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Abstract: Fuzzy neural networks have both the interpretability of fuzzy systems and the self-learning
ability of neural networks, but they will face the challenge of “rule explosion” when dealing with
high-dimensional data. Moreover, the structure and parameter identifications of models are gen-
erally performed in two stages, and this always attends to one thing and loses another in terms
of interpretability and predictive performance. In this paper, a fuzzy neural network regression
method (FNNR) that coordinates structure identification and parameter identification is proposed.
To alleviate the problem of rule explosion, the structure identification and parameter identification
are coordinated in the training process, and the numbers of fuzzy rules and fuzzy partitions are
effectively limited, while the parameters of fuzzy rules are optimized. The symmetrical architecture of
the FNNR is designed for automatic structure identification. An alternate training strategy is adopted
by treating discrete and continuous parameters differently, and thus the convergence efficiency of
the algorithm is improved. To enhance interpretability, regularized terms are designed from fuzzy
rule level and fuzzy partition level to guide the model to learn fuzzy rules with simple structures
and clear semantics. The experimental results show that the proposed method has both a compact
structure and high precision.

Keywords: fuzzy neural networks; TSK fuzzy systems; regression; interpretability; symmetrical
architecture

1. Introduction

Fuzzy neural networks (FNNs) [1] have both interpretability and a self-learning ability,
achieved by combining fuzzy systems [2,3] and neural networks, and they are important
parts of the prevailing eXplainable Artificial Intelligence (XAI) field [4]. The FNN can learn
a set of fuzzy IF-THEN rules with appropriate linguistic labels from data, so that it is easy
to understand the decision-making process of the model. In addition, the FNN can improve
its performance via an iterative algorithm. With a powerful capability for knowledge
representation and learning, FNNs have been widely applied to related fields [5–9].

The identifications of FNNs can be divided into two parts: structure identification
and parameter identification [10]. Structure identification refers to finding appropriate
fuzzy partitions for the input space and determining the number of fuzzy rules. Parameter
identification means determining the parameters of the antecedents and consequents of
the fuzzy rules. In structure identification, the key work is to determine the number of
fuzzy rules. Too many fuzzy rules will increase the complexity of the model, reduce
interpretability, and easily lead to overfitting, while too few fuzzy rules will affect the
performance of the model.

The adaptive network-based fuzzy inference system (ANFIS) [11] is a well-known
model of FNN based on the TSK fuzzy inference system [2]. The traditional ANFIS uses
the grid-based method for structure identification, that is, for features of size M, the
number of fuzzy rules is MH when the fixed H-grid method is used. In terms of parameter
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identification, the gradient descent method, the least square method, or a combination of
both is adopted by the ANFIS. For ANFIS and its variant models [11–13], the number of
fuzzy rules is usually fixed so that the number of rules can be very large for data with high
characteristic dimensions.

To alleviate “rule explosion”, some examples from the literature [14,15] transfer input
variables to a new feature space in advance by feature dimension reduction, such as
the principal component analysis (PCA), and then carry out the structure and parameter
identifications in this new space. For example, [15] restricts the maximum feature dimension
to five and utilizes the PCA if the feature number exceeds five. Some studies [16–20]
use methods based on clustering, such as fuzzy c-means (FCM) [21], Gustafson–Kessel
clustering [22], and k-nearest neighbor clustering (KNN), to obtain a small number of
fuzzy rules and then use local search methods, such as the gradient descent method, linear
least square method (LLS), Levenberg–Marquardt (LM) method, extreme learning machine
(ELM), and so on, to adjust the parameters. For example, [17] proposes a fuzzification
method for the FNN based on Bayesian clustering. In that paper, a fuzzification technique
based on the concepts of FCM is used, but with a Bayesian approach to optimize the
assignment processing. For methods based on clustering, the clustering number often
needs to be determined in advance. Considering that the clustering number has a great
impact on the performance and interpretability of the model, some studies [23–25] utilize
cross-validation or clustering validity indicators to determine it, but this is limited in
effectiveness [26]. How to interpret the obtained clustering is also an essential problem. It
has been pointed out that the fuzzy partitions obtained through clustering may overlap
and lack semantics [27]. Some studies [28,29] remove redundant and unnecessary rules
through rule reduction and rule pruning to reduce the number of rules to a certain extent.
For example, a growing-and-pruning algorithm (GP) is proposed in the literature [29]. In
GP, new rules are added, and useless rules are eliminated through a sensitivity analysis
of the model output. Some works [30,31] alleviate the problem of rule explosion by using
a hierarchical structure. For example, [30] proposes a novel hierarchical hybrid FNN to
represent systems with mixed-input variables. Several fuzzy sub-systems on the lower level
randomly aggregate several discrete input variables into intermediate outputs, and a neural
network whose input variables consist of continuous input variables and intermediate
variables is the higher layer, thereby reducing the input dimension and the number of
fuzzy rules. However, there is no general approach to selecting suitable discrete features
for combination.

In the studies of FNNs, structure and parameter identifications are usually carried out
separately, that is, the numbers of fuzzy rules and fuzzy partitions are determined first,
and then the parameters of the rules are adjusted. Parameter identification is generally
divided into two stages: the adjustment of antecedent parameters and the adjustment of
consequent parameters, and different methods are selected according to the characteristics
of these two parameters. This learning strategy has the advantage of low time complexity,
but it cannot capture the internal correlation of various parameters and so it is difficult
to find the optimal solution in the whole parameter space. To coordinate structure iden-
tification and parameter identification, meta-heuristic search methods such as particle
swarm optimization algorithms and evolutionary algorithms are considered in some of the
literature [32–34]. In these algorithms, all parameters to be learned, such as the number of
rules and parameters of membership functions (MFs), are simultaneously encoded into a
long and complex chromosome for joint optimization. For example, a self-organizing FNN
based on the genetic algorithm is proposed in the literature [33], and a hybrid algorithm
based on genetic algorithms, backpropagation, and recursive least square estimation is
adopted to adjust all parameters, including the number of fuzzy rules. Moreover, the
multi-objective evolutionary algorithm is regarded as a cooperative method for structure
identification and parameter identification, and it has been used to construct FNNs with
high prediction accuracy and a simple structure [35,36]. However, these meta-heuristic
search methods have high requirements for memory and computing resources.
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Based on the previous study [37], a fuzzy neural network regression method (FNNR)
with high precision and a compact structure is proposed. Compared with traditional FNNs,
the proposed FNNR changes the structure and training mode of the network so that the
number of fuzzy rules and the number of fuzzy partitions can be limited effectively by
the gradient descent method, thereby alleviating the problem of rule explosion. In the
FNNR, the optimization of all parameters, including the fuzzy partition number, the fuzzy
rule number, parameters of antecedents, and consequent parameters, is incorporated into
the training process, and these parameters are adjusted synergistically by the gradient
descent method. On this basis, the alternate training strategy is designed and utilized for
different types of parameters to help the algorithm converge to the global optimal solution.
To further enhance the interpretability, regularization terms are designed from fuzzy rule
level and fuzzy partition level to guide the model to realize high precision with a simple
structure and clear semantics. By comparisons with some representative regression models
based on fuzzy rules and the classical regression method, it is proven that the proposed
FNNR can achieve high prediction accuracy with high interpretability.

The main contributions are as follows:

1. A new structure and training mode of the FNN is designed for regression problems,
and thus the numbers of fuzzy rules and fuzzy partitions can be learned automatically
by the gradient descent method, thereby eliminating the implicit relationship between
the number of rules and the number of features and fuzzy partitions, meanwhile
effectively alleviating the problem of rule explosion.

2. The structure and parameter identifications of the FNN are considered as a whole,
which means that the number of fuzzy partitions, the number of fuzzy rules, the MF
parameters of antecedents, and the parameters of the consequent are adjusted and
tuned at the same time. On this basis, an alternate training strategy is designed to help
with the algorithm convergence and find the optimal solution in the whole parameter
space without any pre-processing or post-processing.

3. The interpretability of the model is measured from both the fuzzy rule level and
fuzzy partition level, and the measurement is introduced to the training process in
terms of regularization. Therefore, the trained model has high precision with a simple
structure and clear semantics.

The remainder of this paper is organized as follows. The TSK fuzzy rules and the defi-
nition of the fuzzy neural network classifier (FNNC) that we studied earlier are introduced
in Section 2. In Section 3, the methodology of the FNNR is proposed. Section 4 discusses
the experimental results of the comparisons of the proposed FNNR with other benchmark
methods. Conclusions and future works are offered in Section 5.

2. Preliminaries
2.1. The TSK Fuzzy Rules

The Takagi–Sugeno–Kang (TSK) fuzzy system proposed by Takagi, Sugeno, and
Kang [2] is one of the most famous fuzzy systems with a simple structure and a good
nonlinear approximation ability. For a TSK fuzzy system with multiple inputs and a single
output, the form of fuzzy rules is shown in Equation (1):

Rule Rk : if x1 is Ak
1 and . . . and xM is Ak

M, then yk = pk
0 + pk

1x1 + . . . + pk
MxM (1)

where Rk denotes the kth rule, and k = 1, . . . , K. xm represents the mth input fuzzy variable
(feature), and m = 1, . . . , M. Ak

m = {< x, µAk
m
(x) > |x ∈ U} is the fuzzy set of xm, and

U ∈ [0, 1]. µAk
m

: [0, 1]→ [0, 1] denotes the MF of Ak
m, yk is the consequent output of Rk,

and pk
m represents the linear function coefficients of the consequent. The “and” is the

connective of the rule. The antecedents of the fuzzy rule can also be connected by the
connective “or”, which can be realized by simply replacing the “and” with the “or” in
Equation (1).
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For the sample data d = (x, y), the fuzzy reasoning method of the TSK fuzzy system
is shown below:

(1) Calculate the firing strength. The firing strength f k of the feature vector x on Rk shown
in Equation (1) is calculated as follows:

f k = µAk
1
(x1) ∧ . . . ∧ µAk

M
(xM) (2)

where ∧ represents the fuzzy intersection operator (T-norm operator). If the connec-
tive is “or”, you just need to change the fuzzy intersection operator of Equation (2) to
the fuzzy union operator (S-norm operator), which is expressed by ∨.

(2) Calculate the normalized firing strength. The normalized firing strength
.
f

k
of the

feature vector x on Rk is calculated as follows:

.
f

k
= f k

/
K

∑
k=1

f k (3)

(3) Calculate the output. The output y of the feature vector x on K fuzzy rules is calculated
as follows:

y =
K

∑
k=1

.
f

k
yk (4)

2.2. The FNNC

The FNNC consists of three different layers: the fuzzification layer, the fuzzy logic
layer, and the classification layer.

• The fuzzification layer is utilized to translate crisp input features into fuzzy variables.
Gaussian MFs are utilized. The parameters of Gaussian MFs are determined based on
experience before the training and remain unchanged during the training.

• The fuzzy logic layers are used to represent fuzzy rules. Let rij ∈ {0, 1} denote the
parameter of fuzzy logic layers, where j is the jth node of the fuzzy logic layer, and
i is the ith node of the previous layer (the same below). The nodes of fuzzy logic
layers represent “and” and “or” connectives in fuzzy rules through fuzzy intersection
operators and fuzzy union operators. Through the connecting and stacking of multiple
fuzzy logic layers, complex fuzzy rules can be represented.

• The classification layer is for integrating the outputs of fuzzy logic layers and giving
the final classification. The number of nodes in the classification layer is the same as
the number of class labels.

To perform structure and parameter identifications through the iterative algorithm of
the neural network, the FNNC-d, the symmetrical structure of the FNNC is designed. The
difference between the two lies in the parameters of fuzzy logic layers. In the FNNC-d, the
parameters of fuzzy logic layers denoted by r̂ij are continuous real numbers, i.e., r̂ij ∈ [0, 1].
The two parameters can be converted by the function q : [0, 1]→ {0, 1} :

q(r̂ij) = rij =

{
0 r̂ij ≤ 0.5
1 r̂ij > 0.5

(5)

On this basis, a parameter conversion method during the training process is designed.
The FNNC can be utilized for training, testing, and interpreting, while the FNNC-d is only
used for training. The gradient-updating formula of the FNNC is shown in Equation (6):

θt+1 = θt − η
∂L(Y)

∂Y
· ∂(Ŷ)

∂θt (6)

where θt represents the parameter of the FNNC-d at step t, η is the learning rate, and L(·) is
the loss function. Y and Ŷ refer to the outputs of the FNNC and the FNNC-d, respectively.
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3. The FNNR

In this chapter, a novel regression method of FNN named FNNR is proposed. In
the FNNR, the structure identification and parameter identification are completed coop-
eratively, which gives the model high prediction accuracy with a simple structure and
clear semantics.

3.1. The Structure of the FNNR

The structure of the FNNR is shown in Figure 1. The model consists of five different
layers: the fuzzification layer, fuzzy logic layers, normalization layers, consequent layers,
and the sum layer. Each layer contains several neurons, and the neurons are connected
by edges.
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Figure 1. The structure of the FNNR.

Let L denote the layer number of the FNNR, where L = 1 + G + G + G + 1. G is the
layer number of fuzzy logic layers and G ≥ 1. The first layer is the fuzzification layer
for translating crisp input features into fuzzy variables. The middle G layers are fuzzy
logic layers (same as the fuzzy logic layers in the FNNC). The nodes “∧” and “∨” refer
to the fuzzy intersection operator and the fuzzy union operator, respectively, and the
output of each node is the firing strength f k of the corresponding rule. The first fuzzy logic
layer accepts the outputs of the fuzzification layer as the inputs, and the multiple fuzzy
logic layers represent complex fuzzy rules by connecting with each other. The number of
nodes “∧” and “∨” in each fuzzy logic layer and the layer number (G) can be determined
according to the complexity of the task. Skip connections are added between fuzzy logic
layers to conveniently express concise rules. The subsequent G layers are normalization
layers for normalizing the firing strength f k output by the node in fuzzy logic layers. The
next G layers are consequent layers for representing and calculating the consequent outputs
of TSK rules. The last layer is the sum layer, which is used to calculate the final prediction.
The normalization layers, consequent layers, and the sum layer are collectively called
output layers.

The FNNR is a novel FNN model. In terms of form, like the neural network, the
FNNR is composed of multi-layer neurons. The knowledge is acquired from the sample
data and parameters are adjusted through training. In terms of the calculation process, the
FNNR equals a TSK fuzzy system that can learn automatically. By designing the functions
of different nodes, the superpositions of neurons between layers are transformed into the
fuzzy logic operation, the fuzzy rule combination, and the fuzzy reasoning. Therefore, the
training process of the FNNR is the process of structure and parameter identifications of
the TSK fuzzy system. The key details of the FNNR are introduced in detail below.

3.1.1. The Fuzzification Layer

The fuzzification layer is utilized to translate the crisp input feature vector
x = (x1, . . . , xM) into fuzzy linguistic variable values (fuzzy sets). Let H denote the
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number of MFs of each feature, then there are M× H nodes in the fuzzification layer. The
node of the fuzzification layer is represented by Amh, which refers to the hth fuzzy set of
xm, m = 1, . . . , M, and h = 1, . . . , H. The Gaussian MFs are used to represent the fuzzy
sets. To improve the prediction accuracy, the parameters of Gaussian MFs are adjusted
during the training. In addition, considering that different features may use different fuzzy
partitions, an additional fuzzy partition parameter, emh ∈ {0, 1}, is introduced, which refers
to whether the hth fuzzy set of xm is retained: emh = 1 means keeping the hth fuzzy set,
otherwise, the hth fuzzy set is discarded. Therefore, the output of the node Amh is shown in
Equation (7):

µAmh(xm) = emh exp(− (xm − cmh)
2

2σ2
mh

) (7)

where µAmh(xm) ∈ [0, 1] refers to the fuzzy value of xm on the fuzzy set Amh, and cmh and
σmh are the mean and standard deviation of the Gaussian MF, respectively. The parameters
of the fuzzification layer are shown in Figure 2.
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It should be noted that the introduction of the fuzzy partition parameter emh can
not only control the number of fuzzy sets used for each feature but can also indirectly
control the number of input variables. Specifically, when the fuzzy partition parameters
corresponding to xm are all zeros, that is, em1 = 0, . . . , emH = 0, then xm is equivalent to
being discarded and has no contribution to the prediction result.

To enable emh, a discrete parameter, to be trained by the gradient descent and the back
propagation algorithm, the FNNR-d is designed as the symmetrical model of the FNNR,
and the fuzzy partition parameter of the FNNR-d, êmh, is set to the continuous value of the
real-value range of [0, 1]. The same as Equation (5), êmh and emh can be transformed by the
function q(·):

q(êmh) = emh =

{
0 êmh ≤ 0.5
1 êmh > 0.5

(8)

The FNNR and the FNNR-d share the parameters of Gaussian MFs in the fuzzifica-
tion layer.

3.1.2. The Output Layers

The output layers consist of normalization layers, consequent layers, and one sum
layer. They are used to integrate the outputs of nodes in fuzzy logic layers and give the
final prediction result. Let K donate the number of nodes in the fuzzy logic layers.

The normalization layer is used to normalize the firing strengths. As shown in Figure 1,
normalization layers accept the firing strength f k output by the node in fuzzy logic lay-

ers and get the normalized firing strength
.
f

k
, which corresponds to Equation (3), and

k = 1, . . . , K. From Figure 1, the number of nodes in normalization layers is the same
as that in the fuzzy logic layers, and there is a corresponding relationship between the
normalization node and the fuzzy logic node.
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The consequent layer is for computing the consequent output yk of each rule. As
can be seen from Figure 1, the layer number of consequent layers is the same as that of
the fuzzy logic layers, and their nodes correspond one by one. Each node of consequent
layers accepts the feature vector x1, . . . , xM as the input (see the arrow at the bottom of
Figure 1) and calculates the consequent output yk of the corresponding rule according to
Equation (9):

yk = pk
0 + pk

1x1 + . . . + pk
MxM (9)

Therefore, the parameters of consequent layers are the linear function coefficients of
TSK rules, which are denoted by WP.

The sum layer is used to integrate the normalized firing strength
.
f

k
and the consequent

output yk of each rule to obtain the final prediction. The normalization layers pass
.
f

k
to

consequent layers (see the gray arrow in Figure 1). Then, consequent layers take
.
f

k
together

with the output yk as the inputs of the sum layer and, finally, the summation operation
is complete in the sum layer, which corresponds to Equation (4). It should be noted
that the normalization layers and the sum layer have no trainable parameters, and they
only complete the normalization operation and the summation operation, respectively.
Therefore, the parameter scale of output layers is M · K, where M is the number of input
features, and K is the number of nodes in fuzzy logical layers.

Since the trainable parameters (WP) of output layers are values of the continuous
interval, the FNNR and the FNNR-d share the output layers.

3.2. Training
3.2.1. The Design of the Loss Function

Similarly to the FNNC, the FNNR needs to find the gradient direction with the
help of its symmetrical model, FNNR-d, thus the updating of parameters is similar to
Equation (6), except that the loss function is different. For the FNNR, since the structure
identification and parameter identification are coordinated, there are altogether four kinds
of parameters that need to be trained through gradient descent algorithm, which are
the parameters of Gaussian MFs, WG(c, σ), the fuzzy partition parameters, WE(e), the
parameters of fuzzy logic layers, WR(r), and the consequent parameters, WP(p). The
change in these parameters will not only influence the prediction accuracy of the model
but also greatly affect its interpretability. Therefore, the loss function is divided into two
parts: Lacc(·) and Linter(·), which are utilized to calculate the loss of prediction accuracy
and interpretability, respectively.

The loss function of the prediction accuracy Lacc(·) is calculated as shown in Equation (10):

Lacc(Y) = MSE(Y, Y(X, W)) (10)

where the mean square error (MSE) function is used. W = (WG, WP, WE, WR) represents
the parameters of the FNNR, including parameters of Gaussian MFs (WG), consequent
parameters (WP), discrete parameters of fuzzy partitions (WE), and discrete parameters of
fuzzy logic layers (WR). Y is the output of the FNNR, which is the final prediction, and Y is
the label.

The measure of the model’s interpretability is considered from two levels: the in-
terpretability at the fuzzy rule level and the interpretability at the fuzzy partition level
as shown in Table 1. Among them, the fewer rules extracted from the model and the
fewer antecedents of the rule, the more concise and explainable fuzzy rules are. The fewer
input variables and MFs the model uses and the more complementary the fuzzy partition
is, the clearer the fuzzy partition is and the more interpretable the model is. Here, the
complementarity [38] refers to the fact that the sum of the fuzzy values of input features on
all fuzzy partitions is close to one.
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Table 1. Interpretability measures of the FNNR.

Fuzzy Rule Level Fuzzy Partition Level

Number of Rules Number of MFs
Number of Antecedents Number of Input Features

Complementarity

Therefore, the loss function Linter(·) that measures the interpretability of the FNNR is
revealed in Equation (11):

Linter(Ŵ) = λ1 ϕ1(WG) + λ2||ŴE||22 + λ3||ŴR||22 (11)

where Ŵ = (WG, WP, ŴE, ŴR) are parameters of the symmetrical model FNNR-d. λ1, λ2,
and λ3 are the regularization coefficients for parameters of Gaussian MFs (WG), parameters
of fuzzy partitions (ŴE), and parameters of fuzzy logic layers (ŴR), respectively. ϕ1(·) is
the function that measures the complementarity of fuzzy sets as shown in Equation (12):

ϕ1(WG) = ∑ x(∑ H
h=1µAh(x)− 1)

2
(12)

where x is the value of the input feature, Ah refers to the hth fuzzy set of x, and H is the
fuzzy set number of x.

It can be observed from Equation (11) that the first item of Linter(·) can help to enhance
the complementarity of fuzzy partitions during the training, the second item can help the
model to reduce the number of input variables and MFs in the training process, and the third
item can help to reduce the number of fuzzy rules and antecedents in the training process.

In conclusion, the formula of parameter updating is shown in Equation (13):

ŵt+1 = ŵt − η(
∂Lacc(Y)

∂Y
· ∂(Ŷ)

∂ŵt +
∂Linter(ŵt)

∂ŵt ) (13)

where ŵ ∈ Ŵ represents the parameter of the symmetrical model FNNR-d. Y and Ŷ are
the outputs of the FNNR and the FNNR-d, respectively.

3.2.2. The Alternate Training Strategy

As mentioned above, the FNNR and its symmetrical model FNNR-d contain four
types of trainable parameters, where parameters of Gaussian MFs WG and consequent
parameters WP are shared, while parameters of fuzzy partitions and fuzzy logic layers are
different, which can interchangeable by q(·) (see Equations (5) and (8)). According to q(·),
when the values of fuzzy partition parameters ŴE and fuzzy logic layer parameters ŴR
in the FNNR-d cross 0.5, the corresponding discrete fuzzy partition parameters WE and
fuzzy logic layer parameters WR in the FNNR will jump from 0 to 1 (or from 1 to 0), and
then the parameters of Gaussian MFs WG and the consequent parameters WP will change
dramatically. Therefore, when the above four kinds of parameters are trained together, we
find that the model is difficult to converge during the training process: ŴE and ŴR oscillate
around 0.5, which leads to the constant oscillation of WG and WP, making it difficult to find
the optimal solution. To solve this problem, an alternate training strategy is designed and
adopted in training as shown in Algorithm 1.

It can be observed from Algorithm 1 that the whole training cycle is divided into v
rounds and each round is divided into three stages: the stage of joint training, the stage
of fixed fuzzy logic layers, and the stage of fixed fuzzy partition parameters. Utilizing
three stages of alternate training, the problem of the model brings difficult to converge,
caused by the oscillation of fuzzy partition parameters and fuzzy logic layer parameters,
can be alleviated.
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Algorithm 1: Alternate Training Strategy.

input: The dataset, D; the number of epoches for joint training, E1; the number of epoches for
fixing fuzzy logic layers, E2; the number of epoches for fixing fuzzy partitifon parameters, E3.
output: A trained FNNR model, FNNR
begin

initialize the parameters of model
for i < v do

training and updating all the parameters with D for E1 epoches\;
training and updating all the parameters except for ŴR with D for E2 epochs;
training and updating all the parameters except for ŴE with D for E3 epochs;
i = i + 1;

end
return FNNR

end

4. Experiments

To verify the regression performance of the proposed method, the FNNR is compared
with the representative regression methods, based on fuzzy rules proposed recently, and
the classical regression algorithm on benchmark datasets.

4.1. Experimental Design

We have the following questions in mind while designing and conducting the experiments:

(1) How does the FNNR perform when compared with other state-of-the-art regres-
sion methods?

(2) What roles do the training modes of the fuzzification layer, the design of the output
layers, and the strategy of alternate training play in the FNNR?

(3) How much do different regularization coefficients affect the final prediction of
the FNNR?

(4) How explainable is the FNNR?

To answer (1), we compare the performance of the FNNR with several benchmark
methods. To answer (2), we conduct some ablation studies on the proposed model. To
answer (3), we change the regularization coefficients to make comparisons. To answer (4),
the fuzzy rules used by the FNNR to make predictions are visually displayed on two datasets.

4.1.1. Datasets

A total of 28 real regression datasets are selected from KEEL [39] repository as baseline
datasets. These datasets have different feature numbers (from two to forty) and sample
numbers (from 337 to 40,768). According to the dimension of features, these 28 datasets
are divided into two categories: 11 low-dimensional datasets and 17 high-dimensional
datasets. Supplementary S1 shows detailed information on the two types of datasets. For
the low-dimensional datasets, the number of features is small (all less than seven), and the
number of samples is also relatively small, which is up to 4052, so the regression tasks on
low-dimensional datasets are relatively simple. For high-dimensional datasets, the number
of features is large, especially for the last four datasets, and the feature numbers are all over
20. Considering that fuzzy rules are better at fitting data with small feature dimensions [14],
the regression performance of the model is challenged. In addition, in high-dimensional
datasets, some of them have small sample sizes, such as FOR and BAS, which increases the
risk of overfitting. Finally, there are quite a few datasets with large sample sizes, such as
CAL, MV, and HOU, which may consume a lot of computing resources.

4.1.2. Parameter Settings for the FNNR

In the FNNR, Gaussian MFs used in the fuzzification layer are set as the uniform
MFs in the domain [0, 1], that is, the mean vector of Gaussian functions is shown in
Equation (14):
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c =


(0, 1) H = 2
(0, 1/(H − 2), 1) H = 3
(0, 1/(H − 2), 2/(H − 3), . . . , 1) H > 3

(14)

Each MF uses the same standard deviation: σ = 2 · (1/H)2. Fuzzy partition parameters
are all initialized to 1 s. To enhance the model interpretability as much as possible, the initial
number of fuzzy sets for each feature, H, is set to seven. Considering that the prediction task
on low-dimensional datasets is relatively simple, parameters of MFs and fuzzy partitions
in the FNNR on low-dimensional datasets are fixed and unchanged with H ∈ {3, 5}. The
number of fuzzy logic layers is chosen from {1, 2}. Depending on the regression difficulties
of different datasets, the number of nodes in each fuzzy logic layer ranges from two to
fifty. We utilize the Adam method and the MSE loss function for the training process. The
round number v for the alternate training strategy is set to three, and the cycle numbers
of three training stages are set to 100 in each round, i.e., E1, E2, E3 = 100. The ranges of
regularization coefficients in Equation (11) are as follows: λ1 ∈ {0, 1 × 10−4, 1× 10−2 , 1},
λ2 ∈ {1 × 10−3, 1× 10−6 , 1}, and λ3 ∈ {1 × 10−2, 1× 10−4, 1× 10−6, 1× 10−8, 1× 10−10}.
The min-max normalization is carried out on features and labels. For a fair comparison, the
prediction results of the proposed method are inversely normalized and the MSEs with the
original labels are calculated and recorded.

4.1.3. Experimental Settings

• Benchmark Methods

To evaluate the regression performance of the proposed FNNR, it is compared with
some representative regression methods based on fuzzy rules and one classical regression
algorithm, including the following seven methods:

a. The decision tree (DT) [40];
b. The training algorithm for the TSK fuzzy system based on mini-batch gradient descent

with regularization, droprule, and adabound (MBGD-RDA) [14];
c. The learning algorithm of TSK fuzzy rules based on evolutionary learning (FRULER) [41];
d. The learning algorithm of the TSK fuzzy system based on multi-objective evolution-

ary algorithms (METSK-HD) [35];
e. The learning algorithm of the zero-order TSK fuzzy system based on Apriori and

local search methods (Freq-SD-LSLS) [42];
f. The learning algorithm of Mamdani fuzzy rules based on multi-objective evolution-

ary learning algorithms (MOKBL + MOMs) [36];
g. Disjunctive fuzzy neural network (DJFNN), a new splitting-based approach to de-

signing a TS fuzzy model [10].

The experimental results of the benchmark methods are directly cited from [10].

• Evaluation Metrics

In this paper, the MSE on the test dataset is adopted to evaluate the regression perfor-
mances of different methods, which is shown in Equation (15):

MSE =
1

2Ntest
∑ Ntest

n=1 (yn − yn)
2 (15)

where Ntest is the sample size of the test data. yn and yn refer to the prediction and the label
of the nth sample, respectively. In this paper, all the experiments are repeated 10 times on
each dataset, and the average MSEs are reported.

• The Significance Testing

To further explore whether the observed differences are statistically significant, the
Friedman test [43] for multiple comparisons and the Bonferroni–Dunn post hoc test [44] to
identify pairwise differences are applied.
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4.2. Result Analysis

The average ranks (AvgR) and average MSEs of the proposed FNNR and the other
four regression methods on low-dimensional test data are reported in Table 2, where the
results of ELE1, DELAIL, and DELELV should be multiplied by 105, 10−8, and 10−6 (the
same below). The minimum MSE on each dataset is highlighted in bold.

Table 2. The average test MSEs of FNNR, DT, MBGD-RDA, FRULER, and DJFNN on low-
dimensional datasets.

Datasets DT MBGD-RDA FRULER DJFNN FNNR (Ours)

ELE1 2.495 2.082 2.012 2.242 1.504
PLA 3.708 1.176 1.219 1.116 1.095
QUA 0.0178 0.0180 0.0181 0.0179 0.0180
ELE2 1.1 × 105 13,677 6729 4107 3922
FRIE 5.486 3.654 0.731 0.788 0.605

MPG6 6.258 4.416 3.727 4.083 3.696
DELAIL 1.735 1.502 1.458 1.362 1.456

DEE 0.119 0.085 0.080 0.082 0.080
DELELV 1.216 1.059 1.045 1.008 1.015

ANA 0.003 0.086 0.008 0.004 0.004
MPG8 6.652 4.325 4.084 4.315 3.095
AvgR 4.273 3.909 2.727 2.364 1.455

We can conclude from Table 2 that:

1. The proposed FNNR achieves the minimum average MSEs on seven of eleven datasets
among the models involved. On three of the remaining four datasets, FNNR still
exhibits the second-best performance. It proves that the proposed FNNR method has a
significant performance advantage on low-dimensional and simple tasks. Considering
that parameters of MFs and fuzzy partitions in the fuzzification layer are not adjusted
during the training process on low-dimensional datasets, there is still a lot of room for
performance improvement of the FNNR.

2. The FNNR shows great improvement over the other four approaches in terms of
regression performance. On some datasets, such as ELE1, FRIE, and MPG8, the
FNNR reduces the MSEs by over 20% compared with the recently proposed DJFNN.
Moreover, the average MSEs are more than 4% lower than the DJFNN on datasets
ELE2 and MPG6.

3. The significance tests are conducted on the results shown in Table 2. The Friedman
test suggests rejecting the H0 hypothesis (FF = 5.825 > 2.091) for a significance level
of 0.1 with (4, 40) degrees of freedom. This suggests that on low-dimensional datasets,
there are significant differences between at least two methods across the benchmark.
The Bonferroni–Dunn post hoc test suggests that the regression performance of the
FNNR is significantly different from that of DT, MBGD-RDA, and FRULER, while the
performance of the FNNR and the DJFNN are equivalent.

The average ranks and average test MSEs of the proposed FNNR and all of the seven
regression methods on high-dimensional datasets are reported in Table 3, where the results
of CAL, BAS, HOU, ELV, PUM, and AIL should be multiplied by 109, 105, 108, 10−6, 10−4,
and 10−8 (the same below). The minimum MSE on each dataset is highlighted in bold.

We can conclude from Table 3 that:

1. The FNNR also shows great improvement over other approaches in terms of regres-
sion performance on high-dimensional tasks. On some datasets, such as STP, MV,
and POLE, the FNNR reduces the errors by about 50% compared with the DJFNN.
Moreover, the average MSEs are more than 20% lower than the DJFNN on datasets
CON, MOR, and CA.

2. The proposed FNNR obtained the minimum MSEs on the last four datasets with high
feature dimensions, which indicates that the selection of features and antecedents is
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completed flexibly through trainable parameters of fuzzy partitions and fuzzy logic
layers in the FNNR. For datasets BAS and FOR, which are easy to overfit, although
the FNNR does not get the optimal performance among all the methods, there is no
significant difference between the average error of the FNNR and the best one, with
increases of 2% and 10.8%, respectively. It indicates that the proposed method can
avoid overfitting to a certain extent. On datasets with large sample sizes like MV,
CAL, and HOU, the FNNR achieves the minimum MSEs, showing that the FNNR
also has good performance in handling regression tasks with large samples.

Table 3. The average test MSEs of FNNR, DT, MBGD-RDA, FRULER, DJFNN, METSK-HD, Freq-SD-
LSLS, and MOKBL + MOMs on high-dimensional datasets.

Datasets DT MBGD-RDA FRULER DJFNN METSK-HD Freq-SD-LSLS MOKBL
+ MOMs

FNNR
(Ours)

ABA 2.957 2.518 2.393 2.253 2.392 2.476 2.401 2.035
CAL 3.303 2.449 2.110 2.050 1.710 2.385 2.660 1.674
CON 51.27 55.13 20.60 18.26 23.89 17.04 27.42 13.27
STP 1.764 2.733 0.353 0.392 0.387 0.725 0.660 0.199

WAN 6.835 1.258 0.888 0.728 1.189 1.025 1.600 0.741
WIZ 4.713 0.814 0.663 0.755 0.944 0.955 1.580 0.641
MV 4.071 10.18 0.083 0.006 0.061 0.273 0.093 0.003
FOR 3209 2009 2214 2908 5587 2317 2006 2249
MOR 0.160 0.013 0.007 0.003 0.013 0.026 0.015 0.002
TRE 0.167 0.032 0.027 0.023 0.038 0.054 0.041 0.023
BAS 2.876 2.638 3.0e5 3.309 3.688 3.120 2.570 2.627
HOU 9.121 11.49 8.005 6.755 8.640 6.847 9.110 6.535
ELV 11.52 34.45 2.934 2.360 7.020 10.00 10.70 2.399
CA 9.972 48.85 4.634 2.815 4.949 61.97 4.670 2.089

POLE 149.6 471.8 110.9 119.7 61.02 541.8 93.96 19.79
PUM 1.501 3.636 0.367 0.223 0.287 1.520 0.270 0.198
AIL 2.976 6.9e8 1.404 1.309 1.510 4.581 1.821 1.302

AvgR 6.941 6.294 3.647 2.765 4.353 5.706 4.824 1.353

The Friedman test suggests rejecting the H0 hypothesis (FF = 20.024 > 1.771) for
a significance level of 0.1 with (7112) degrees of freedom. This suggests that there are
significant differences between at least two methods across the benchmark. The Bonferroni–
Dunn post hoc test suggests that the regression performance of the FNNR is significantly
different from that of the DJFNN (1.412 > CDα = 1.188).

4.3. Ablation Study

To illustrate the functions and effects of some key technologies in the FNNR, such
as the training modes of the fuzzification layer, the design of the output layers, and the
alternate training strategy, ablation studies are carried out. For fairness, the rest of the parts
remain unchanged and the hyperparameters remain the same during ablation experiments.

4.3.1. The Ablation of Training Modes of the Fuzzification Layer

To illustrate the influence of training modes of parameters in the fuzzification layer on
the regression performance, the following three different training modes are adopted:

a. The parameters of the fuzzification layer are fixed during the training.
b. Only the parameters of Gaussian MFs in the fuzzification layer are trained.
c. The parameters of Gaussian MFs and fuzzy partitions in the fuzzification layer are

trained together.

On high-dimensional datasets, the average prediction MSEs of the FNNR using the
above three training modes are shown in Figure 3. The FNNR achieves the minimum errors
on 14 of 17 high-dimensional datasets using training mode c. Compared with training
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mode b, the regression performance of the FNNR with training mode c is slightly improved,
for example, the MSEs on datasets ABA, CON, STP, FOR, and BAS are reduced by 4% to
22%. Compared with training mode a, the performance with training mode c is greatly
improved, and the MSEs on datasets CON, STP, MV, FOR, MOR, CA, and POLE are reduced
by 10% to 85%.
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datasets.

Figure 4 reveals the fuzzy sets of each feature obtained by the above three training
modes on the MOR dataset. Since the parameters of MFs are not modified and the same
parameters of fuzzy partitions and MFs are used for all the features when using training
mode a, the fuzzy sets of only one feature are displayed, and the fuzzy sets of the other
features are the same.
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As can be observed from Figures 3 and 4, training mode b enhances the fitting ability
and improves the performance of the model by fine-tuning the parameters of MFs, and
training mode c further reduces the test error of the model by discarding unimportant
fuzzy partitions.

4.3.2. The Ablation of the Rule Type Represented by the Output Layers

The output layers of the FNNR consist of normalization layers, consequent layers, and
the sum layer, which complete the representation of consequents in the TSK rules and the
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inference of prediction together. To verify the validity and rationality of the data fitting
ability using TSK fuzzy rules, an ablation study is conducted on the rule type. In this study,
the TSK fuzzy rules are replaced by Mamdani fuzzy rules [3] and the fuzzy rules for using
nonlinear calculations in the consequents.

(1) The FNNR model with Mamdani fuzzy rules

Like TSK fuzzy rules, Mamdani rules are also a kind of fuzzy rule that are common and
widely used. Different from the former, the antecedents and consequents of Mamdani rules
are interpretable linguistic variables, so their interpretability is stronger. For convenience of
representation, the original FNNR model is called FNNR-T, and the FNNR using Mamdani
fuzzy rules is called FNNR-M.

The function of output layers in the FNNR-M is as the center average defuzzifier [45].
The output layers of the FNNR-M consist of one consequent layer and one sum layer, where
the nodes of the consequent layer represent the fuzzy set of the output variable and the
number of nodes is the fuzzy partitions number of the output variable, which is set to HM.
The parameters of the consequent layer are continuous real values in the interval [0, 1] that
represents the rule weights. The consequent layer is fully connected with the fuzzy logic
layers, and the output of each consequent node is the weighted sum of firing strengths of
the rules whose consequent is the corresponding fuzzy set. For the FNNR-M, the parameter
scale in the output layers is HM · K, where K is the number of nodes in fuzzy logic layers.
Supplementary S2 shows more details on the FNNR-M.

(2) The FNNR model with rules whose consequents use nonlinear calculations

Considering that the fully connected network has high prediction accuracies in re-
gression tasks, the consequent layers of the FNNR are replaced by fully connected layers,
which is called the FNNR-F. In the FNNR-F, the output layers are composed of fully con-
nected layers and one sum layer. The layer number of fully connected layers is set as
IF(IF ≥ 1), and the number of nodes for each layer is set as nF. The ReLU function is
utilized as the activation function. Of course, for the FNNR-F, the prediction is the result of
a complex weighted sum and nonlinear activation of the firing strengths, which reduces
the model interpretability to a certain extent. The parameter scale of the output layers is
IF · (nF + 1) + nF · K. Supplementary S3 shows more details on the FNNR-F.

Table 4 shows the average MSEs of FNNR-M, FNNR-F, and FNNR-T on 28 datasets,
where HM is set as five, IF is set as two, and nF is set as twenty. The minimum error on
each dataset is highlighted in bold.

As can be seen from Table 4, the regression performance of the FNNR-M is the worst:
it can only achieve the minimum test errors on four of twenty-eight datasets. The FNNR-F
has the best regression performance and can obtain the minimum test errors on 15 datasets.
The performance of FNNR-T is middle-ranking with the minimum MSEs on 11 datasets.
An analysis of the time complexity of the three models is given in Supplementary S4.

To improve the prediction accuracy of the FNNR-M and reduce the complexity of
FNNR-F to enhance its interpretability, ablation analyses are performed on hyperparameters
HM and IF, where HM ∈ {3, 5, 7}, and IF ∈ {1, 2, 3, 4}. Table 5 illustrates the average MSEs
of the above two models under each specified hyperparameter. The minimum error of each
model on each dataset is highlighted in bold.

As can be observed from Table 5, when increasing the complexity of the FNNR-M
(increasing the number of nodes in the consequent layer), the regression performance
cannot be significantly improved. When the number of nodes in the consequent layer
is increased to seven, the minimum error can only be achieved on CAL dataset. For the
FNNR-F, when the complexity is reduced (reducing the number of fully connected layers),
the regression performance of the model is greatly affected. When the number of fully
connected layers is reduced to one, the model can only achieve the minimum MSEs on
three datasets. It is worth noting that when the complexity of the FNNR-F is increased,
the performance does not get better. On the one hand, this is related to the phenomenon
of vanishing gradient; when the number of fully connected layers increases, the gradient
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at the back of the network has difficulty being transmitted to the front layers, resulting in
low learning efficiency of the parameters of the fuzzification layer and fuzzy logic layers.
On the other hand, the conclusion can be drawn by the comparison of MSEs on training
sets and test sets that when the number of fully connected layers increases, the risk of
overfitting gradually increases.

Table 4. The average MSEs of EFNR-M, EFNR-F, and EFNR-T on 28 datasets.

Datasets FNNR-M FNNR-F FNNR-T

ELE1 1.712 1.361 1.504
PLA 1.104 1.062 1.095
QUA 0.0180 0.0184 0.0180
ELE2 5882 2585 3922
FRIE 0.655 0.692 0.605

MPG6 3.618 3.669 3.696
DELAIL 1.513 1.396 1.456

DEE 0.077 0.076 0.080
DELELV 1.019 0.928 1.015

ANA 0.003 0.003 0.004
MPG8 3.402 2.700 3.095

ABA 2.033 1.973 2.035
CAL 1.750 1.582 1.674
CON 17.08 16.738 13.27
STP 0.299 0.321 0.199

WAN 0.729 0.834 0.741
WIZ 0.697 0.669 0.641
MV 0.031 0.221 0.003
FOR 3018 2198 2249
MOR 0.009 0.004 0.002
TRE 0.032 0.025 0.023
BAS 2.827 2.521 2.627
HOU 6.990 6.861 6.535
ELV 2.554 1.987 2.399
CA 3.769 3.491 2.089

POLE 36.16 8.788 19.79
PUM 0.326 0.157 0.198
AIL 1.354 1.317 1.302

Table 5. The average prediction error of FNNR-M and FNNR-F on each dataset using different
hyperparameters of HM and IF, respectively.

Datasets

FNNR-M FNNR-F

3 5 7 1 2 3 4

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

ELE1 2.833 1.622 1.917 1.712 2.514 1.690 1.767 1.527 1.098 1.361 1.517 1.528 1.375 1.397
PLA 1.116 1.080 1.113 1.104 1.105 1.087 1.106 1.076 1.089 1.062 1.086 1.077 1.103 1.069
QUA 0.016 0.019 0.017 0.018 0.017 0.019 0.017 0.018 0.017 0.018 0.017 0.019 0.017 0.019
ELE2 8523 8570 7207 5882 10,864 11,186 8603 9499 2600 2585 4478 4522 2904 3379
FRIE 0.600 0.608 0.629 0.655 0.601 0.621 0.596 0.725 0.609 0.692 0.606 0.682 0.606 0.704

MPG6 2.128 3.635 2.702 3.618 2.406 3.680 1.827 3.657 2.213 3.669 2.550 3.623 2.272 3.638
DELAIL 1.397 1.535 1.369 1.513 1.392 1.519 1.299 1.559 1.638 1.396 1.088 1.399 1.071 1.876

DEE 0.084 0.083 0.077 0.077 0.070 0.084 0.071 0.086 0.065 0.077 0.053 0.086 0.033 0.082
DELELV 1.018 1.017 1.008 1.019 1.008 1.021 0.991 1.006 0.883 0.928 0.954 0.997 0.948 0.995

ANA 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.003 0.002 0.003 0.002 0.003 0.002 0.003
MPG8 3.103 3.720 2.146 3.402 2.726 3.619 1.747 2.980 2.070 2.700 1.961 2.929 2.170 3.306
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Table 5. Cont.

Datasets

FNNR-M FNNR-F

3 5 7 1 2 3 4

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

ABA 2.224 2.080 2.202 2.033 2.205 2.052 2.162 1.991 2.169 1.973 2.099 2.020 2.054 1.987
CAL 1.825 1.868 1.738 1.750 1.713 1.714 1.735 1.783 1.781 1.582 1.717 1.745 1.530 1.816
CON 20.50 24.76 12.00 17.08 14.64 21.95 7.639 16.38 7.480 16.74 16.77 25.93 9.897 19.67
STP 0.330 0.371 0.263 0.299 0.298 0.360 0.247 0.295 0.270 0.321 0.206 0.279 0.197 0.290

WAN 1.166 0.835 0.984 0.729 0.656 0.850 0.900 0.900 0.363 0.834 0.431 0.895 0.483 0.951
WIZ 0.675 0.724 0.637 0.697 0.661 0.709 0.595 0.700 0.506 0.669 0.658 0.746 0.615 0.677
MV 0.082 0.082 0.031 0.031 0.054 0.054 0.223 0.223 0.213 0.221 0.052 0.052 0.049 0.048
FOR 1095 4066 974.45 3018 1201 4021 1156 4053 1036 2198 1174 4079 1185 4080
MOR 0.010 0.012 0.008 0.009 0.010 0.010 0.013 0.010 0.004 0.004 0.007 0.008 0.008 0.008
TRE 0.022 0.036 0.022 0.032 0.024 0.036 0.019 0.033 0.015 0.025 0.016 0.029 0.017 0.028
BAS 1.568 2.796 1.578 2.827 2.349 2.804 1.684 2.748 1.790 2.521 1.832 2.755 1.510 2.828
HOU 7.954 8.279 6.421 6.990 8.145 8.211 6.741 6.987 6.197 6.861 5.979 6.729 5.677 6.803
ELV 2.457 2.519 2.452 2.554 2.568 2.706 2.136 2.220 1.957 1.987 2.213 2.341 2.292 2.327
CA 3.641 3.804 3.600 3.769 3.743 3.964 3.578 3.752 3.307 3.491 3.273 3.510 3.354 3.432

POLE 45.96 47.51 34.79 36.16 47.94 49.65 9.459 9.873 7.587 8.788 13.03 16.90 9.53 12.46
PUM 0.357 0.344 0.339 0.326 0.377 0.372 0.214 0.202 0.217 0.157 0.152 0.215 0.339 0.302
AIL 1.281 1.342 1.307 1.354 1.291 1.342 1.252 1.309 1.258 1.317 1.273 1.324 1.297 1.359

By conducting ablation experiments on the rule type represented by the output layers,
it can be concluded that neither FNNR-M nor FNNR-T can properly balance prediction
accuracy and interpretability. Therefore, it is most appropriate to adopt TSK fuzzy rules in
the FNNR model.

4.3.3. The Ablation of Alternate Training Strategy

As mentioned above, to avoid the problem that the model has difficulty converging
due to the oscillation of fuzzy partition parameters and fuzzy logic layer parameters in the
training process, a three-stage alternate training strategy is designed. To demonstrate the
effectiveness of this strategy, an ablation analysis is performed.

The FNNR-T is trained using the alternate training strategy and normal training
method on all 28 datasets, and the average test errors are recorded. To highlight the role
of alternate training strategy, parameters of MFs and fuzzy partitions are fixed during the
training, and the whole training process is only divided into two stages: the stage of joint
training and the stage of the fixed fuzzy logic layer. It is found that for 24 of the 28 datasets,
the average MSEs are lower when using the alternate training strategy. This indicates that
the alternate training strategy can help to improve the prediction accuracy of the model.
Experiments are also conducted on the other two models, and relevant experimental data
and analyses are shown in Supplementary S5.

Figure 5 reveals the training loss of the FNNR-T on low-dimensional datasets MPG6
and DEE and high-dimensional datasets PUM and ELV when the alternate training strategy
and normal training method are adopted. For intuition, 5000 cycles are trained on low-
dimensional datasets and 10,000 cycles are trained on high-dimensional datasets. It can be
observed that the loss gradually diverges in the later training period and cannot converge
when adopting the normal training method, while the alternate training strategy can help
the loss gradually stabilize and finally converge.

4.4. Parameter Analysis

To understand the influence of regularization coefficients on the training and re-
gression performance of the model, parameter analyses on λ1 and λ2 are carried out in
this chapter.
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4.4.1. The Parameter Analysis on the Regularization Coefficient λ1

Firstly, the regularization coefficient λ1 is analyzed. As mentioned above, λ1 is the
regularization coefficient to measure the complementarity of fuzzy sets. The larger λ1
is, the stronger the complementarity of fuzzy sets will be, the clearer the semantics of
fuzzy sets will be, and the stronger the interpretability will be. Figure 6 illustrates the
average prediction errors of the FNNR-T under different values of λ1 in high-dimensional
datasets. Similarly, to clearly show the influence of regularization coefficients, fuzzy
partition parameters are fixed in the training process.
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As can be observed from Figure 6, when λ1 = 0 and λ1 = 1 × 10−4, the model gets the
minimum MSEs on eight datasets; under the circumstances of λ1 = 1 and λ1 = 1 × 10−2,
the model achieves the minimum error on only one dataset. This indicates that with the
increase of λ1, when it rises to a threshold, the regression accuracy of the model will
decrease gradually. This is also in line with our subjective feelings: with the increase of the
regularization coefficient, the model pays too much attention to the complementarity of
fuzzy sets during training, which leads to a decrease in accuracy.

Figure 7 shows the fuzzy sets that the model eventually learns under the four values
of λ1 in the CON dataset, respectively. It can be observed that the interpretability of fuzzy
sets is poor when λ1 = 0. Some areas are covered repeatedly by a few fuzzy sets at the
same time, so the semantics is peculiarly fuzzy. For example, when x1 is near 0.8 with
λ1 = 0, the firing strengths of three fuzzy sets are very high, which is not intuitive. In
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addition, there are several fuzzy sets whose shapes are “sharp”, such as the second fuzzy
set of x2 when λ1 = 0, which is also poorly interpretable. With the increase of λ1, the fuzzy
sets tend to be uniform, and the interpretability is enhanced gradually.
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4.4.2. The Parameter Analysis on the Regularization Coefficient λ2

The regularization coefficient λ2 is analyzed below. λ2 is the regularization coefficient
to control the number of fuzzy sets of features. The larger λ2 is, the fewer fuzzy sets there
are, and the more explainable the model is. Figure 8 reveals the average prediction errors
of the FNNR-T under different values of λ2 on high-dimensional datasets. For the sake of
fairness, λ1 is set to 1 × 10−4.
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As can be seen from Figure 8, when λ2 = 1× 10−6, the model has the best regression
performance, and it can reach the minimum errors on 13 of 17 datasets. When λ2 = 1,
the regression performance of the model is poor, and it can only reach the minimum MSE
on one dataset. Compared with λ2 = 1× 10−6, the average errors under λ2 = 1 increase
by more than 20% on 11 datasets. When λ2 = 1× 10−3, the regression performance of
the model is middle-ranking, and the prediction errors are minimized on two datasets.
Compared with λ2 = 1× 10−6, the errors increase by more than 20% on seven datasets
under λ2 = 1× 10−3. The results observed above are in line with our subjective feelings:
With the increase of λ2, the number of fuzzy partitions decreases continuously. Therefore,
the remaining fuzzy sets are hard to reasonably divide in the input space, and the accuracy
of the model is seriously affected.
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Figure 9 illustrates the fuzzy sets finally learned by the model using different values
of λ2 on the STP dataset. From the figure, when the regularization coefficient is moderate,
inappropriate fuzzy sets will be discarded, and the number of fuzzy sets used for each
feature is well optimized. When the regularization coefficient is too large, many fuzzy sets
are discarded, and the remaining fuzzy sets are difficult to partition in the input space
reasonably and efficiently.
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4.5. The Interpretability of the FNNR

The proposed FNNR has good interpretability, and TSK fuzzy rules can be directly
extracted from the trained FNNR. The course of rule extraction is very simple: one fuzzy
rule can be extracted if the node in the fuzzy logic layers whose parameter is one is found.

To visually illustrate the interpretability of the model, Figure 10 and Table 6 show the
fuzzy rules extracted from the model in datasets ELE1 and MPG8, respectively, where L, M,
and H are the names of fuzzy sets when the fuzzy partition number is three, and L, ML, M,
MM, and H are the names of fuzzy sets when the fuzzy partition number is five. b is the
constant coefficient of the consequent. As can be seen, whether the feature number is small
or large, the model can achieve low regression error with a small number of rules.
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Table 6. The fuzzy rules used by the FNNR on the dataset MPG8.

No. Rules

1
Antecedent x1(L)|x3(M)|x3(MM)|x4(M)|x6(L)|x6(MM)|x7(M)
Consequent [0.02, 0.23, −0.24, −0.67, −0.15, 0.3, −0.14, 0.51]

2
Antecedent x3(M)|x6(MM)|x7(M)
Consequent [0.14, 0.02, −0.86, −1.15, 0.12, 0.60, 0.33, 0.93]
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Table 6. Cont.

No. Rules

3
Antecedent x4(L)&[x3(M)|x6(MM)|x7(M)]
Consequent [0.23, 0.10, 0.12, −0.08, 0.57, 0.21, 0.04, −0.05]

4
Antecedent x2(ML)|x4(H)
Consequent [0.36, 0.56, 0.45, 0.25, 0.21, 0.37, 0.20, 0.23]

5
Antecedent x4(L)
Consequent [0.37, 0.14, 0.50, 0.46, 0.28, 0.22, −0.17, 0.29]

6
Antecedent [x2(ML)&x4(H)]&[x1(H)|x3(MM)|x4(M)|x6(L)]
Consequent [−0.35, −0.04, −0.17, −0.41, 0.16, 0.39, 0.16, 0.10]

7
Antecedent x1(H)|x3(MM)|x4(M)|x6(L)
Consequent [0.01, 0.22, −0.19, −0.16, 0.01, −0.01, 0.37, 0.31]

5. Conclusions and Future Work

A novel explainable fuzzy neural network regression method (FNNR) is proposed
in this paper. To solve the problem of rule explosion on high-dimensional datasets, the
symmetrical structure and corresponding parameter transformation method are used
to learn the number of fuzzy rules and fuzzy partitions automatically. In addition, the
structure identification and parameter identification of the model are considered. The
number of fuzzy rules, the number of fuzzy partitions, the parameters of Gaussian MFs,
and the consequent parameters are trained synergistically. On this basis, an alternate
training strategy is designed to train different types of parameters to promote convergence.
To further enhance the interpretability of the model, the regularized items are designed
from fuzzy rule level and fuzzy partition level to guide the model to learn fuzzy rules with
a simple structure and clear semantics. Experimental results on datasets with low and
high dimensions show that the proposed model can achieve high test accuracy with good
interpretability by comparing with some representative regression methods based on fuzzy
rules and the classical regression models.

First, various uncertainties that may exist in the datasets, such as missing values,
error values, noises, abnormal values, and so on, are not considered in this study. Future
research could combine rough sets [46] and other technologies with fuzzy sets to deal
with the above uncertainties. In addition, the type-I fuzzy sets used in this paper can
also be extended to type-II fuzzy sets or interval fuzzy sets [47,48] to better deal with the
uncertainty in the data. Secondly, in this study, Gaussian MFs are utilized to represent the
fuzzy sets of all features. Considering different MFs and their combinations or using the
shape of MFs as a learnable parameter is another possible future research direction. Finally,
the gradient-based method is adopted in this study to train all parameters together as a
whole. This method requires no intervention, but it is time-consuming in large datasets.
Learning from some fast training methods, such as pseudoinverse [49] and heuristic greedy
search [10], to conduct collaborative training for various parameters is also a potential
future research topic.
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//www.mdpi.com/article/10.3390/sym15091711/s1.

Author Contributions: Validation, W.H.; Writing—original draft, K.Z.; Writing—review & editing,
X.Y.; Supervision, T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Defense Industrial Technology Development Program grant
number [JCKY2020601B018].

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/sym15091711/s1
https://www.mdpi.com/article/10.3390/sym15091711/s1


Symmetry 2023, 15, 1711 21 of 22

References
1. Das, R.; Sen, S.; Maulik, U. A survey on fuzzy deep neural networks. ACM Comput. Surv. 2020, 53, 1–25. [CrossRef]
2. Kerk, Y.W.; Tay, K.M.; Lim, C.P. Monotone Fuzzy Rule Interpolation for Practical Modeling of the Zero-Order TSK Fuzzy Inference

System. IEEE Trans. Fuzzy Syst. 2022, 30, 1248–1259. [CrossRef]
3. Li, G.; Peng, C.; Xie, X.; Xie, S. On Stability and Stabilization of T–S Fuzzy Systems with Time-Varying Delays via Quadratic

Fuzzy Lyapunov Matrix. IEEE Trans. Fuzzy Syst. 2022, 30, 3762–3773. [CrossRef]
4. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins,

R.; et al. Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

5. De Campos Souza, P.V. Fuzzy neural networks and neuro-fuzzy networks: A review the main techniques and applications used
in the literature. Appl. Soft Comput. 2020, 92, 106275. [CrossRef]

6. Škrjanc, I.; Iglesias, J.A.; Sanchis, A.; Leite, D.; Lughofer, E.; Gomide, F. Evolving fuzzy and neuro-fuzzy approaches in clustering,
regression, identification, and classification: A survey. Inf. Sci. 2019, 490, 344–368. [CrossRef]

7. Deng, Y.; Ren, Z.; Kong, Y.; Bao, F.; Dai, Q. A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans.
Fuzzy Syst. 2017, 25, 1006–1012. [CrossRef]

8. Zhang, Y.; Liu, Y.; Li, Q.; Tiwari, P.; Wang, B.; Li, Y.; Pandey, H.M.; Zhang, P.; Song, D. CFN: A complex-valued fuzzy network for
sarcasm detection in conversations. IEEE Trans. Fuzzy Syst. 2021, 29, 3696–3710. [CrossRef]

9. Yang, C.H.; Moi, S.H.; Hou, M.F.; Chuang, L.Y.; Lin, Y.D. Applications of deep learning and fuzzy systems to detect cancer
mortality in next-generation genomic data. IEEE Trans. Fuzzy Syst. 2021, 29, 3833–3844. [CrossRef]

10. Wang, N.; Pedrycz, W.; Yao, W.; Chen, X.; Zhao, Y. Disjunctive Fuzzy Neural Networks: A New Splitting-Based Approach to
Designing a T–S Fuzzy Model. IEEE Trans. Fuzzy Syst. 2022, 30, 370–381. [CrossRef]

11. Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
12. Eyoh, I.; John, R.; De Maere, G. Interval type-2 A-intuitionistic fuzzy logic for regression problems. IEEE Trans. Fuzzy Syst. 2018,

26, 2396–2408. [CrossRef]
13. Park, S.; Lee, S.J.; Weiss, E.; Motai, Y. Intra- and inter-fractional variation prediction of lung tumors using fuzzy deep learning.

IEEE J. Transl. Eng. Health Med. 2016, 4, 1–12. [CrossRef] [PubMed]
14. Xue, G.; Wang, J.; Yuan, B.; Dai, C. DG-ALETSK: A High-Dimensional Fuzzy Approach with Simultaneous Feature Selection and

Rule Extraction. In IEEE Transactions on Fuzzy Systems; IEEE: New York, NY, USA, 2023. [CrossRef]
15. Wu, D.; Yuan, Y.; Huang, J.; Tan, Y. Optimize TSK fuzzy systems for big data regression problems: Mini-batch gradient descent

with regularization, droprule and adabound (MBGD-RDA). IEEE Trans. Fuzzy Syst. 2020, 28, 1003–1015. [CrossRef]
16. Fidan, S.; Karasulu, B. Clustering Methods Comparison for Optimization of Adaptive Neural Fuzzy Inference System. In

Proceedings of the 2022 30th Signal Processing and Communications Applications Conference (SIU), Safranbolu, Turkey, 15–18
May 2022; pp. 1–4. [CrossRef]

17. Souza PV, D.C.; Guimares, A.J.; Rezende, T.S.; Araujo, V.S.; Araujo VJ, S.; Batista, L.O. Bayesian fuzzy clustering neural network
for regression problems. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari,
Italy, 6–9 October 2019; pp. 1492–1499. [CrossRef]

18. Huang, W.; Oh, S.-K.; Pedrycz, W. Fuzzy wavelet polynomial neural networks: Analysis and design. IEEE Trans. Fuzzy Syst. 2017,
25, 1329–1341. [CrossRef]

19. Palconit MG, B.; Conception, R.S., II; Alejandrino, J.D.; Nuñez, W.A.; Bandala, A.A.; Dadios, E.P. Comparative ANFIS Models for
Stochastic On-road Vehicle CO2 Emission using Grid Partitioning, Subtractive, and Fuzzy C-means Clustering. In Proceedings of
the 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), Bangalore, India, 30 September–2 October 2021;
pp. 1–6. [CrossRef]

20. Ouyang, C.S.; Kao, T.C.; Cheng, Y.Y.; Wu, C.H.; Tsai, C.H.; Wu, M.W. An improved fuzzy extreme learning machine for
classification and regression. In Proceedings of the International Conference on Cybernetics, Robotics and Control (CRC),
Hong Kong, China, 19–21 August 2016; pp. 91–94.

21. Zhao, K.; Dai, Y.; Jia, Z.; Ji, Y. General Fuzzy C-Means Clustering Strategy: Using Objective Function to Control Fuzziness of
Clustering Results. IEEE Trans. Fuzzy Syst. 2022, 30, 3601–3616. [CrossRef]

22. Dey, S.; Dam, T. Rainfall-runoff prediction using a Gustafson-Kessel clustering based Takagi-Sugeno Fuzzy model. In Proceedings
of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021; pp. 1–8.
[CrossRef]

23. Deng, Z.H.; Choi, K.S.; Wang, S.T. Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approxima-
tion. IEEE Trans. Fuzzy Syst. 2011, 19, 210–226. [CrossRef]

24. Leski, J.M. SparseFIS: Data-driven learning of fuzzy systems with sparsity constraints. IEEE Trans. Fuzzy Syst. 2010, 18, 396–411.
25. Yi-Zhang, J.; Zhao-Hong, D.; Shi-Tong, W. Mamdani-Larsen type transfer learning fuzzy system. Acta Autom. Sin. 2012, 38,

1393–1409.
26. Pal, N.R.; Mudi, R.; Pal, K. Rule extraction through exploratory data analysis for self-tuning fuzzy controllers. Int. J. Fuzzy Syst.

2004, 6, 71–80.
27. Zhang, Y.; Ishibuchi, H.; Wang, S. Deep Takagi–Sugeno–Kang fuzzy classifier with shared linguistic fuzzy rules. IEEE Trans.

Fuzzy Syst. 2018, 26, 1535–1549. [CrossRef]

https://doi.org/10.1145/3369798
https://doi.org/10.1109/TFUZZ.2021.3057239
https://doi.org/10.1109/TFUZZ.2021.3128062
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.asoc.2020.106275
https://doi.org/10.1016/j.ins.2019.03.060
https://doi.org/10.1109/TFUZZ.2016.2574915
https://doi.org/10.1109/TFUZZ.2021.3072492
https://doi.org/10.1109/TFUZZ.2020.3028909
https://doi.org/10.1109/TFUZZ.2020.3039371
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/TFUZZ.2017.2775599
https://doi.org/10.1109/JTEHM.2016.2516005
https://www.ncbi.nlm.nih.gov/pubmed/27170914
https://doi.org/10.1109/TFUZZ.2023.3270445
https://doi.org/10.1109/TFUZZ.2019.2958559
https://doi.org/10.1109/SIU55565.2022.9864902
https://doi.org/10.1109/SMC.2019.8914212
https://doi.org/10.1109/TFUZZ.2016.2612267
https://doi.org/10.1109/R10-HTC53172.2021.9641644
https://doi.org/10.1109/TFUZZ.2021.3119240
https://doi.org/10.1109/SSCI50451.2021.9660037
https://doi.org/10.1109/TFUZZ.2010.2091961
https://doi.org/10.1109/TFUZZ.2017.2729507


Symmetry 2023, 15, 1711 22 of 22

28. de Jesus Rubio, J. SOFMLS: Online self-organizing fuzzy modified least-squares network. IEEE Trans. Fuzzy Syst. 2009, 17,
1296–1309. [CrossRef]

29. Xue, G.; Chang, Q.; Wang, J.; Zhang, K.; Pal, N.R. An Adaptive Neuro-Fuzzy System with Integrated Feature Selection and Rule
Extraction for High-Dimensional Classification Problems. IEEE Trans. Fuzzy Syst. 2023, 31, 2167–2181. [CrossRef]

30. Wang, D.; Zeng, X.-J.; Keane, J.A. Hierarchical hybrid fuzzy neural networks for approximation with mixed input variables.
Neurocomputing 2007, 70, 3019–3033. [CrossRef]

31. Trillo, J.R.; Fernandez, A.; Herrera, F. HFER: Promoting Explainability in Fuzzy Systems via Hierarchical Fuzzy Exception Rules.
In Proceedings of the 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Glasgow, UK, 19–24 July 2020; pp. 1–8.
[CrossRef]

32. Chen, J. Adaptive Fuzzy Neural Network Control Based on Genetic Algorithm. In Proceedings of the 2021 13th International
Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Beihai, China, 16–17 January 2021; pp. 393–396.
[CrossRef]

33. Kumari, N.; Gill, A.; Singh, M. Two-Area Power System Load Frequency Regulation Using ANFIS and Genetic Algorithm. In
Proceedings of the 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India, 26–28 May 2023; pp. 1–7.
[CrossRef]

34. Tung, S.; Quek, C.; Guan, C. eT2fifis: An evolving type-2 neural fuzzy inference system. Inf. Sci. 2013, 220, 124–148. [CrossRef]
35. Gacto, M.J.; Galende, M.; Alcalá, R.; Herrera, F. METSK-HDe: A multiobjective evolutionary algorithm to learn accurate TSK-fuzzy

systems in high-dimensional and large-scale regression problems. Inf. Sci. 2014, 276, 63–79. [CrossRef]
36. Aghaeipoor, F.; Javidi, M.M. MOKBL+MOMs: An interpretable multi-objective evolutionary fuzzy system for learning high-

dimensional regression data. Inf. Sci. 2019, 496, 1–24. [CrossRef]
37. Zhang, K.; Hao, W.N.; Yu, X.H.; Chen, G.; Yu, K. A fuzzy neural network classifier and its dual network for adaptive learning of

structure and parameters. Int. J. Fuzzy Syst. 2023, 25, 1034–1054. [CrossRef]
38. Gacto, M.J.; Alcalá, R.; Herrera, F. Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures.

Inf. Sci. 2011, 181, 4340–4360. [CrossRef]
39. Alcal-Fdez, J.; Fernndez, A.; Luengo, J.; Derrac, J.; Garca, S.; Snchez, L.; Herrera, F. Keel data-mining software tool: Data set

repository, integration of algorithms and experimental analysis framework. J. Mult.-Valued Log. Soft Comput. 2011, 17, 255–287.
40. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
41. Rodrıguez-Fdez, I.; Mucientes, M.; Bugarın, A. FRULER: Fuzzy rule learning through evolution for regression. Inf. Sci. 2016, 354,

1–18. [CrossRef]
42. Cozar, J.; delaOssa, L.; Gamez, J.A. Learning compact zero-order TSK fuzzy rule-based systems for high-dimensional problems

using an Apriori + local search approach. Inf. Sci. 2018, 433, 1–16. [CrossRef]
43. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1939, 11, 86–92.

[CrossRef]
44. Dunn, O.J. Multiple comparisons among means. J. Am. Stat. Assoc. 1961, 56, 52–64. [CrossRef]
45. Zheng, X.-J.; Singh, M.G. Approximation accuracy analysis of fuzzy systems with the center-average defuzzifier. In Proceedings

of the 1995 IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 20–24 March 1995; Volume 1, pp. 109–116.
[CrossRef]

46. Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data; Springer Science & Business Media: Berlin/Heidelberg, Germany,
2012; Volume 9.

47. Mendel, J.M. Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, 2nd ed.; Springer: Cham, Switzerland, 2017.
48. Wu, D. On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 2012,

20, 832–848. [CrossRef]
49. Feng, S.; Chen, C.L.P. Fuzzy broad learning system: A novel neuro-fuzzy model for regression and classification. IEEE Trans.

Cybern. 2020, 50, 414–424. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TFUZZ.2009.2029569
https://doi.org/10.1109/TFUZZ.2022.3220950
https://doi.org/10.1016/j.neucom.2006.07.015
https://doi.org/10.1109/FUZZ48607.2020.9177575
https://doi.org/10.1109/ICMTMA52658.2021.00091
https://doi.org/10.1109/INCET57972.2023.10170037
https://doi.org/10.1016/j.ins.2012.02.031
https://doi.org/10.1016/j.ins.2014.02.047
https://doi.org/10.1016/j.ins.2019.04.035
https://doi.org/10.1007/s40815-022-01421-w
https://doi.org/10.1016/j.ins.2011.02.021
https://doi.org/10.1007/BF00116251
https://doi.org/10.1016/j.ins.2016.03.012
https://doi.org/10.1016/j.ins.2017.12.026
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1109/FUZZY.1995.409668
https://doi.org/10.1109/TFUZZ.2012.2186818
https://doi.org/10.1109/TCYB.2018.2857815

	Introduction 
	Preliminaries 
	The TSK Fuzzy Rules 
	The FNNC 

	The FNNR 
	The Structure of the FNNR 
	The Fuzzification Layer 
	The Output Layers 

	Training 
	The Design of the Loss Function 
	The Alternate Training Strategy 


	Experiments 
	Experimental Design 
	Datasets 
	Parameter Settings for the FNNR 
	Experimental Settings 

	Result Analysis 
	Ablation Study 
	The Ablation of Training Modes of the Fuzzification Layer 
	The Ablation of the Rule Type Represented by the Output Layers 
	The Ablation of Alternate Training Strategy 

	Parameter Analysis 
	The Parameter Analysis on the Regularization Coefficient 1  
	The Parameter Analysis on the Regularization Coefficient 2  

	The Interpretability of the FNNR 

	Conclusions and Future Work 
	References

