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Abstract: As the applications of robots expand across a wide variety of areas, high-level task planning
considering human–robot interactions is emerging as a critical issue. Various elements that facilitate
flexible responses to humans in an ever-changing environment, such as scene understanding, natural
language processing, and task planning, are thus being researched extensively. In this study, a visual
question answering (VQA) task was examined in detail from among an array of technologies. By
further developing conventional neuro-symbolic approaches, environmental information is stored
and utilized in a symmetric graph format, which enables more flexible and complex high-level task
planning. We construct a symmetric graph composed of information such as color, size, and position
for the objects constituting the environmental scene. VQA, using graphs, largely consists of a part
expressing a scene as a graph, a part converting a question into SPARQL, and a part reasoning the
answer. The proposed method was verified using a public dataset, CLEVR, with which it successfully
performed VQA. We were able to directly confirm the process of inferring answers using SPARQL
queries converted from the original queries and environmental symmetric graph information, which
is distinct from existing methods that make it difficult to trace the path to finding answers.

Keywords: high-level task planning; visual question answering; neuro-symbolic; symmetric graph;
graph database; SPARQL; CLEVR dataset

1. Introduction

Robots are widely utilized across various services, including education, medical, and
logistics, mostly owing to the advancement of technology [1]. Educational robots are com-
monly used to trigger interest in students and heighten their learning motivation, while
chatbots contribute to an improved learning efficiency by interacting with students [2].
In the medical field, robots demonstrate high precision and stability, thus providing vari-
ous services, including surgical assistance for surgeons, rehabilitation therapy, and data
analysis [3]. In logistics centers, robots are applied in sorting and transporting products,
thus optimizing the overall logistics process [4]. Accordingly, service robots interact with
humans in diverse settings and are applied in a wide range of fields. Numerous researchers
are conducting studies on simultaneous localization and mapping (SLAM), robot vision,
task planning [5], and human–robot interaction (HRI) for the development of service robots.
However, relatively fewer number of studies are being conducted on task planning com-
pared with other fields. In particular, little attention is being paid to research HRI-based
task planning. Robots must be capable of executing task planning to perform high-level
missions in real life, rather than performing just simple repetitive work. Furthermore,
HRI-based task planning is especially important for successfully achieving the goal of a
mission in an eco-system in which humans, robots, and the environment interact with each
other [6].

Nonetheless, research has been conducted on task planning using robots in extreme
environments, such as deep sea or space, and in varied environments including mar-
kets and factories. Cashmore et al. [7] introduced the ROSPlan framework, which is a
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system for planning tasks in water using Girona 500 AUV. Crosby et al. [8] proposed a
robot with the ability of transporting boxes in a factory through six-step task planning.
Galindo et al. [9] suggested a method for task planning using semantic maps consisting of
hierarchical spatial information and semantic knowledge in a home environment. Similarly,
the majority of task planning algorithms do not take the human factor into consideration.
However, human intervention is necessary for task planning when performing high-level
missions [10]. Regarding HRI-based task planning, Crosby et al. [10] developed a human-
aware task planning system. In this particular system, human constraints were taken into
account in planning to enable interactions between humans and the robot. Alami et al. [11]
proposed a robot control architecture in which humans and robots share the burden of work
to perform certain tasks. Especially, HRI-oriented task planning becomes a serious issue
when unexpected external events occur in extreme situations in which direct interaction
with humans is challenging.

To handle unexpected external events in extreme situations, robots must be able to
obtain and understand information about their surrounding environments, as humans
cannot always directly acquire such information. Furthermore, robots must be able to
communicate with humans through scene understanding. Thus, visual question answering
(VQA), i.e., the capability of question answering in the form of a natural language based on
image information as input, is a significant problem in HRI-based task planning. VQA is
largely studied from a connectionist approach [12], symbolic approach, and neuro-symbolic
approach. Yang et al. [13] proposed stacked attention networks (SANs), in which natural
language questions are answered based on images. Marino et al. [14] introduced Knowl-
edge Reasoning with Implicit and Symbolic representations (KRISP), which is capable of
executing VQA in open-domain. Mao et al. [15] designed a neuro-symbolic concept learner
(NS-CL) capable of executing VQA without explicit supervision.

The connectionist approach has the advantage of carrying out VQA for various unex-
pected environments and questions, but the disadvantage is that it is difficult to explain the
process of deducing answers. The symbolic approach can explain the process of inferring
answers but entails the limitation of being unable to be used in dynamic environments.
The neuro-symbolic approach combines the advantages of all methods in which answers
can be deduced for various VQA, and the relevant process can also be explained [16].
However, existing neuro-symbolic-based VQA methods mostly use table databases, which
causes difficulties with expanding object information flexibly and performing high-level
inference. Therefore, scene information is expressed and saved as a symmetric graph in
this study, which can be flexibly extended. Applying the advantages of a graph database
enables the simple inference of relation information as well as high-level inference. The
proposed framework is shown in Figure 1. In the scene understanding part, objects are first
detected using an object detector, and then the objects’ type, color, and position information
is extracted through an object feature extractor. In the question understanding part, natural
language statements are converted to SPARQL to be applicable to a graph database. In the
answer reasoning part, answers are inferred from a graph database through a SPARQL
query. The proposed method is verified using a public dataset, CLEVR dataset [17], which
is most widely used in neuro-symbolic-based VQA. The results show that answers can be
successfully found for various types of queries.
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Figure 1. A symmetric graph-based visual question answering framework consisting of scene un-
derstanding, question understanding, and answer reasoning parts. In scene understanding, object
information is extracted and saved in a graph database in a symmetric graph form. In question un-
derstanding, natural language queries are converted to SPARQL form. In answer reasoning, answers
are inferred using a symmetric graph and SPARQL.

2. Related Work

VQA involves understanding the situation in given images and finding answers to
questions. To solve VQA problems, many researchers use VQA datasets consisting of
images and complicated natural language questions and answers related to the images.
Johnson et al. [17] thus proposed a dataset called CLEVR. CLEVR has details on infor-
mation, attributes, and position relations of objects constituted of each scene added to
the dataset, and thus can be utilized in various VQA algorithms. In this chapter, different
methods for solving VQA problems using various VQA datasets are introduced based on
the connectionist approach, symbolic approach, and neuro-symbolic approach.

2.1. Connectionist Models for VQA

A large number of VQA algorithms [18–20] which train networks using massive
datasets have been developed. Li et al. [21] enabled zero-shot transfer learning through
a downstream task using architecture in which an image is learned directly from raw
text. Yang et al. [22] solved VQA problems by proposing an auto-parsing network (APN)
in which a probabilistic graphical model (PGM) is applied to the self-attention layer.
Nam et al. [23] proposed dual attention networks (DANs) for elaborate interactions be-
tween vision and language. Noh et al. [24] introduced more efficient VQA methods through
a method that initializes weighted values by using pre-trained convolutional neural net-
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works (CNN) and gated recurrent units (GRU). The neural network-based connectionist
approach has the advantage of executing VQA by robustly extracting features of images
and natural language statements, but the disadvantage of being unable to execute complex
inference and explain the inference process.

2.2. Symbolic Models for VQA

Diverse methods for solving VQA problems have been proposed whereby symbolic
techniques have been used to infer answers from the available knowledge by using induc-
tive and deductive reasoning. Lei et al. [25] proposed a new method capable of continual
learning, in which all questions related to images can be answered. Han and Wang [26]
introduced a symbolic approach-based graph matching-based reasoner (GMR) that can
infer answers by automatically comparing graphs, and evaluated the algorithm’s perfor-
mance using the bAbI dataset. Malinowski and Fritz [27] applied discrete reasoning with
uncertain prediction to automatically answering questions related to images. Symbolic
models for VQA are capable of inferring answers but are vulnerable to external changes
and difficult to respond to if proper actions are not taken for such changes.

2.3. Neuro-Symbolic Models for VQA

In recent years, several VQA algorithms utilizing the neuro-symbolic approach, which
combines the strengths of the connectionist and symbolic approaches, have been actively
developed. Amizadeh et al. [28] applied the neuro-symbolic of a logic framework first to
infer queries on scenes that are incompletely recognized. Vedantam et al. [29] proposed
a probabilistic neural-symbolic model that can respond to queries on the environment
through a small learning model. Bosselut et al. [30] developed an algorithm that executes
VQA and learns zero-shot, while dynamically generating commonsense knowledge graphs.
VQA methods that employ the neuro-symbolic approach can explain the process of inferring
answers and respond to queries related to various images and natural language processing.
A new algorithm that utilizes the neuro-symbolic architecture is thus proposed in this study.
Information on the objects constituting a scene can be extended flexibly by using scenes
expressed in a symmetric graph form, and natural language statements can be converted
directly into SPARQL for efficiently finding answers and reviewing the process.

3. Methods

In this study, a graph database with objects and object characteristics as nodes is
generated from an image, and natural language queries are converted to SPARQL using
bidirectional encoder representations from transformers (BERT) models with the trans-
former architecture. Object class, position, shape, and color can be used as scene information,
and the respective symmetric graph can be extended by obtaining related data. Answers are
then inferred through a graph database built using environment information and queries
converted to SPARQL. For the inference process, Prolog, which uses the first-order logic, is
utilized. The overall process of the proposed method is shown in Figure 2.

3.1. Scene Graph Generation

Symmetric graphs are generated using objects consisting of an image and any relation
information between those objects. One symmetric graph is generated from one scene,
and each graph contains various types of information including the color, size, shape, and
texture of each object constituting the scene and the position relations between objects.
Since the input of the graph node is text data, even if the property of an object such as
color, shape, and other parameters is more than one, all data can be managed by extending
the text. Therefore, the entire graph maintains a symmetric graph form. If the number of
objects constituting one scene increases, one small symmetric graph composed of the object
information is added to the entire graph. Each scene is saved and utilized using Protégé,
which is an ontology editor developed at Standard University. An ontology is generated
and checked by Protégé, and a plug-in capable of mapping, merging, and applying Pellet
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inference to graph data is provided [31]. Previous studies saved and used scene information
in table databases. Therefore, there is a limitation in terms of freely utilizing the relations
of each object [32]. In contrast, a graph database allows for relatively easier access among
objects, wherein the nodes of each graph are connected, thus allowing for fast searches for
relations. Compared with a table database, a graph database demonstrates the extendibility
and stability, which are both beneficial for inference [33,34]. In this study, an ontology
was designed for saving the scene information. The design details are provided in the
Appendix A.
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BERT
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Token

Token
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Figure 2. Graph-based visual question–answering process in which scene information is expressed as
a semantic graph map to be saved or utilized. Natural language queries are converted to SPARQL us-
ing bidirectional encoder representations from transformers, and lastly, Prolog is used to infer answers.

3.2. Question Understanding

A transformer-based BERT model is used to convert natural language into SPARQL
grammar. The transformer architecture comprises an encoder consisting of multi-head
attention, feed forward, add/norm layers, and a decoder, in which a masked multi-head
attention layer is added to the encoder. BERT is a model built by stacking several layers of
encoders in the transformer architecture. The name and performance of the BERT model
vary depending on the number of encoders, embedding vectors, and self-attention heads;
in this study, in particular, the BERT-Small model is used [35]. To apply our method, it is
essential to construct SPARQL datasets corresponding to natural language queries. The
BERT-Small model is leveraged for effective learning even in situations with limited data
resources. This part encompasses the transformation of natural language queries into
SPARQL, a process in which the BERT-Small model’s capability to comprehend context and
meaning from smaller datasets proves valuable. As a result, it aids in generating precise
and relevant SPARQL queries.

3.3. Answer Reasoning

Answers to the questions are found through natural language statements that have
been converted to SPARQL. Natural language statements are converted to sequential
SPARQL queries through a query analysis. A graph corresponding to the query is returned
as each query is carried out, and ultimately, the results are output in the form of a string.
Consequently, the process of finding answers to queries can be demonstrated. For questions
requiring additional inference, Prolog [36], which is a logic programming language that
supports knowledge expression and inference, is used.



Symmetry 2023, 15, 1713 6 of 17

4. Experiment Results

In this study, experiments are conducted using the CLEVR dataset. The CLEVR
dataset is related to VQA and consists of images, detailed information on a scene, and
queries/responses. Among the detailed information of a scene, information related to
objects typically includes colors (gray, blue, brown, yellow, red, green, purple, and cyan),
size (large, small), shape (cylinder, sphere, and cube), three-dimensional volume, texture
(rubber and metal), three-dimensional center point, and angle of rotation. In addition,
position relations (front, back, left, and right) between objects constituting one scene is
provided. An example of the dataset is shown in Figure 3.

The graph generated for Figure 3 is shown in Figure 4. A knowledge symmetric graph
of each object is expressed as follows. A node of a graph is composed of the index of the
image. A symmetric graph’s properties are expressed in relations through domain and
range, and the object information is input. Position relation between objects is relative
and can thus be set bidirectionally. The sequential SPARQL queries are then sequentially
applied to the environment graph stored in the graph database. This process enables the
retrieval of answers to complex queries related to environmental information. It allows
for the verification and explanation of the process of finding answers to intricate queries
concerning the environment.

A searchable database needs to be generated in order to execute a SPARQL query
using the CLEVR dataset and the BERT model. The relevant process is as follows. First, the
data being used for conversion are extracted by analyzing the existing dataset. Then, the
extracted image information is converted to graph data, and the statement information is
converted to SPARQL. The converted data need to be verified in terms of whether they
function identically to the existing dataset. The converted dataset is used to implement a
translation model between the natural language and SPARQL, and then tested to confirm
whether it has been properly converted. A logical error test is performed to verify the
results of the natural language-SPARQL conversion. The Pellet inference feature of Protégé,
which is a knowledge graph visualization tool, is utilized as a test tool. The detailed process
is provided in Appendix B.
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Index Color Shape Size Material Right Left Front Behind

0 Blue Cube Large Rubber 2,5 1,3,4 1,2,3,4,5 -

1 Green Cylinder Large Metal 0,2,3,4,5 - 2,3,4 0,5

2 Cyan Cube Small Rubber 5 0,1,3,4 3,4 0,1,5

3 Brown Cylinder Large Metal 0,2,4,5 1 4 0,1,2,5

4 Gray Cube Small Rubber 0,2,5 1,3 - 0,1,2,3,5

5 Brown Sphere Large Metal - 0,1,2,3,4 1,2,3,4 0

(a) (b)

(c)

Figure 3. Dataset example; (a) original image, (b) index assigned to each object in the image, and
(c) table of information on each object organized through scene understanding.
Figure 3. Dataset example; (a) original image, (b) index assigned to each object in the image, and
(c) table of information on each object organized through scene understanding.
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Figure 4. Graphical representation of an example image in Figure 3.

In this study, the BERT-Small model is used from among various BERT models to
convert natural language queries into SPARQL, which is designed by applying the trans-
former architecture. Natural language query was set as the input and SPARQL query
was set as the output of the BERT model for training the network. Figure 5 illustrates the
result of converting the given queries into SPARQL queries. As shown in the experimental
results, natural language queries have been successfully converted into sequential SPARQL
query statements.

Input (Question) Output (SPARQL)

How many other objects are there of the 
same material as the small cylinder?

SELECT * FROM <graph> WHERE { ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s :isSize :small . ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s :isShape :cylinder . ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s a :Object . ?s ?p ?o }
SELECT ?s ?p ?o FROM <graph1> FROM <graph> WHERE { GRAPH <graph1> { ?x :isMaterial ?y } GRAPH 
<graph> { ?s ?z ?y . ?s ?p ?o } FILTER (?x != ?s) }
SELECT (COUNT(?s) AS ?s) FROM <graph1> WHERE { ?s a :Object }

Are there any other things that are the 
same shape as the small red shiny object?

SELECT * FROM <graph> WHERE { ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s :isSize :small . ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s :isColor :red . ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s :isMaterial :metal . ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s a :Object . ?s ?p ?o }
SELECT ?s ?p ?o FROM <graph1> FROM <graph> WHERE { GRAPH <graph1> { ?x :isShape ?y } GRAPH 
<graph> { ?s ?z ?y . ?s ?p ?o } FILTER (?x != ?s) } SELECT ?s FROM <graph1> WHERE { { SELECT (COUNT(*) 
AS ?s) WHERE { ?s a :Object } } BIND(IF(?s > 0, "yes", "no") as ?s) }

How many gray objects have the same size 
as the blue rubber thing?

SELECT * FROM <graph> WHERE { ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s :isColor :blue . ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s :isMaterial :rubber . ?s ?p ?o }
SELECT * FROM <graph1> WHERE { ?s a :Object . ?s ?p ?o }
SELECT ?s ?p ?o FROM <graph1> FROM <graph> WHERE { GRAPH <graph1> { ?x :isSize ?y } GRAPH <graph> 
{ ?s ?z ?y . ?s ?p ?o } FILTER (?x != ?s) }
SELECT * FROM <graph1> WHERE { ?s :isColor :gray . ?s ?p ?o }
SELECT (COUNT(?s) AS ?s) FROM <graph1> WHERE { ?s a :Object }

Figure 5. Result of converting natural language queries into sequential SPARQL query statements
using the BERT-Small model.

The final experimental results are shown in Figure 6. Figure 6a shows the original
image and the index image, while Figure 6b shows an overview of the object information.
Figure 6c illustrates the process of converting the query “Do the small shiny object and the
matte cylinder have the same color?” into SPARQL and sequentially inferring the answer.
Additional experimental results are provided in Appendix C. As shown in Figure 6, the
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proposed method successfully inferred the answer. The method proposed in this study
expressed scene information in the form of a graph, converted natural language queries into
sequential SPARQL, and inferred answers for high-level queries, and its effectiveness was
verified using the CLEVR dataset. Through experiments, the proposed algorithm found
answers to 500 untrained test questions with 95.3% accuracy. The approach we propose
stands apart from conventional methods in that it enables direct querying to retrieve
answers from a graph database. This process allows for a step-by-step verification of the
query, offering distinct advantages. Furthermore, leveraging the characteristics of the graph,
it becomes feasible to easily expand the semantic information of environmental objects.

Index Color Shape Size Material Right Left Front Behind

0 Yellow Sphere Small Rubber 1,2,5 3,4,6 - 1,2,3,4,5,
6

1 Purple Sphere Large Metal 2,5 0,3,4,6 0,2,3,4,
5,6

-

2 Blue Cylinder Large Metal - 0,1,3,4,5,
6

0,3,4,5,
6

1

3 Gray Cube Large Rubber 0,1,2,4,5,
6

- 0 1,2,4,5,6

4 Brown Cylinder Small Metal 0,1,2,5,6 3 0,3 1,2,5,6

5 Purple Sphere Large Metal 2 0,1,3,4,6 0,3,4 1,2,6

6 Brown Cylinder Small Rubber 0,1,2,5 3,4 0,3,4,5 1,2

(a)

(b)

Question

Do the small shiny object and the matte cylinder have the same color?

No SPARQL Graph Type Result

1 SELECT *
FROM <graph>
WHERE {

?s ?p ?o
}

Graph 0,1,2,3,
4,5

2 SELECT *
FROM <graph1>
WHERE {

?s :isSize :small .
?s ?p ?o

}

Graph 0,4,6

3 SELECT *
FROM <grpah1>
WHERE {

?s :isMaterial :metal 
.

?s ?p ?o
}

Graph 4

4 SELECT *
FROM <graph1>
WHERE {

?s a :Object .
?s ?p ?o

}

Graph 4

5 SELECT *
FROM <graph>
WHERE {

?s ?p ?o
}

Graph 0,1,2,3,
4,5

Figure 6. Cont.
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6 SELECT *
FROM <grpah1>
WHERE {

?s :isMaterial :rubb
er .

?s ?p ?o
}

Graph 0,3,6

7 SELECT *
FROM <grpah1>
WHERE {

?s :isShape :cylinder 
.

?s ?p ?o
}

Graph 6

8 SELECT *
FROM <graph1>
WHERE {

?s a :Object .
?s ?p ?o

}

Graph 6

9 SELECT ?z
FROM <graph1>
FROM <graph2>
WHERE {

GRAPH <graph1> {
[] :isColor ?x

}
GRAPH <graph2> {

[] :isColor ?y
}
BIND(IF(?x = ?y, 

“yes”, “no”) AS ?z)
}

String yes

(c)

Figure 6. Experimental result: (a) input image and object indexed image; (b) table presenting an
overview of the object information; (c) process of converting queries into SPARQL and sequentially
inferring the answer.

5. Discussion and Conclusions

The development of task planning methods capable of performing HRI for high-level
task planning is inevitable. The method of VQA is thus introduced in this study for task
planning, which is an important element in interactions between humans and robots.
Contrary to previous methods, the proposed method efficiently expressed the relation of
objects constituting a scene using a graph database, and the answer was inferred using
natural language queries that have been converted to sequential SPARQL queries. The
proposed method was experimentally verified and successfully executed by VQA. The
proposed method can employ extended scene information, thus being utilizable with
web data having an extensive range of data. The performance can be further enhanced
by designing various forms of ontology structures. Through future research, we plan to
expand the semantic information of each object that makes up the environment to be
able to answer more complex and difficult questions. Furthermore, we aim to enable
high-level task planning by allowing robots and humans to communicate with each other
through inquiries.
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Abbreviations
The following abbreviations are used in this manuscript:

SLAM Simultaneous localization and mapping
HRI Human–robot interaction
VQA Visual qustion answering
NS-CL Neuro-symbolic concept learner
APN Auto-parsing network
DANs Dual attention networks
GMR Graph matching based reasoner
BERT Bidirectional encoder representations from transformers

Appendix A

A class diagram expressing object information is shown in Figure A1. Object informa-
tion inheriting four items, including the objects’ color, size, shape, and texture is shown in
Figure A1a; specifically, inheritance information concerning shape is shown in Figure A1b.

(a) (b)

Figure A1. Class diagram; (a) class diagram inheriting shape information and (b) class diagram
representing object property.

Appendix B

The process of generating a sequential SPARQL query to enable inference according
to natural language statements is demonstrated in Figure A2. In this study, the program
function used for finding the answer using the converted query statements is provided by
the CLEVR dataset.
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Figure A2. Generating a sequential SPARQL query using CLEVR dataset.

Appendix C

Figure A3 shows the process of finding the answer to different queries for the same
scene. Figure A3a shows the image information, while Figure A3b shows detailed informa-
tion of each object. Figure A3c shows the process of finding the answer to a query about
color, Figure A3d shows the process of finding a yes or no answer, and Figure A3e shows
the process of finding the answer to a query related to a count.
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Index Color Shape Size Material Right Left Front Behind

0 Blue Cylinder Small Metal 1,2,3,6,7 4,5,8,9 1,2,4,6,
7,8,9

3,5

1 Blue Cylinder Large Rubber - 0,2,3,4,5,
6,7,8,9

2,6,7,8,
9

0,3,4,5

2 Purple Sphere Large Metal 1 0,3,4,5,6,
7,8,9

6,9 0,1,3,4,5,
7,8

3 Yellow Cube Small Metal 1,2 0,4,5,6,7,
8,9

0,1,2,4,
6,7,8,9

5

4 Gray Cylinder Large Metal 0,1,2,3,5,
6,7,8,9

- 1,2,6,7,
8,9

0,3,5

5 Cyan Cube Small Metal 0,1,2,3,6,
7

4,8,9 0,1,2,3,
4,6,7,8,

9

-

6 Cyan Cylinder Small Rubber 1,2,3,7 0,4,5,8,9 - 0,1,2,3,4,
5,7,8,9

7 Blue Cube Large Metal 1,2,3 0,4,5,6,8,
9

2,6,8,9 0,1,3,4,5

8 Green Cylinder Small Metal 0,1,2,3,5,
6,7,9

4 2,6,9 0,1,3,4,5,
7

9 Yellow Cylinder Small Rubber 0,1,2,3,5,
6,7

4,8 6 0,1,2,3,4,
5,7,8

(a)

(b)

Question

The other small shiny thing that is the same shape as the tiny yellow shiny object is what color?

No SPARQL Graph Type Result

1 SELECT *
FROM <graph>
WHERE {

?s ?p ?o
}

Graph 0,1,2,3,
4,5,6,7,

8,9

2 SELECT *
FROM <graph1>
WHERE {

?s :isSize :small .
?s ?p ?o

}

Graph 0,3,5,6,
8,9

Figure A3. Cont.
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3 SELECT *
FROM <graph1>
WHERE {

?s :isColor :yellow .
?s ?p ?o

}

Graph 3,9

4 SELECT *
FROM <graph1>
WHERE {

?s a :Object .
?s ?p ?o

}

Graph 3

5 SELECT ?s ?p ?o
FROM <graph1>
FROM <graph>
WHERE {

GRAPH <graph1> {
?x :isShape ?y

}
GRAPH <graph> {

?s ?z ?y .
?s ?p ?o

}
FILTER (?x != ?s)

}

Graph 5, 7

6 SELECT *
FROM <graph1>
WHERE {

?s :isSize :small .
?s ?p ?o

}

Graph 5

7 SELECT *
FROM <graph1>
WHERE {

?s :isMaterial :metal 
.

?s ?p ?o
}

Graph 5

8 SELECT *
FROM <graph1>
WHERE {

?s a :Object .
?s ?p ?o

}

Graph 5

9 SELECT *
FROM <graph1>
WHERE {

[] :isColor ?o
}

String cyan

(c)

Question

Is there anything else that has the same color as the large shiny cube?

No SPARQL Graph Type Result

1 SELECT *
FROM <graph>
WHERE {

?s ?p ?o
}

Graph 0,1,2,3,
4,5,6,7,

8,9

2 SELECT *
FROM <graph1>
WHERE {

?s :isSize :large .
?s ?p ?o

}

Graph 1,2,4,7

Figure A3. Cont.
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3 SELECT *
FROM <grpah1>
WHERE {

?s :isMaterial :metal 
.

?s ?p ?o
}

Graph 2,4,7

4 SELECT *
FROM <grpah1>
WHERE {

?s :isShape :cube .
?s ?p ?o

}

Graph 7

5 SELECT *
FROM <graph1>
WHERE {

?s a :Object .
?s ?p ?o

}

Graph 7

6 SELECT ?s ?p ?o
FROM <graph1>
FROM <graph>
WHERE {

GRAPH <graph1> {
?x :isColor ?y

}
GRAPH <graph> {

?s ?z ?y .
?s ?p ?o

}
FILTER (?x != ?s)

}

Graph 0,1

7 SELECT ?s
FROM <graph1>
WHERE {

{.   SELECT 
(COUNT(*) AS ?s)

WHERE {
?s a :Object

}
}
BIND(IF(?s > 0, “yes”, 

“no”) AS ?s)
}

String yes

(d)

Question

How many metallic objects are big blue cubes or blue objects?

No SPARQL Graph Type Result

1 SELECT *
FROM <graph>
WHERE {

?s ?p ?o
}

Graph 0,1,2,3,
4,5,6,7,

8,9

2 SELECT *
FROM <graph1>
WHERE {

?s :isSize :large .
?s ?p ?o

}

Graph 1,2,4,7

Figure A3. Cont.
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(e)

3 SELECT *
FROM <grpah1>
WHERE {

?s :isMaterial :metal 
.

?s ?p ?o
}

Graph 1,7

4 SELECT *
FROM <grpah1>
WHERE {

?s :isShape :cube .
?s ?p ?o

}

Graph 7

5 SELECT *
FROM <graph>
WHERE {

?s ?p ?o
}

Graph 0,1,2,3,
4,5,6,7,

8,9

6 SELECT *
FROM <grpah1>
WHERE {

?s :isColor :blue .
?s ?p ?o

}

Graph 0,1,7

7 SELECT *
FROM <graph1>
FROM <graph2>
WHERE {

?s ?p ?o
}

Graph 0,1,7

8 SELECT *
FROM <grpah1>
WHERE {

?s :isMaterial :metal 
.

?s ?p ?o
}

Graph 0,7

9 SELECT (COUNT(?s) 
as ?s)
FROM <graph1>
WHERE {

?s a :Object
}

int 2

Figure A3. Experimental results for various queries: (a) original image and indexed image; (b) table
showing detailed information on objects; (c) answer inference process for finding object color; (d) in-
ference process for query with a yes or no answer; (e) inference process for query about the number
of objects.
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