-order derivative aligns with the critical point of the pairing SI
phase transition. This indicates that our MF approach effectively captures the EE signature
during the AMC-induced pairing SI phase transition.

The structure of this article is as following. In Section 2, we introduce the Hamiltonian
for our physical system and our MF treatment. In Section 3, we explore the effects of the
AMC and detuning on ground-state phase diagram. We show the AMC-induced pair-SF
and its robustness against atomic hopping in Section 3.1, and discuss the effect of detuning
on ground-state phase diagrams in Section 3.1. In Section 4, we show the relation between
the second-order Rényi EE and pairing SI phase transition. Finally, we give a conclusion in
Section 5.

2. Model

The system under consideration is bosonic mixtures of atoms and molecules in a
one-dimensional optical lattice with AMC, which allows two atoms to turn into a molecule
and vice versa. If the optical potential is sufficiently deep, and AMC is sufficiently smaller
than band-gap, the system can be described by a single-band Bose–Hubbard model with
an atom–molecule coherent mixture [20,22,23]:
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ĤAMC =− ∑
〈i,j〉

(
Ja â†

i âj + Jmm̂†
i m̂j + H.c.

)
+ ∑

i
[
Ua

2
n̂a

i (n̂
a
i − 1) +

Um

2
n̂m

i (n̂
m
i − 1)]

+ ∑
i
[Uamn̂a

i n̂m
i − µ(n̂a

i + 2n̂m
i )]

− g ∑
i
(m̂†

i âi âi + â†
i â†

i m̂i)

+ ∆ ∑
i

n̂m
i .

(1)

Here, 〈i, j〉 indicates the summation comprising all nearest-neighboring sites in the
chain, and the parameters Ja and Jm are atomic and molecular hopping strength between
nearest-neighbor sites. The operators âi and â†

i (m̂i and m̂†
i ) are bosonic annihilation and

creation operators of atoms (molecules) on site i, and operators n̂a
i = â†

i âi and n̂m
i = m̂†

i m̂i
correspond to number operators. Parameter Ua (Um) is inter-atomic (inter-molecular)
on-site interaction, and Uam denotes the interaction between atoms and molecules. The
chemical potential µ determines the particle filling and g denotes the AMC strength. The
parameter ∆ corresponds to the so-called detuning that brings the state of two atoms and
a molecule in and out of resonance on each site [20,22]. For simplicity, we set parameters
J = Ja = Jm and U = Ua = Um = Uam as our numerical calculations. Without loss of
generality, we set U as the energy scale.

By using the MF treatment, â = 〈â〉+ δ (same as m̂), and neglecting the second-order
fluctuations, the hopping terms are decoupled as

â†
i âj ≈ â†

i ψa
j + ψa∗

i âj − ψa∗
i ψa

j (2)

and
m̂†

i m̂j ≈ m̂†
i ψm

j + ψm∗
i m̂j − ψm∗

i ψm
j , (3)

where ψa
σ = 〈âσ〉 and ψm

σ = 〈m̂σ〉 (here σ denotes i or j) are so-called order parameter. Then
the original Hamiltonian (1) is decoupled as

ĤAMC = ∑
i

Ĥi
GMF, (4)

with the single-site mean-field Hamiltonian

Ĥi
GMF =− 2

(
Ja â†

i ψa
j + Jmm̂†

i ψm
j + H.c.

)
− 2

(
Ja|ψa

i |2 + Jm|ψm
i |2

)
+

Ua

2
n̂a

i (n̂
a
i − 1) +

Um

2
n̂m

i (n̂
m
i − 1)

+ Uamn̂a
i n̂m

i − µ(n̂a
i + 2n̂m

i )

− g
(

m̂†
i âi âi + â†

i â†
i m̂i

)
+ ∆n̂m

i .

(5)

The Gutzwiller ansatz allows us to express the state of the system as a product of individual
single-site states

|ΦAMC〉 = ∏
i
|φi

GMF〉, (6)
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where the state of the ith site |φi
GMF〉 can be expanded as

|φi
GMF〉 =

Nmax

∑
N=0
|Di(N)〉, (7)

with the dressed Fock state basis

|Di(N)〉 = ∑
na+2nm=N

Cna ,nm |na, nm〉. (8)

Here, na = 〈Di(N)|(n̂a + 2n̂m)|Di(N)〉 and nm = 〈Di(N)|( 1
2 n̂a + n̂m)|Di(N)〉 describe

the number of atoms and molecules in the ith site, and N = na + 2nm denotes the total
particle number, Nmax is the truncation of the maximum particle number, and the complex
probability amplitudes Cna ,nm satisfy

Nmax

∑
N=0

∑
na+2nm=N

|Cna ,nm |2 = 1.

Then the eigenequation ĤAMC|ΦAMC〉 = E|ΦAMC〉 of the whole system can be simplified as

Ĥi
GMF|φi

GMF〉 = Ei|φi
GMF〉, (9)

with E = ∑i Ei. The ground state and the order parameter can be obtained from the
single-site eigenequation (9) by giving the parameters U, J, g, µ, and ∆. It is worth noting
that the MF order parameters of different sites are equal to each other, and then we define
ψa = ψa

i = ψa
j and ψm = ψm

i = ψm
j .

3. The Effects of AMC and Detuning on Ground-State Phase Diagram

In this section, we will show how the AMC and detuning affect the ground-state
phase diagram for the Bose–Hubbard model (1). In Section 3.1, we show the AMC-induced
pair-SF and its robustness against atomic hopping. In Section 3.2, we show detuning caused
pairing SF-MI transitions.

3.1. AMC-Induced Pair-Superfluid

In order to distinguish different ground-state phases, we calculate the single-atomic
order parameter ψa = 〈â〉, pair-atomic order parameter ψaa = 〈â2〉, molecular order
parameter ψm = 〈m̂〉, and the corresponding filling number na = 〈n̂a〉 and nm = 〈n̂m〉.
Here, our main focus is on the character of the transition between the distinct pair-SF
and MI. In order to show the pair-SF phase more clearly, we show the phase diagram of
the pair-atomic order parameter ψaa in Figure 1a, where we only use even-number basis
{|Di(0)〉, |Di(2)〉, |Di(4)〉...} in our calculation. On the one hand, our results show that the
pair-SF phase of nonzero pair-atomic order parameter can take place for the regime of
strong inter-site hopping, J/U → ∞. On the other hand, for strong repulsion, J/U → 0,
there appear several integer atomic MI lobes. The pair-SF phase has also been found in
a one-dimensional extensional BH model with two-particle hopping [30–35]. Different
from the previous cases, the appearance of pair-SF phase in our system is a direct result
of AMC. As J � U, the atoms and molecules in each site can freely move between the
two adjacent sites. However, due to the regime in which AMC allows two atoms to turn
into a molecule and vice versa, the total atomic numbers of the corresponding pair-SF
phase must be even-integer numbers per site.

To understand the physical mechanism of pair-SF phase, we explore the filling config-
urations in the Mott state, namely, what is the most energetically favorable filling factor
|na, nm〉 for a given filling number na. In Figure 1b,c, we show the distributions of the
probability amplitudes |Cna ,nm |2 of the ground state for SF (J/U = 0.1, µ/U = 1.5) and
MI (J/U = 0.01, µ/U = 1.5) phases. The MI phases as a triple-peaked state (|0, 4〉, |2, 3〉
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and |4, 2〉) in the probability distribution mean that the total atomic numbers per lattice
are even-integer numbers (na = 8) and the residual atom in each lattice can still freely
convert to a diatomic molecule due to strong AMC. This filling configuration favors an
imbalanced filling pattern |na, nm〉, and reflects a similar charge–density–wave order in the
Mott state [57–59]. In the SF phase, the pairing atoms can move freely between neighboring
cells and there appears a pair-atomic SF, as shown in Figure 2c.

Figure 1. (a) Ground-state phase diagram for the symmetric Bose–Hubbard model (∆ = 0) with
AMC, only including even basis. The truncation of maximum particle number Nmax has been set
as Nmax = 10 in our calculation. The blue areas are vacuum and Mott insulator phases with zero
and even filling number na corresponding to zero-order parameter ψaa = 0, which are surrounded
by pair-atomic superfluid phases with nonzero-order parameter ψaa 6= 0. (b,c) The distributions of
the probability amplitudes |Cna ,nm |2 corresponding to the white circle and square in (a), respectively.
The other parameters are chosen as U = 1 and g/U = 1.

Now, we consider the impact of the AMC and hopping strength on the stability of
the pair-SF phase. In Figure 2a, we show the ground-state phase diagram in the param-
eter plane (J/U, g/U) for a fixed chemical potential µ/U = 1 by using the full basis
{|Di(0)〉, |Di(1)〉, |Di(2)〉...} and monitoring both order parameters ψa and ψaa. It is clearly
shown that there still exists a pair-SF phase (ψa = 0, ψaa 6= 0) in the region of weak AMC
strength regardless of the hopping strength. It means that pair-SF induced by the AMC
in our system is robust against the hopping. In the strong hopping regime and big AMC
strength, J/U → ∞ and g/U > 0.5, and the ground-state is a mixed SF phase consisting
of single-atomic and pair-atomic SF (ψa 6= 0, ψaa 6= 0). In the strong interaction regime,
J/U → 0, several integer atomic MI lobes (ψa = ψaa = 0) appear, where the lobes corre-
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sponding to the MI phases with even filling number are greater than the one with odd
filling number.

Figure 2. (a) Ground-state phase diagram in the parameter plane (J/U, g/U), including both even
and odd basis. The white line indicates the phase boundary of single-atomic SF. As fixing µ/U = 1,
the first MI phase has filling number na = 6. (b,c) The distributions of the probability amplitudes
|Cna ,nm |2 corresponding to the white circle and square in (a), respectively. (d,e) The distributions of
the probability amplitudes |Cna ,nm |2 corresponding to the white triangle and star in (a), respectively.
The other parameters are chosen as ∆ = 0 and Nmax = 10.
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The appearance of the above three phases is a direct result of AMC. In the region of
weak AMC, all atoms can adequately convert to a diatomic molecule, and then always
generate pair-atomic SF regardless of the hopping strength. However, in the region of
strong AMC, all atoms rapidly convert to a diatomic molecule, which may cause the
residual single-atomic repulsion, leading to the appearance of single-atomic SF and MI. As
U � J, the tunneling along the chain direction is suppressed and then the order parameter
vanishes. However, the atoms in each site may still freely convert to a diatomic molecule
due to strong AMC; therefore, the total atomic numbers per site may be even or odd integer
numbers. Because the AMC dominates, the insulator phases of even filling numbers are
greater than the one with odd filling number.

We also explore the filling configurations of the Mott and superfluid states in three
phases. In Figure 2b–e, we show the distributions of the probability amplitudes |Cna ,nm |2
of the ground state for different SF and MI phases. The MI phase with na = 11 is also a
triple-peaked state (|3, 4〉, |5, 3〉 and |7, 2〉) in the probability distribution, which means that
the residual atom in each lattice still freely converts to a diatomic molecule due to strong
AMC in the case of the full basis, as shown in Figure 2b. However, the MI phase with
na = 6 is nearly a single-peaked state (|0, 3〉) in the probability distribution, which means
that the residual atom in each lattice cannot freely convert to a diatomic molecule due to
weak AMC, as shown in Figure 2c. In the mixed SF phase, the single and pairing atoms can
move freely between neighboring cells and there appears a single-atomic and pair-atomic
SF along the chain direction, as shown in Figure 2d. In the pair-SF phase, the pairing atoms
can only move freely between neighboring cells, though the system deals with the full
basis, as shown in Figure 2e.

3.2. Detuning Causes Pair SF-MI Transitions

In this subsection, we show how the detuning ∆ affects single-atomic and pair-atomic
SF-MI transitions in the strong AMC regime. In Figure 3, we show the ground-state phase
diagram of the two order parameters (ψa, ψaa) in the (∆/U, µ/U) plane for J = 0.01 and
g = 1. First, let us consider the single-atomic and pair-atomic Mott states. The Mott
states with even na are stable on both sides of the detuning; for ∆ > 0, there are na atoms
per site, whereas for ∆ < 0, there are nm = na/2 molecules per site, due to a negative
detuning from Feshbach resonance favoring the formation of molecules [21]. For odd
na, the MIs are stable only for ∆ > 0. For ∆ < 0, the ground state with odd na is a
superposition of two Mott phases with (na − 1)/2 and (na + 1)/2 molecules per site and
hence unstable to superfluidity for any finite J. Now we will consider the single-atomic
and pair-atomic superfluid states. For ∆ < 0, it is clear that there are some line-like single-
atomic SF phases, and the Mott insulators are sandwiched between different single-atomic
SF phases. There appear several parallel and equal-spaced pair-SF stripes. The pair-SF
stripes become narrower and their corresponding values become smaller as the chemical
potential µ decreases from the positive to the negative side. For a given chemical potential,
a sequence of pair SF-MI or MI-SF transitions takes place when the detuning ∆ increases
from negative to positive. It is important to note that pair-SF phases can split to mixed
SF phases consisting of single-atomic and pair-atomic SF (ψa 6= 0, ψaa 6= 0) after ∆ > 0,
in which the MI phases with odd na are sandwiched. Therefore, the positive detuning
∆ can bifurcate AMC-induced pair-SF. Because ∆ is related to the energy of a molecular
bound state, and a negative detuning favors the formation of molecules, when ∆ > 0, the
atoms do not like to convert to a diatomic molecule, which may cause the single-atomic
hopping and repulsion, leading to the appearance of single-atomic SF and MI. Therefore,
the big and positive detuning ∆ can bifurcate the pair-SF into mixed SF phases consisting
of single-atomic and pair-atomic SF. In addition, the phase transitions of pairing SF-MI
or MI-SF in our system, which are driven by the ratio J/U or ∆/U at fixed inter-filling,
belong to the class of O(2) transitions. In the following, we will explore how to extract the
signature of such phase transitions.
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Figure 3. Single-atomic (Top) and pair-atomic (Bottom) phase diagrams in the parameter plane
(∆/U, µ/U). The other parameters are chosen as g = 1, J = 0.01, and U = 1.

4. The Signature of Phase Transitions

In this analysis, we focus on extracting the signature of the Rényi EE for the pairing SF-
MI or MI-SF transitions in our system. The Rényi EE, a well-known bipartite entanglement
measure, is defined by dividing the entire system into two subsystems. Since our MF
method preserves only the intracell correlations, we only need to consider intracell bipartite
entanglement. Denoting the two subsystems as a (atom) and m (molecule), the second-order
Rényi EE can be defined as [55,56]

S2(σ) = − log Tr
(

ρ̂2
σ

)
, (10)

where σ = a, m, ρ̂a(m) = Trm(a)(ρ̂am) is the reduced density matrix of subsystem a (m),
and ρ̂am is the density matrix of the whole system. From the single-site ground-state,
Equation (7), the reduced density matrices ρ̂a and ρ̂m are given as

ρ̂a = ∑
na ,na′

(∑
nm

Cna ,nm C∗
na′ ,nm)|na〉〈na′ |,

ρ̂m = ∑
nm ,nm′

(∑
na

Cna ,nm C∗
na ,nm′ )|nm〉〈nm′ |.

(11)

Then the second-order Rényi EE can be calculated by using the above reduced
density matrices.

In order to compare, a typical example is displayed in Figure 4a by choosing µ/U = 1
and ∆ = 0, which can undergo the phase transition from MI (ρ(na) = 6, ψaa = 0) phase
to pair-SF (ψaa 6= 0) phase as J/U continuously increase. In Figure 4b, we show the
corresponding second-order Rényi EE S2 (solid blue line) and its first-order derivative
dS2/d(J/U) with respect to J/U (dashed red line). The second-order Rényi EE is continu-
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ous everywhere, but a turning point appears at the phase boundary. Indeed, the first-order
derivatives (solid red lines) show a drastic jump at the phase boundary. Similarly, the first-
order derivative of S2 with respect to ∆/U also shows drastic jumps at the phase boundaries
(see Figure 5). A series of discontinuous peaks that correspond to a sequence of pairing
MI-SF or SF-MI transitions appear when the detuning ∆/U increases from negative to
positive, and its first-order derivative also shows drastic jumps at the corresponding critical
points of phase transitions, as shown in Figure 5. This means that the pairing SF-MI or
MI-SF transitions in our system correspond to the jumps in the first-order derivative of the
second-order Rényi EE. Therefore, the residual entanglement in our MF treatment can be
used to efficiently capture the signature of the pairing SI transition induced by AMC.
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Figure 4. Pair SF-MI transition, second-order Rényi entanglement entropy and its first-order deriva-
tive with respect to J/U for µ/U = 1 and ∆ = 0. The other parameters are the same as Figure 1. Solid
blue and dashed red lines denote ψaa (S2(m)) and ρ(na) (dS2/d(J/U)) in (a,b), respectively.
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Figure 5. Pair SF-MI transition, second-order Rényi entanglement entropy and its first-order deriva-
tive with respect to ∆/U for µ/U=1. The other parameters are the same as Figure 3. Solid blue and
dashed red lines denote ψaa (S2(m)) and ρ(na) (dS2/d(∆/U)) in (a,b), respectively.
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5. Conclusions and Discussion

In summary, we have investigated pairing SI transition and its MF signature of EE for
bosonic mixtures of atoms and molecules in one-dimensional optical lattice. In addition
to the SF and integer MI phases, we found that AMC can induce an extra pair-SF phase,
though the system does not possess a pair-hopping. Depending on the strength of the
AMC and the single atomic hopping, the ground state can be an MI, a mixed SF phase
with both single-atomic and pair-atomic, or a pair-SF phase. In particular, the ground-state
may undergo several pairing SF-MI or MI-SF transitions as the detuning is varied from
negative to positive, and the big and positive detuning can bifurcate the pair-SF into mixed
SF phases consisting of single-atomic and pair-atomic SF. By calculating the second-order
Rényi EE and its first-order derivative, it is revealed that the first-order derivative of the
second-order Rényi EE becomes discontinuous at the critical points of the pairing MI-SF or
SF-MI transitions. This means that the second-order Rényi EE can be used to extract the
signature of the pairing SF-MI phase transition induced by AMC.

The model we propose can be feasibly implemented and its theoretical predictions
can be experimentally observed using current techniques. Our proposed bosonic mixtures
of atoms and molecules can be demonstrated experimentally in cold-atom setups [11].
By imposing two standing-wave lasers, the one-dimensional optical lattice has been real-
ized [60] and our model can be realized by loading ultracold bosonic mixtures of atoms
and molecules in the one-dimensional optical lattice. The strength of AMC g also can be
tuned in the experiment via a periodic modulation of the magnetic field [61]. For such a
system of bosonic mixtures of atoms and molecules, AMC-induced pairing SI transition
may be observed.
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