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Abstract: Disruption risks exacerbate the complexity of low-carbon supply chain network design in
an uncertain supply chain environment. Considering the low frequency and non-repeatability of these
disruption events makes it impossible to collect data to obtain their probabilities. In this study, supply
disruptions were regarded as uncertain events; supply chain uncertain disruption risk is defined
and quantified based on the uncertainty theory, in which uncertain disruptions are characterized by
the belief degree on account of expert estimation with duality, i.e., symmetry. Optimization models
were constructed with the objective of minimizing expected carbon emissions and costs, which
optimizes the selection of suppliers with uncertain disruptions, and the assignment of manufacturers
and customers. The properties of the model were analyzed, and the models were solved separately
using different methods according to different decision criteria. Finally, the validity of the proposed
models and algorithm were verified using a real case study of a glass manufacturing company. The
findings exhibit promising insights for designing a sustainable and resilient supply chain network in
an uncertain environment.

Keywords: uncertain disruption risk; uncertainty theory; network optimization; low-carbon supply
chain

1. Introduction

Constrained by the carbon neutrality target, the supply chain, as a major consumer
of energy, is the critical point to realize this goal [1], and a rational supply chain network
can provide a pathway for decarbonization [2]. However, classical supply chain network
designs primarily focus on the economic objective, which is contrary to the realistic needs of
supply chain network design. With the increasing importance of environmental protection,
environmental sustainability has become an important objective of supply chain network
design. Due to uncertainties, supply chain disruptions occasionally occur, impeding supply,
production, etc., which requires restructuring the supply chain network. The supply
and production decisions of the reconstructed supply chain network will be significantly
different from the previous supply chain network, thus affecting the carbon emissions of the
supply chain. Therefore, it is necessary to consider the impact of disruptions at the network
design stage. Uncertain events, such as public health emergencies, natural disasters,
and strikes, can lead to facility disruptions [3]. Owing to the functional dependency
of each link in the supply chain, supply disruptions can spread downstream, causing a
ripple effect and jeopardizing the entire supply chain [4]. Such risks typically have a low
probability of occurring, but present serious consequences when they do [5,6], reducing
overall efficiency and causing incalculable financial losses to enterprises [7]. For instance,
in 2002, a strike at U.S. West Coast ports caused supply disruptions, and forced the closure
of Toyota’s assembly lines that imported parts from the West Coast. This strike caused
an estimated $15 billion in economic losses [8]. The recent COVID-19 outbreak led to
production disruptions in many parts of China that affected Hyundai Motor Company,
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which temporarily shut down its Korean plant as it could not obtain parts. The stock value
of several multinational companies has been affected [9].

This means that it is critical to provide a reliable network design scheme that can
operate well at a lower cost and with fewer carbon emissions, regardless of whether supply
disruptions occur. It requires us to choose a reasonable quantification method according
to the characteristics of the risk of supply disruptions. Most of the existing literature
that considers supply disruptions regards them as random events and assumes that their
probability distribution can be accurately predicted. However, as such disruptive events
are rare and usually unrepeatable, historical data are scarce and provide little information.
This makes it hard or even impossible to perfectly estimate the probability of disruptive
events [10,11], and, if the information regarding disruptive events is imperfect, it may be
harmful to design the supply chain network by estimating the probability of disruption,
which can be costly if the probability is wrong [12,13]. For this case, Yan and Ji [14] provided
a solution using the uncertainty theory established by Liu [15]. The uncertainty theory deals
with human subjective uncertainty based on normality, duality, subadditivity, and product
axiom, and all uncertain variables in the uncertainty theory are symmetric. Uncertain
disruptions are characterized by the belief degree on account of expert estimation rather
than sample data, therefore, preventing the reliance on perfect historical data, where the
belief degree is the uncertainty measure with symmetry [15].

In that paper [14], only cost was considered as an objective in the supply chain
network design, and carbon emissions were not factored in. However, carbon emissions
generated through manufacturing, transportation, and other processes can significantly
influence supply chain production and allocation decisions, and thus affect supply chain
network design. In addition, since suppliers are the starting nodes of the supply chain,
the risk associated with the occurrence of supply disruptions is likely to be greater and
the consequences are more severe. To fill this gap, this study simultaneously considers
two objectives: total cost and carbon emissions of the supply chain and quantifies the
supply chain uncertain disruption risk with uncertain supply disruptions based on the
uncertainty theory. A low-carbon supply chain network optimization model with uncertain
supply disruption risk was constructed to determine suppliers, optimizes the assignment of
manufacturers and customers, and buffers the risk caused by supply disruptions through
multi-level backup.

This study makes three main contributions. First, this study defines and quantifies sup-
ply chain uncertain disruption risk based on the uncertainty theory, which can effectively
enhance the credibility of quantifying supply chain disruption risk when historical data
are scarce. Second, a new bi-objective uncertain nonlinear mixed-integer programming
model is proposed. It explores how to balance the total cost and carbon emissions when
the risk of supply disruption exists and provides a solution for designing a low-carbon and
resilient supply chain in an uncertain environment. Third, a multi-level backup strategy is
adopted to cope with the risk of supply disruptions. The properties of the supply level in
the model were analyzed, and it was found that properly setting the maximum assignment
level can significantly reduce the cost and supply chain uncertain disruption risk and meet
more stringent carbon emission requirements.

The remainder of this paper is organized as follows. Section 2 details the key findings
that have been revealed from past studies. In Section 3, the problem is described, and
the models are constructed. In Section 4, we analyze the model’s properties and linearize
the nonlinear constraint using the proposed techniques. Section 5 details the processes
that were implemented to solve the model using different methods according to different
decision criteria. In Section 6, a real case study is provided. Section 7 includes the conclusion
and managerial insights, along with future research directions.
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2. Literature Review
2.1. Supply Chain Network Design Considering Carbon Emissions

Since the application of operations research to supply chain network design is an effi-
cient approach to decarbonize the supply chain, studies have been conducted to incorporate
carbon emissions into the decision-making framework of supply chain network design [16].
It is generally recognized that the carbon emission cap set must be implemented. Therefore,
some studies have dealt with carbon emissions as a constraint, and an upper limit or
range is empirically given after the model has been built to better capture the effect of the
carbon emission constraint [17–19]. Marufuzzaman et al. [20] and Hong et al. [21] exam-
ined the impact of carbon emission constraints on supply network design. Their results
indicated that the carbon limit has a greater impact on carbon reduction in the supply
chain. Carbon emissions were integrated into a multi-level production–inventory model
by Hammami et al. [17]. They found that carbon emissions significantly decreased as the
carbon cap became more stringent, but at the same time, the unit emissions of products
increased. Kumari et al. [22] established a network with a single supplier and multiple
buyers with the objective of minimizing total costs; optimal production–transportation
policies were identified with this network. Garcia-Castro et al. [23] studied the stochastic
optimization problem for supply chains under uncertain energy and carbon prices. This
obtained network was compared with those obtained using deterministic methods, and
their results revealed that the uncertain stochastic network is more flexible to changeable
carbon and energy prices. Moreover, the performance of the supply chain network can
be improved by investing in green raw materials and processes. Abbasi and Erdebilli [24]
optimized the design of the green closed-loop supply chain under the COVID-19 pandemic,
considering three carbon restriction policies and analyzed the impact of these various
policies on the cost.

As one of the important factors in supply chain network design, previous studies have
also incorporated carbon emissions into the decision-making objective and established
multi-objective optimization models to explore the trade-offs among these objectives [25].
Mohebalizadehgashti et al. [26] studied a green meat supply chain network and built a
multi-objective programming model targeting cost, carbon emissions, and total facility ca-
pacity, which was solved with an augmented ε-constraint method and found that there is not
always a conflict between reasonably low emissions and low total costs. Sherafati et al. [27]
incorporated the carbon policy impacts into the supply chain network design; the results
revealed that their model achieved low carbon emissions and high economic growth.
Goodarzian et al. [28] developed an optimization model for the production–distribution
problem in an agricultural supply chain network, considering carbon emissions, with the
objective of minimizing the economic effects of total costs and environmental impacts and
maximizing the social impacts. Two new hybrid meta-heuristic algorithms were developed
and the robustness of the algorithms to solve the problem was verified using examples. In
addition, more studies considered the three objectives of cost, environmental impact, and
social responsibility, and built optimization models for different research contexts, such
as the closed-loop supply chain, influenza vaccine supply chain, and dairy supply chain,
to optimize the supply chain network by weighing multiple objectives or transforming
multiple objectives into one to yield multiple or a set of efficient solutions [29–32].

2.2. Supply Chain Network Design Considering Disruption Risk

Once disruptions occur, they can have a significant impact on the entire supply chain,
meaning that it is necessary to take them into account during the design stage of the supply
chain network. Hao et al. [33] set up a multi-objective optimization model for material
procurement with supply risk. Material sourcing portfolio solutions were given under
different scenarios, considering decision makers with different risk appetites. Liu et al. [34]
studied the site–inventory problem affected by supply disruptions and proposed a cus-
tomized hybrid genetic algorithm embedded in a direct search approach on the basis of the
queuing theory and optimization modeling. In addition, Bimpikis et al. [35] analyzed the
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optimal structural design of a multi-level supply chain network under supply disruptions
by means of game theory. Kungwalsong et al. [36] established a model aiming at maximiz-
ing profit and supply density with a view to helping enterprises secure revenue in the face
of disruptions and solved it by introducing an interactive fuzzy algorithm. Hu et al. [37]
built a stochastic programming model to explore the design of the aircraft construction sup-
ply chain network with supply disruption, providing guidance for supplier selection and
managing the supply risk for aircraft production. Arabi et al. [38] optimized a closed-loop
stone supply chain network design by considering the unique conditions of the mining
industry, such as disruptions and product quality. The validity and applicability of the
model was demonstrated through a real case study of stone mining in Iran. Their results
showed that transportation costs have a greater impact on profit than operational costs.
Mohammed et al. [39] proposed a multi-objective planning model that aims to provide a
trade-off between supply chain network design for disruption resilience and sustainability.
Their results demonstrated the ability of the model in revealing the trade-off between
resilience and sustainability.

There are also studies that have used different risk response strategies. Jabbarzadeh et al. [40]
posited that the impact of supply and facility disruptions can be reduced with strengthening
investments, proposed a robust stochastic hybrid optimization model, and examined their
model’s performance using Monte Carlo simulations. He et al. [41] proposed a dynamic
emergency sourcing strategy to mitigate supply disruptions, derived optimal sourcing
times, and further analyzed how to adjust the sourcing strategy according to different
influencing factors. Yan and Ji [14] established a supply chain design model by considering
facility disruptions as uncertain events; a multi-level backup strategy was used to cope
with disruption risk. Rezapour et al. [42] considered mitigation strategy selection to offset
the adverse effect of supplier disruptions on the market share from a single manufacturer
perspective in supply chain network planning. Eghbali et al. [43] modeled the blood supply
network with the objective of minimizing the system’s cost and time, considering the facility
disruptions, and conducted a case application in a province in the north of Iran. Sensitivity
analysis found that increasing the number of transportation modes had an important role
in reducing the system’s waiting time. Alikhani et al. [44] designed a new supply chain
network with horizontal collaboration in the presence of disruption risk. A two-stage robust
optimization model was developed for the case of demand surges and facility disruptions.
Their results indicated that collaboration increased the flexibility and resilience of their
network. Zeng et al. [45] designed a coal supply chain network, considering strategic-level
disruptions. Their model considered the five following resilience strategies: facility defense,
emergency inventory, direct-to-port delivery, establishing reliable distribution centers, and
multiple transportation routes. Based on real data from the coal industry, the applicability
of these five proposed resilience strategies in coal supply chains was verified. Given the
undeniable significance of this topic, in addition to the above studies, more studies on
supply chain network design with disruptions, including different types of disruptions,
and the impact of different disruption response strategies on supply chain network design
can be referred to Rinaldi et al. [46], Suryawanshi and Dutta [47], and other review articles.

2.3. Gap Analysis

In sorting the literature, we identified the following gaps, as shown in Table 1:
Research on designing supply chain networks that meet the economic and environ-

mental objectives in the face of disruption is scarce. Also, there is little research available in
the literature quantifying the risk of the entire supply chain. In addition, most of the above
literature regard supply disruptions as random events and assumes that their probability
distribution can be accurately predicted. However, as such disruptive events are rare
and usually not repeatable, historical data are very scarce and provide little information,
meaning there may not be enough historical data to perfectly estimate them in practice.
If the probability of disruptive events cannot be perfectly estimated, then optimizing the
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supply chain network using the estimated probability can be detrimental and costly once
the probability is wrong [12,13].

Table 1. Summary of the reviewed research.

Literature
Disruption Risk

Response
Strategy

Supply Chain
Disruption

Risk

Carbon
Emission

Optimization Model

Stochastic Uncertain Single-
Objective

Multi-
Objective

Yan and Ji [14] X ML X
Marufuzzaman et al. [20] X X

Hong et al. [21] X X
Kumari et al. [22] X X

Garcia-Castro et al. [23] X X
Abbasi and Erdebilli [24] X X X

Mohebalizadehgashti et al. [26] X X
Sherafati et al. [27]

Goodarzian et al. [28] X X
Hao et al. [33] X X
Liu et al. [34] X X

Kungwalsong et al. [36] X X
Hu et al. [37] X X

Arabi et al. [38] X X
Mohammed et al. [39] X X X X X
Jabbarzadeh et al. [40] X SI X

He et al. [41] X ES X
Rezapour et al. [42] X MS X
Eghbali et al. [43] X X
Alikhani et al. [44] X HC X

Zeng et al. [45] FF; EI; DD;
RD; and MR

This research X ML X X X X

Abbreviations: SI: strengthening investments; ES: emergency sourcing; MS: multiple sourcing; HC: horizontal
collaboration; FF: facility fortification; EI: emergency inventory; DD: direct-to-port delivery; RD: reliable DCs, MR:
multiple routes; and ML: multi-backup.

Therefore, based on the uncertainty theory [15], this study made full use of expert
knowledge and provides a solution through the belief degree based on expert estimation,
which avoids the reliance on perfect historical data and prevents designing the supply chain
network repeatedly due to the huge loss caused by incorrectly estimating the probability of
disruption using imperfect data, thus effectively enhancing the efficiency of quantifying
the risk of supply disruptions when historical data are scarce. A multi-level backup
strategy was adopted to address the risk of supply disruptions. Furthermore, we integrated
the impact of supply disruptions to optimize the low-carbon supply chain network and
provided a reliable network design scheme that can operate well at a lower cost and with
fewer carbon emissions, regardless of whether supply disruptions occur.

3. Optimization Models
3.1. Problem Description

In this study, a three-echelon supply chain network comprising multiple suppliers,
manufacturers, and customers was considered, as shown in Figure 1.

Manufacturers are owned by the enterprise, and they need various raw materials
for production. The manager needs to select external candidate suppliers (the suppliers
below are the candidate suppliers) to provide them with raw materials to produce products
that will then be delivered to the customers. Owing to the influence of uncertain factors,
suppliers have different degrees of disruption risks. To cope with the impact of disruptions,
all raw materials that manufacturers require can be provided through a selection of suppli-
ers at different levels; in the event of an outage by the supplier at the previous level, the
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supplier at the next level will provide their service. To ensure that customer demands are
met even if all suppliers are disrupted, to prevent the entire supply chain from collapsing,
this study built on the concepts of Zhang et al. [48] and Yan and Ji [14], who assumed that a
temporary emergency supplier would be fully resilient to sudden disruptions due to its
own measures (e.g., facility reinforcement); therefore, there was no risk of disruption.
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In addition, the belief degree of the supplier’s disruption and fixed cost can vary
depending on factors, such as geographic location and operating conditions. Furthermore,
the unit cost and carbon emissions of each raw material that the manufacturer obtains
from the supplier and the product that the customer obtains from the manufacturer also
vary, depending on the chosen route and the production status of the enterprise. The
consideration of cost and carbon emissions in this research includes all aspects of produc-
tion, manufacturing, and transportation. For example, the unit cost or carbon emission of
the product obtained by the customer from the manufacturer includes the cost or carbon
emission of the product produced by the manufacturer and the transportation cost or
carbon emission from the manufacturer to the customer. In addition, this study assumed
that production is demand-driven (i.e., demand information is obtained through customers’
orders in advance).

Thus, to optimize the economic and low-carbon performance of the supply chain
network, this model considered the two objectives of total cost and carbon emissions of the
supply chain, and selected suppliers based on uncertainty disruptions. The level at which
the selected suppliers provided raw materials to the manufacturers was determined, and
the service manufacturers provided was optimized to meet customer demands.

3.2. Methodology

We considered a supply chain network composed of S suppliers, W manufacturers,
and I customers, where s = 1, 2, . . . , |S|, w = 1, 2, . . . , |W|, and i = 1, 2, . . . , |I|, respectively.
The fixed cost of supplier s ∈ S is rs, and the unit cost and carbon emission of obtaining
each raw material h ∈ H from supplier s ∈ S by manufacturer w ∈ W are eswh and vswh,
respectively. Each raw material required by each manufacturer was supplied by suppliers
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at most L levels. For example, L = 3 means that the possible supply levels l are 1, 2, and 3.
That is, the maximum possible supply level for a supply chain network with L = 3 is 3; if a
temporary emergency supplier is assigned before l = 3, its supply level may also be 1 or 2.
To quantify loss due to supplier disruption, a temporary emergency supplier with an index
of 0 was introduced. This temporary emergency supplier was not a long-term partner, and
certain measures, such as facility enhancement, can lead to extra expenses and generate
carbon emissions; therefore, the unit cost and carbon emission of raw materials obtained
by manufacturers from temporary emergency suppliers are typically much greater than
materials obtained from long-term suppliers. The belief degree of the supplier’s uncertain
disruption was provided based on expert estimation, denoted as ms ∈ (0, 1), s = 1, . . . , |S|,
and the supplier’s disruptive events were independent. Hence, the uncertain disruption
belief degree of supplier s that supplies raw material h to manufacturer w can be denoted
as mswh. The belief degree of the temporary emergency supplier’s disruption was set as 0.
For customer i ∈ I, whose demand is qi, the unit cost and carbon emission for customer i to
obtain the product from manufacturer w are cwi and twi, respectively.

Three categories of decision variables were associated with supply chain network
optimization, that is, supplier selection variables Xs, assignment variables of suppliers to
manufacturers Zwslh, and manufacturers to customers Ywi, where Zwslh means that for raw
material h, supplier s is assigned to manufacturer w at level l. This represents the supplier to
which the manufacturer is assigned when all the suppliers assigned at level 1, . . . , l− 1 that
provide raw material h are disrupted. Unless the manufacturer is assigned to a temporary
emergency supplier prior to the level L, each manufacturer will have exactly L levels of
assignment for each raw material. For raw material h, if a manufacturer is assigned to
candidate suppliers at levels 1, . . . , L− 1, then that manufacturer must be assigned to a
temporary emergency supplier at level L, ensuring that the manufacturer’s needs are met
in the event that all the suppliers assigned to the prior L− 1 levels are disrupted.

Additionally, the uncertain variable Mwslh was inducted to indicate the belief degree
that for raw material h, suppliers assigned to manufacturer w at levels 1, · · · , l − 1 are
disrupted and the one assigned at level l is normal. For this model, the indices, parameters,
uncertain variables, and decision variables are shown below.

3.2.1. Notations

• Indices

S: set of suppliers, s = 1, 2, . . . , |S|;
W: set of manufacturers, w = 1, 2, . . . , |W|;
I: set of customers, i = 1, 2, . . . , |I|;
H: set of raw materials, h = 1, 2, . . . , |H|;
L: set of level, l = 1, 2, . . . , L.

• Parameters

qi: demand from customer i;
rs: fixed cost of supplier s;
eswh: unit cost of manufacturer w obtaining raw material h from supplier s;
cwi: unit cost of customer i obtaining the product from manufacturer w;
mswh: uncertain disruption belief degree of supplier s that supplies raw material h to

manufacturer w;
vswh: unit carbon emission of manufacturer w obtaining raw material h from supplier s;
twi: unit carbon emission of customer i obtaining the product from manufacturer w;
λwh: quantity of raw material h required by manufacturer w to produce unit product;
TEcap: supply chain total carbon emission cap;
COcap: supply chain total cost cap.

• Uncertain variables

Mwslh: for the raw material h, belief degree that suppliers assigned to manufacturer w
at levels 1, . . . , l − 1 are disruptive and the one assigned at level l is normal.
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• Decision variables

Xs =

{
1, if supplier s is selscted,
0, otherwise.

;

Ywi =

{
1, if manufacturer w is assigned to customer i,
0, otherwise.

;

Zwslh =

{
1, for the raw material h, if supplier s is assigned to manufacturer w at level l,
0, otherwise.

.

3.2.2. Model Formulation

The first objective of this study was to minimize the expected total cost of the supply
chain network, fcos t:

min fcos t =
|S|

∑
s=1

rsXs +
|I|

∑
i=1

|H|

∑
h=1

|S|

∑
s=0

|W|

∑
w=1

L

∑
l=1

eswhZwslh MwslhλwhqiYwi +
|I|

∑
i=1

|W|

∑
w=1

cwiqiYwi (1a)

where the first term deals with the fixed cost of selected suppliers; the expected cost
of manufacturers obtaining various raw materials from the suppliers is indicated in the
second term, and the cost of customers obtaining the products from the manufacturers is
represented in the third term.

The second objective was to minimize the expected total carbon emissions of the
supply chain network, fcarbon:

min fcarbon =
|I|

∑
i=1

|H|

∑
h=1

|S|

∑
s=0

|W|

∑
w=1

L

∑
l=1

vswhZwslh MwslhλwhqiYwi +
|I|

∑
i=1

|W|

∑
w=1

twiqiYwi (1b)

where the first term represents the expected carbon emissions of manufacturers obtaining
all raw materials from the suppliers, and the second term deals with the carbon emissions
of customers obtaining the products from the manufacturers.

Constraint (1c) ensures that for each raw material, an unselected supplier cannot be
assigned to the manufacturer:

L

∑
l=1

Zwslh ≤ Xs, ∀w ∈W, s ∈ S, h ∈ H (1c)

Constraint (1d) applies the restriction that, for each raw material, the manufacturer
must have a candidate supplier for service at each level, unless a temporary emergency
supplier is assigned at that level or before:

|S|

∑
s=1

Zwslh +
l

∑
p=1

Zw0ph = 1, ∀w ∈W, h ∈ H, l = 1, . . . , L (1d)

Constraint (1e) specifies that, for each raw material, each manufacturer has to be
assigned to a temporary emergency supplier at a certain level. Specifically, a temporary
emergency supplier can ensure that all demands can be met when all assigned suppliers
are disrupted:

L

∑
l=1

Zw0lh = 1, ∀w ∈W, h ∈ H (1e)

To ensure that customer demands are met, constraint (1f) states that each customer
must be assigned to a manufacturer:

|W|

∑
w=1

Ywi = 1, ∀i ∈ I (1f)
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For each raw material, the belief degree that manufacturer w is served normally when
allocated to supplier s at the first level can be calculated using constraint (1g):

Mws1h = 1−mwsh, ∀w ∈W, s ∈ S, h ∈ H (1g)

It is important to note that ∑
|S|
k=1 mwkhZwkph = ∑

|S|
k=0 mwkhZwkph is due to mwkh = 0

for k = 0; thus, for raw material h, the disruption belief degree of the supplier to which
manufacturer w is assigned at level p can be expressed as ∑

|S|
k=1 mwkhZwkph. The uncertainty

theory has been considerably developed in terms of its theory and application since it was
proposed; specific applications of the uncertainty theory can be found in the literature [49].
According to the uncertainty theory [15], and the literature on the application of the
uncertainty theory [14], constraint (1h) calculates, for raw material h, the belief degree that
manufacturer w can be served normally when supplier s is assigned to it for l = 2, . . . , L(i.e.,
supplier s is normal, while suppliers assigned at prior levels are disrupted), in which ∧ is
an operator of the uncertainty theory and denotes the take-small operation:

Mwslh =

(
l−1
∧

p=1

|S|

∑
k=1

mwkhZwkph

)
∧ (1−mwsh), ∀w ∈W, s ∈ S, l = 2, · · · , L, h ∈ H (1h)

Constraint (1i) guarantees that the decision variables are non-negative:

Xs, Ywi, Zwslh ∈ {0, 1}, ∀s ∈ S, w ∈W, i ∈ I, l = 1, · · · , L, h ∈ H (1i)

In conclusion, considering the two objectives of cost (1a) and carbon emissions (1b),
and constraints (1c)−(1i), a multi-objective low-carbon supply chain network optimization
model (LSM) with the risk of uncertain supply disruptions can be obtained.

4. Model Analysis

We further analyzed the model to facilitate its solution and strengthen the understand-
ing of the management implications.

4.1. Supply Chain Uncertain Disruption Risk Analysis

The supply chain network disruption risk varies with the choice of different suppliers
due to the varying degrees of the disruption risk of suppliers. To quantify this risk, the
supply chain uncertain disruption risk (SCUDR) was defined in this research as the risk
that all entities in the supply chain (including suppliers, manufacturers, and customers)
will be affected by uncertain supply disruptions, which results in the supply chain being
unable to provide services. According to the definition of SCUDR, quantified SCUDR is
shown below:

Theorem. The risk of supply chain network with supply disruptions is:

SCUDR =
|H|
∨

h=1

L
∧

l=1

( |W|
∑

w=1

|I|

∑
i=1

|S|

∑
s=1

mwshZwslhλwhqiYwi

)
/
|W|

∑
w=1

|H|

∑
h=1

|I|

∑
i=1

λwhqiYwi (1j)

Proof of Theorem. Based on the uncertainty theory [15], since the belief degree of disrup-
tion mwsh in the supply chain is regarded as uncertain, from the supply side, ∑

|S|
s=1 mwshZwslh

can represent the belief degree of disruption of the supplier providing raw material h for
manufacturer w at level l . From the manufacturing side, ∑

|S|
s=1 mwshZwslh can represent the

belief degree of disruption of manufacturer w for raw material h at level l . This is because
if the supplier is disrupted, then the manufacturer will be unable to produce the finished
product due to the lack of raw material h , thus causing disruption. �
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Since the production and delivery of the finished product requires that each raw
material subsystem is working properly (i.e., without disruption), the supply chain can be
regarded as a series system. Accordingly, the uncertain disruption risk of each subsystem
is determined by minimizing the uncertain disruption risk of each manufacturer at each
assignment level in this subsystem, then summing all manufacturers’ uncertain disruption
risk, where the uncertain disruption risk at each level is determined using the belief degree
of disruption and supply quantity. The larger the supply quantity, the greater the risk
caused by disruption.

To understand this concept, we first began with a parallel system with one manufac-
turer and two suppliers, s1 and s2; the belief degree of disruption is denoted as m1 and m2,
respectively, and m1 < m2, with supply quantity q and assignment levels l1 and l2. Further,
if m1q is the uncertain disruption risk of s1 operating at level l1 and m2q is the uncertain
disruption risk of s2 operating at level l2, then SCUDR = m1q.

Thus, for a subsystem of L levels, |S| suppliers, |W| manufacturers, and |I| customers,
based on the uncertainty theory [15], for raw material h, the uncertain disruption risk of

manufacturer w can be expressed as
L
∧

l=1
∑
|S|
s=1 mwshZwslh∑

|I|
i=1 λwhqiYwi. Accordingly, for each

raw material, the uncertain disruption risk can be calculated as:

SCUDRh = ∑
|W|
w=1

L
∧

l=1

(
∑
|S|
s=1 mwshZwslh

)
∑
|I|
i=1 λwhqiYwi, ∀h ∈ H. Therefore, the uncertain

disruption risk for the entire supply chain network, that is, SCUDR, is calculated as:

SCUDR =
|H|
∨

h=1
SCUDRh/∑

|W|
w=1 ∑

|H|
h=1 ∑

|I|
i=1 λwhqiYwi, in which ∨ is an operator of the uncer-

tainty theory and denotes the take-large operation. This leads to the following:

Property 1. The SCUDR will be non-increasing with the increase in the maximum assignment
level L.

Proof of Property 1. According to the theorem above, when the maximum assignment level

L goes up, the belief degree of disruptions of manufacturer w , i.e.,
L
∧

l=1
∑
|S|
s=1 mwshZwslh, is

non-increasing for raw material h. Therefore, as the maximum assignment level L increases,
the SCUDR is non-increasing. �

Property 1 indicates that, as the maximum assignment level L increases, the manu-
facturer will be assigned to more suppliers, thus reducing the possibility of disruption.
Therefore, the SCUDR will either stay the same or decrease. As different network struc-
tures correspond to different SCUDRs, decision makers can choose supply chain networks
according to this index. Moreover, reasonably setting the maximum assignment level can
significantly reduce the SCUDR, which provides theoretical guidance for designing supply
chain networks that reduce risk and improve reliability.

4.2. Objective Function Analysis

To better support decision making, we analyzed the cost and carbon emission objec-
tives, respectively, and obtained the following properties:

Property 2. (i) The optimal objective value of the cost objective function fcos t will be non-increasing
as the maximum assignment level L increases. (ii) The optimal objective value of the carbon emission
objective function fcarbon will be non-increasing as the maximum assignment level L increases.

Proof of Property 2. (i) If the decision maker has an ideal value for the carbon emission
index in the model (LSM), it can be translated into a constraint. When the maximum
assignment level equaled L, the optimal solution was noted using X∗s , Y∗wi, Z∗wslh, and
∀s ∈ S, w ∈ W, i ∈ I, l = 1, · · · , L, h ∈ H, and the corresponding cost objective function
value was represented as φ∗. A feasible solution can be constructed when L = L + 1. For
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all ∀s ∈ S, w ∈ W, i ∈ I, l = 1, · · · , L, h ∈ H, we let X
′
s = X∗s , Y

′
wi = Y∗wi and Z

′
wslh = Z∗wslh.

For l = L + 1, we let Z
′
wslh = 0. When the maximum assignment level was L + 1, X∗s , Y∗wi

and Z∗wslh were able to satisfy constraints (1c)−(1i) and the carbon emission constraint.
The objective value remains unchanged; thus, its optimal objective value was less than or
equal to φ∗. Similarly, when the decision maker has an ideal value for the cost objective,
it can also be translated into a constraint. The above proof can thereby be used to prove
property 2(ii). �

Property 2 shows that, as L increases, there will be more feasible network structures to
select; thus, the optimal objective value will at least not increase. Nevertheless, when L is
set too high, manufacturers are likely to be allocated to distant suppliers at some levels on
account of the high unit cost (carbon emissions) of supplying directly from the temporary
emergency supplier. Therefore, it will be difficult to meet manufacturers’ needs in a timely
manner when many suppliers are disrupted, which leads to a reduced willingness in
manufacturers and suppliers to work together in the long term. Furthermore, a high L
will cause excessive decision variables and constraints, which complicates the solution
procedure. As a result, while L can be at most equivalent to |S|+1 , the decision maker
must set this parameter according to the actual requirements.

Property 3. (i) The optimal objective value of the cost objective function fcos t will be non-increasing
as the carbon emission constraint TEcap increases. (ii) The optimal objective value of the carbon
emission objective function fcarbon will be non-increasing as the cost constraint COcap increases.

Proof of Property 3. (i) If the decision maker has an ideal value for the carbon emission
index in the model (LSM), it can be translated into a constraint. The optimal solution is
denoted by X∗s , Y∗wi, Z∗wslh, and ∀s ∈ S, w ∈ W, i ∈ I, l = 1, · · · , L, h ∈ H, and the corre-
sponding cost objective function value is marked as φ∗ if the carbon emission constraint is
equivalent to TEcap. Evidently, when the carbon emission constraint is greater than TEcap,
X∗s , Y∗wi and Z∗wslh can satisfy constraints (1c)−(1i) and the carbon emission constraint. The
objective value remains unchanged; thus, its optimal objective value was less than or equal
to φ∗. Similarly, when the decision maker has an ideal value for the cost objective, it can also
be translated into a constraint. The above proof can thereby be used to prove property 3(ii).
�

Property 3 suggests that as the carbon emission constraint TEcap or cost constraint
COcap decreases, the feasible region will expand and there will be more viable network
structures to choose from; thus, the optimal objective value will at least not increase.

4.3. Linearized Constraint

In this model (LSM), constraint (1h) is nonlinear, which can be converted into a linear
form via the introduction of an auxiliary 0–1 decision variable, uwslh

p , to facilitate the
solution. For each s ∈ S, w ∈ W, i ∈ I, l = 2, . . . , L, h ∈ H, constraint (1h) can be replaced
with a new set of constraints as follows:

Mwslh ≤ 1−mwsh

Mwslh ≤
|S|

∑
k=1

mwkhZwkph, ∀p = 1, . . . , l − 1

Mwslh + B(1− uwslh
l ) ≥ 1−mwsh

Mwslh + B(1− uwslh
p ) ≥

|S|

∑
k=1

mwkhZwkph, ∀p = 1, . . . , l − 1
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l

∑
p=1

uwslh
p = 1

uwslh
p ∈ {0, 1}, ∀p = 1, . . . , l

We can denote this set of constraints as (MT), where B denotes a large number. The first

two constraints guarantee that Mwslh is not greater than
(

l−1
∧

p=1
∑
|S|
k=1 mwkhZwkph

)
∧ (1−mwsh).

The last four constraints enforce that Mwslh is greater than or equal to one value in{
1−mwsh, ∑

|S|
k=1 mwkhZwk1h, . . . , ∑

|S|
k=1 mwkhZwklh

}
, which is equivalent to at least their min-

imum. Therefore, constraint (MT) is equivalent to constraint (1h).

5. Solution Method

This study considered the different needs of decision makers and used various meth-
ods to solve the model according to different decision criteria, including bi-objective
transformation into single-objective optimization, and bi-objective optimization to provide
the Pareto solution set.

5.1. Considering Single-Objective Optimization
5.1.1. Minimizing Cost

When a decision maker has an ideal value for the carbon emission objective, it can
be transformed into a carbon emission constraint (i.e., a single-objective model with the
objective of minimizing cost, denoted SLSM) as follows:

min
|S|

∑
s=1

rsXs +
|I|

∑
i=1

|H|

∑
h=1

|S|

∑
s=0

|W|

∑
w=1

L

∑
l=1

eswhZwslh MwslhλwhqiYwi +
|I|

∑
i=1

|W|

∑
w=1

cwiqiYwi (2a)

The constraints contain (1c)–(1g), (1i), (MT), and (2b), where (2b) is shown be-low:

|I|

∑
i=1

|H|

∑
h=1

|S|

∑
s=0

|W|

∑
w=1

L

∑
l=1

vswhZwslh MwslhλwhqiYwi +
|I|

∑
i=1

|W|

∑
w=1

twiqiYwi ≤ TEcap (2b)

5.1.2. Minimizing Carbon Emission

When a decision maker has an ideal value for the cost objective, it can be transformed
into a cost constraint (i.e., a single-objective model with the objective of minimizing carbon
emissions, denoted CSLSM) as follows:

min
|I|

∑
i=1

|H|

∑
h=1

|S|

∑
s=0

|W|

∑
w=1

L

∑
l=1

vswhZwslh MwslhλwhqiYwi +
|I|

∑
i=1

|W|

∑
w=1

twiqiYwi (3a)

The constraints contain (1c)–(1g), (1i), (MT), and (3b), where (3b) is shown below:

|S|

∑
s=1

rsXs +
|I|

∑
i=1

|H|

∑
h=1

|S|

∑
s=0

|W|

∑
w=1

L

∑
l=1

eswhZwslh MwslhλwhqiYwi +
|I|

∑
i=1

|W|

∑
w=1

cwiqiYwi ≤ COcap (3b)

These models (SLSM and CSLSM) were solved directly using Gurobi 9.1.2.

5.2. Bi-Objective Optimization

If a decision maker pursues both the cost and carbon emission objectives, but these two
objectives conflict with each other and no solution is available to optimize both objectives
simultaneously, a satisfactory solution set can be provided for the decision makers to weigh
the two objective functions. We designed a fast non-dominated sorting NSGA-II algorithm
with an elite strategy, based on Deb et al. [50], to provide the satisfactory solution set
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for bi-objective optimization. The model (LSM) was solved using the proposed NSGA-II
algorithm. Figure 2 shows the specific algorithm flowchart, and each step is described in
detail below:
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Step 1: Initialize the population and configure the evolutionary algebra Gen = 1. To
satisfy constraints (1c)−(1i), suppliers are first randomly selected. Then, based on the
selection of suppliers, suppliers that can provide services are randomly assigned to each
manufacturer level by level, and manufacturers are randomly assigned to each customer.
After obtaining the randomly generated chromosome, if a manufacturer is not assigned to
a temporary emergency supplier at any level, its assignment at the last level is modified to
a temporary emergency supplier to ensure that the demands have been met.

Step 2: Identify whether the first-generation progeny population has been created.
If so, let the evolutionary algebra Gen = 2; otherwise, perform non-dominated sorting,
tournament selection, simulated binary crossover, and polynomial variation to produce the
first-generation progeny population and let Gen = 2. It should be noted that constraint (1c)
needs to be dealt with after the variation operation is performed as the selection of suppliers
has changed. If a manufacturer is assigned to a supplier that has not been selected, it will
be reassigned to a supplier that has been selected but does not provide services to it.

Step 3: Create a new population by merging the parent and offspring populations.
Step 4: Identify whether a new parent population has been created. If not, compute the

objective functions, fcos t and fcarbon, of the individuals in the new population, perform fast
non-dominated sorting, compute the crowded distance, and implement the elite strategy to
produce a new parent population. Otherwise, execute Step 5.

Step 5: Tournament selection, simulated binary crossover, and polynomial variation
are performed on the generated parent population to generate the offspring population.

Step 6: Identify whether the evolutionary algebra Gen is equivalent to the largest
evolutionary algebra. If not, let Gen = Gen + 1 and go back to Step 3. Else, the run ends.

6. Case Study
6.1. Case Description

This study examined the supply chain network design of a glass manufacturing
company in China, which is engaged in the production of glass bottles for canning a
variety of products, such as juice, syrup, milk, and jam. On the one hand, due to pressure
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from environmental laws and regulations, and customers, this company has made carbon
emissions a goal in designing its supply chain network. On the other hand, this company’s
supply chain network has experienced some major disruptions in the past few years, such
as snow disasters, supplier fires, and the COVID-19 outbreak, resulting in significant cost
losses. To address this company’s predicament, we applied our model to redesign the
company’s supply chain network.

We considered the network construction under five scenarios in this case, each cor-
responding to the company’s different strategic plans, to demonstrate the validity of the
presented model and to verify its applicability under different scenarios. In these scenarios,
the number of candidate suppliers was 8, 10, 15, 20, and 25; the number of manufactur-
ers was 9, 15, 30, 30, and 40; and the number of customers was 10, 20, 40, 70, and 96,
respectively, all of whom are from medium- and large-sized cities in China. The possible
maximum assignment levels were 2, 3, 4, and 5. The data related to the supply chain
network operations, including the fixed cost of supplier openness, customer demands, and
the costs and carbon emissions associated with obtaining raw materials and product, were
provided by the company. However, there were no sufficient historical data or specialized
records for the belief degree of the supplier’s disruption; thus it was given based on expert
empirical estimation, and the belief degree of the supplier’s uncertain disruption given
empirically did not exceed 0.2. All case studies were implemented on a laptop with an Intel
i7-10510U CPU and 16 GB RAM. The optimal supply chain network structure of L = 3
under Scenario 1 has been depicted in Figure 3.

Symmetry 2023, 15, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 3. The optimal supply network structure of 3L =  under Scenario 1. 

6.2. Analysis of the Single-Objective Optimization Results 
6.2.1. Analysis of the Cost and Carbon Emission Objectives 

Tables 2 and 3 show the solution results of the SLSM and CSLSM models, respec-
tively, from which Figure 4 was derived. Figure 4a,b present the trend of the total cost and 
carbon emissions with the maximum assignment level L , respectively, in which “Time” 
is the running time of the algorithm. 

Table 2. Cost objective model solution results. 

Scenari
o 

|S |  | W | | I |  L = 2  L = 3  L = 4  L = 5  
Cost Time (s) Cost Time (s) Cost Time (s) Cost Time (s) 

1 8 9 10 101,894.29 3 101,227.11 7 101,227.07 260 101,227.07 1365 
2 10 15 20 201,264.04 70 198,604.97 177 198,604.95 645 198,604.94 3550 
3 15 30 40 321,446.67 880 308,306.26 1902 307,274.19 6577 307,174.21 23,802 
4 20 30 70 369,613.26 2040 351,676.67 3912 349,999.96 9112 349,117.64 45,507 
5 25 40 96 460,326.06 6890 447,414.39 13,020 446,221.27 36,515 442,973.05 66,400 

Table 3. Carbon emission objective model solution results. 

Scenari
o 

|S |  | W | | I |  L = 2  L = 3  L = 4  L = 5  
Carbon Time (s) Carbon Time (s) Carbon Time (s) Carbon Time (s) 

1 8 9 10 77,184.19 6 77,070.32 15 77,070.31 568 77,070.31 3001 
2 10 15 20 116,328.13 113 113,360.75 311 113,360.74 820 113,360.74 4707 
3 15 30 40 179,579.50 1340 179,114.87 2443 179,114.87 8560 179,114.86 30,910 
4 20 30 70 219,364.84 3504 188,111.38 5890 187,678.54 16,670 187,655.44 56,354 
5 25 40 96 243,227.84 7988 236,655.62 17,038 235,879.59 48,633 235,791.75 85,905 

 

Figure 3. The optimal supply network structure of L = 3 under Scenario 1.

6.2. Analysis of the Single-Objective Optimization Results
6.2.1. Analysis of the Cost and Carbon Emission Objectives

Tables 2 and 3 show the solution results of the SLSM and CSLSM models, respectively,
from which Figure 4 was derived. Figure 4a,b present the trend of the total cost and carbon
emissions with the maximum assignment level L, respectively, in which “Time” is the
running time of the algorithm.
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Table 2. Cost objective model solution results.

Scenario |S| |W| |I|
L=2 L=3 L=4 L=5

Cost Time (s) Cost Time (s) Cost Time (s) Cost Time (s)

1 8 9 10 101,894.29 3 101,227.11 7 101,227.07 260 101,227.07 1365
2 10 15 20 201,264.04 70 198,604.97 177 198,604.95 645 198,604.94 3550
3 15 30 40 321,446.67 880 308,306.26 1902 307,274.19 6577 307,174.21 23,802
4 20 30 70 369,613.26 2040 351,676.67 3912 349,999.96 9112 349,117.64 45,507
5 25 40 96 460,326.06 6890 447,414.39 13,020 446,221.27 36,515 442,973.05 66,400

Table 3. Carbon emission objective model solution results.

Scenario |S| |W| |I|
L=2 L=3 L=4 L=5

Carbon Time (s) Carbon Time (s) Carbon Time (s) Carbon Time (s)

1 8 9 10 77,184.19 6 77,070.32 15 77,070.31 568 77,070.31 3001
2 10 15 20 116,328.13 113 113,360.75 311 113,360.74 820 113,360.74 4707
3 15 30 40 179,579.50 1340 179,114.87 2443 179,114.87 8560 179,114.86 30,910
4 20 30 70 219,364.84 3504 188,111.38 5890 187,678.54 16,670 187,655.44 56,354
5 25 40 96 243,227.84 7988 236,655.62 17,038 235,879.59 48,633 235,791.75 85,905
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Tables 2 and 3 and Figure 4 demonstrate that the cost and carbon emission objective
values are non-increasing as L increases under the same scenario, which is consistent with
Property 2. In addition, changes in the cost and carbon emission objective values were the
most obvious as L changed from two to three, following which the downtrend was not
obvious, which provides the basis for reasonably setting this parameter.

In the following section, the SLSM model has been analyzed as an example. Consider-
ing the current economic capacity limit (below 150,000) and the carbon emission constraint
limit (below 90,000) of the company, it has been further analyzed under Scenario 1, where
L = 2, 3, 4 has been chosen, as it has little effect on the objective value when L is too large.
According to the subsequent development of this company, managers can select other
scales of the supply chain network’s structure to be similarly analyzed.

6.2.2. Analysis of the Multi-Level Backup Strategy for Uncertain Disruptions

To validate the proposed supply chain network optimization model in handling the
risk of uncertain disruptions, the proposed optimal supply chain network optimization
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model was compared with the optimal network optimization model of the deterministic
model under normal conditions [51]. Table 4 concludes the comparative results of the
two models, in which CON and COD represent the cost under normal conditions and
uncertain disruptions respectively. The cost increase (rate) of the proposed model versus
the deterministic model under normal conditions has been denoted as ∆N(%∆N), and
∆D(%∆D) represents the cost increase (rate) under an uncertain disruption risk.

Table 4. Comparison of the results between the proposed model and the deterministic model.

CON ∆N %∆N COD ∆D %∆D

Deterministic 91,321.84 - - 131,677.42 - -
L = 2 96,729.11 5407.27 5.92 101,894.29 −29,783.13 −22.62
L = 3 94,717.96 3396.12 3.71 101,227.11 −30,450.31 −23.12
L = 4 94,717.96 3396.12 3.71 101,227.07 −30,450.33 −23.12

Table 4 indicates that compared with the deterministic model, taking uncertain disrup-
tions into account at the design stage can significantly reduce costs, and it does not add
much to the cost under normal conditions. In particular, using the results for L = 4, the
cost can be reduced by 23.12% when there is a risk of uncertain disruptions, compared with
the normal increase of 3.71%. Thus, even if only the supply chain network results formed
by L = 2 are used to resolve the risk of uncertain disruptions, the expected cost can be
reduced by 22.62%, while the cost increased by 5.92% under normal conditions.

Next, sensitivity analysis was conducted for specific parameters, such as the carbon
emission cap and the belief degree of disruption, to provide a decision-making reference
for the low-carbon supply chain network design under an uncertain environment.

6.2.3. Analysis of the Impact of the Carbon Emission Constraint

To validate the feasibility of the proposed supply chain network optimization model
when addressing a higher carbon emission constraint, the effect of the carbon emission
constraint on the cost under different L is shown in Table 5, where ns denotes the number
of selected suppliers.

Table 5. Comparison of the cost objectives under different carbon emission constraints.

Carbon Emission
Constraint

L=2 L=3 L=4

Cost ns Cost ns Cost ns

800,000 101,894.29 3 101,227.11 4 101,227.07 4
80,000 105,174.69 3 102,010.52 5 102,010.52 5
79,000 107,497.87 3 103,875.49 4 103,875.49 4
78,000 110,920.43 3 106,239.15 4 106,239.15 4

As shown in Table 5, for the same L, the cost is non-decreasing with the increase in the
carbon emission constraint, which is in line with Property 3, and the number of selected
suppliers will at least not decrease as the carbon emission constraint is enhanced compared
to the low carbon emission constraint (i.e., TEcap = 800, 000). This is because when such
uncertain disruptions exist, if the number of selected suppliers is reduced, the likelihood of
manufacturers being assigned to the temporary emergency supplier increases, which will
lead to a high carbon emission constraint that cannot be met. In addition, a more stringent
carbon emission constraint can be met without increasing the cost by reasonably setting
L to account for uncertain disruptions. For example, the cost (106,239.15) with L = 3 at a
carbon emission constraint of 78,000 is lower than that (107,497.87) with L = 2 at a carbon
emission constraint of 79,000. Therefore, a supply chain network with a multi-level backup
strategy should be implemented to facilitate the decarbonization of the supply chain in the
face of the shock of uncertain disruption risks.
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6.2.4. Analysis of the Impact of the Belief Degree of Disruption

To explore the effect of the belief degree of uncertain supply disruptions on the supply
chain network, results of a high carbon emission constraint (i.e.,TEcap = 79, 000) was
compared with different belief degrees (Table 6), where ns denotes the number of selected
suppliers. From Table 6, Figure 5a can be derived, which presents the changes in the cost
objective value with L under different belief degrees, and Figure 5b, which displays the
changes in the cost objective values with belief degrees under different L.

Table 6. Comparison of the cost objectives under different belief degrees.

Belief Degree of
Disruption

L=2 L=3 L=4

Cost ns Cost ns Cost ns

0 91,321.84 3 91,321.84 3 91,321.84 3
0.5ms 96,970.44 3 96,386.97 4 96,386.97 4

ms 107,497.87 3 103,875.49 4 103,875.49 4
1.5ms 114,928.44 3 109,422.94 5 109,422.94 5
2ms 133,909.63 3 125,281.82 4 125,281.82 4
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As shown in Table 6 and Figure 5, for the same L, mitigating the risk of uncertain
disruptions always requires a higher cost with the increase in the belief degree. This
is because, as more disruptions create difficulties in meeting demand, the temporary
emergency supplier has to provide services, thus increasing costs. Furthermore, the number
of selected suppliers will at least not decrease as the belief degree of disruption increases
compared to without disruption. This is because increasing the number of suppliers
provides manufacturers with more viable options, while also avoiding the high cost of
using a temporary emergency supplier.

In addition, with a high carbon emission constraint, the effect of a multi-level backup
becomes more significant as the belief degree of supply disruption increases. For example,
when L changes from two to three, the cost is reduced by 3622.38 with a normal belief
degree of disruption, and that is reduced by 5505.5 with 1.5 times the belief degree of
disruption. This is because the likelihood of activating the “backup chain” increases as
the belief degree of disruption increases. Therefore, the greater the belief degree of supply
disruption, the more necessary it is to adopt a multi-level backup strategy to optimize the
supply chain network’s structure.
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6.2.5. Analysis of the Supply Chain Uncertain Disruption Risk

Table 7 shows the relationship between the cost objective and the SCUDR, and the
SCUDR under different L. Accordingly, Figure 6 can be derived, which shows the changes
in the SCUDR with L under different carbon emission constraints, and the changes in the
SCUDR with cost under different L.

Table 7. Relationship between the SCUDR and the cost objective.

Carbon Emission
Constraint

L=2 L=3 L=4

Cost SCUDR Carbon Cost SCUDR Carbon Cost SCUDR Carbon

82,000 101,974.19 0.0801 81,856.34 101,227.11 0.0496 80,778.21 101,227.11 0.0496 80,778.21
81,000 102,531.16 0.0722 80,971.88 101,227.11 0.0496 80,778.21 101,227.11 0.0496 80,778.21
80,000 105,174.69 0.0866 79,876.42 102,010.52 0.0629 79,081.33 102,010.52 0.0629 79,081.33
79,000 107,497.87 0.0866 78,777.02 103,875.49 0.0496 78,324.15 103,875.49 0.0496 78,324.15
78,000 110,920.43 0.0803 77,794.37 106,239.15 0.0408 77,241.78 106,239.15 0.0408 77,241.78
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As shown in Table 7 and Figure 6, for the same L, the SCUDR increases and then
decreases as the cost increases. This is because, to minimize the cost objective while meeting
a higher carbon emission constraint, manufacturers may be assigned to suppliers with lower
carbon emissions but higher disruption risk; thus, the SCUDR presents a non-decreasing
scenario. However, when the cost is very high, that is, when the carbon emission constraint
is very high (i.e.,TEcap < 80, 000), the enterprise will choose to sacrifice part of its own
benefits by selecting the risker path to meet the carbon emission constraint.

In addition, the SCUDR is non-increasing as L increases under the same carbon
emission constraint, which is in accordance with Property 1. Therefore, to design a low-risk,
high-reliability supply chain network under such an uncertain disruption, the supply
chain should be effectively coordinated to determine the maximum assignment level. If
the carbon emission constraint is large enough, for example, when the carbon emission
constraint is greater than or equal to 81,000 and L = 3, the reliability of the supply chain
network with the same network structure remains the same. At this point, the supply
chain can participate in carbon trading and sell their excess carbon quota to increase
their revenue.
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6.3. Analysis of the Bi-Objective Optimization Results

The analysis of the solution of the model (LSM) is described in this section. For the
bi-objective problem, L = 2 in Scenario 1 is presented as an example. In this scenario,
the population size was 100; maximum number of generations was 100; probability of
crossover was 0.8; and the probability of mutation was 0.05.

As Figure 7 shows, a significant negative correlation exists between the cost and
carbon emissions, and they cannot be concurrently minimized. Therefore, it is unlikely
to achieve the optimal solution to simultaneously meet the objectives of minimizing the
cost and carbon emissions. This implies that the cost will increase as the carbon emissions
decrease, and vice versa. Therefore, decision makers must weigh lowering the total cost
against reducing the carbon emissions when finalizing their choices.
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Generally, decision makers will pay more attention to a certain range of solution sets
on the Pareto front. For example, the solution set of the shaded part in Figure 7 is the
range to which decision makers will give greater focus. Based on the solution on the
Pareto front, the SCUDR of the corresponding supply chain network’s structure is obtained.
For example, in Figure 7, the cost, carbon emissions, and SCUDR of O1 are 109,305.77,
94,107.23, and 0.0838; O∗1 are 111,317.36, 93,909.54, and 0.0836; O2 are 117,502.61, 89,136.52,
and 0.0776; and O3 are 123,805.87, 85,090.26, and 0.0739, respectively. Decision makers can
use the above relevant indicators to choose the right solution for them. In addition, by
observing the points O1 and O∗1 in the red dotted box, it can be seen that O1 has a significant
reduction in its cost (by 2011.59), with no significant changes in its carbon emissions (only
197.69 higher); however, the SCUDR increased slightly (by 0.0002). Accordingly, a decision
maker who is less risk-sensitive should choose O1. Therefore, decision makers should place
more focus on key schemes in which there is no significant change in one indicator but
significant changes in others.

7. Conclusions

This study explored the low-carbon supply chain network’s design in the presence
of an uncertain supply disruption risk. A bi-objective uncertain nonlinear mixed-integer
programming model was developed by considering the objectives of minimizing the
carbon emissions and costs. The model first selects suppliers with uncertain disruptions,
then completes the assignment of suppliers and manufacturers to satisfy customer needs.
Furthermore, we defined and quantified the SCUDR; the properties of the proposed model
were discussed. Then, the nonlinear constraint in the model was linearized using the
proposed techniques. The model was solved using various methods according to different
decision criteria. The proposed supply chain network optimization model can not only
provide optimal solutions when the probability distribution of disruptions is unknown but
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can also serve as a decision framework for the low-carbon supply chain network’s design
in an uncertain environment.

These results indicate that compared with the deterministic model, taking uncertain
disruptions into account at the design stage can significantly reduce costs when disruptions
occur, and it does not add much to the cost under normal conditions. Second, by properly
setting the maximum assignment level to manage the risk of uncertain disruptions, more
stringent carbon emission requirements can be met and the SCUDR can be reduced without
increasing the cost. Third, with a high carbon emission constraint, the effect of a multi-
level backup becomes more significant as the belief degree of supply disruption increases.
Fourth, a significant negative correlation exists between the cost and carbon emissions, and
they cannot be concurrently minimized. Therefore, facing the increasing uncertainty of the
external environment, it is necessary for decision makers to adopt the multi-level backup
strategy to optimize the supply chain network’s structure. This will help decision makers
in designing a reliable supply chain network under an uncertain environment that can
operate well at a lower cost and with fewer carbon emissions, regardless of whether supply
disruptions occur.

Some limitations exist in the present study, which suggest directions for future research.
First, the facility capacity and disruptions of other entities were not considered, which
should be considered in future research to make the model more complete. Second, only
single-periodicity scenarios were considered in this study; in the future, a multi-periodicity
supply chain network design can be conducted in conjunction with the actual needs.
Finally, the SCUDR is also an issue of concern for decision makers. Therefore, the SCUDR,
as defined in this study, could be incorporated into the model as an objective; then, the
trade-off between cost, carbon emissions, and SCUDR could be analyzed.
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20. Marufuzzaman, M.; Ekşioğlu, S.D.; Hernandez, R. Environmentally friendly supply chain planning and design for biodiesel

production via wastewater sludge. Transp. Sci. 2014, 48, 555–574. [CrossRef]
21. Hong, Z.; Dai, W.; Luh, H.; Yang, C. Optimal configuration of a green product supply chain with guaranteed service time and

emission constraints. Eur. J. Oper. Res. 2018, 266, 663–677. [CrossRef]
22. Kumari, M.; De, P.K.; Narang, P.; Shah, N.H. Integrated optimization of inventory, replenishment, and vehicle routing for a

sustainable supply chain utilizing a novel hybrid algorithm with carbon emission regulation. Expert Syst. Appl. 2023, 220, 119667.
[CrossRef]

23. Garcia-Castro, F.L.; Ruiz-Femenia, R.; Salcedo-Diaz, R.; Caballero, J.A. Sustainable supply chain design under correlated
uncertainty in energy and carbon prices. J. Clean Prod. 2023, 414, 137612. [CrossRef]

24. Abbasi, S.; Erdebilli, B. Green closed-loop supply chain networks’ response to various carbon policies during COVID-19.
Sustainability 2023, 15, 3677. [CrossRef]

25. Kabiri, N.N.; Emami, S.; Safaei, A.S. Simulation–optimization approach for the multi-objective production and distribution
planning problem in the supply chain: Using NSGA-II and Monte Carlo simulation. Soft Comput. 2022, 26, 8661–8687. [CrossRef]

26. Mohebalizadehgashti, F.; Zolfagharinia, H.; Amin, S.H. Designing a green meat supply chain network: A multi-objective approach.
Int. J. Prod. Econ. 2020, 219, 312–327. [CrossRef]

27. Sherafati, M.; Bashiri, M.; Tavakkoli-Moghaddam, R.; Pishvaee, M.S. Achieving sustainable development of supply chain by
incorporating various carbon regulatory mechanisms. Transport. Res. Part D-Transport. Environ. 2020, 81, 102253. [CrossRef]

28. Goodarzian, F.; Shishebori, D.; Bahrami, F.; Abraham, A.; Appolloni, A. Hybrid meta-heuristic algorithms for optimising a
sustainable agricultural supply chain network considering CO2 emissions and water consumption. Int. J. Syst. Sci.-Oper. Logist.
2023, 10, 2009932. [CrossRef]

29. Almaraj, I.I.; Trafalis, T.B. A robust optimization approach in a multi-objective closed-loop supply chain model under imperfect
quality production. Ann. Oper. Res. 2022, 319, 1479–1505. [CrossRef]

30. Sazvar, Z.; Tafakkori, K.; Oladzad, N.; Nayeri, S. A capacity planning approach for sustainable-resilient supply chain network
design under uncertainty: A case study of vaccine supply chain. Comput. Ind. Eng. 2021, 159, 107406. [CrossRef]

31. Vali-Siar, M.M.; Roghanian, E. Sustainable, resilient and responsive mixed supply chain network design under hybrid uncertainty
with considering COVID-19 pandemic disruption. Sustain. Prod. Consump. 2022, 30, 278–300. [CrossRef]

32. Li, D.; Cruz, J.M. Multiperiod supply chain network dynamics under investment in sustainability, externality cost, and consumers’
willingness to pay. Int. J. Prod. Econ. 2022, 247, 108441. [CrossRef]

33. Hao, J.; Li, J.; Wu, D.; Sun, X. Portfolio optimisation of material purchase considering supply risk–A multi-objective programming
model. Int. J. Prod. Econ. 2020, 230, 107803. [CrossRef]

34. Liu, Y.; Dehghani, E.; Jabalameli, M.S.; Diabat, A.; Lu, C.C. A coordinated location-inventory problem with supply disruptions: A
two-phase queuing theory-optimization model approach. Comput. Ind. Eng. 2020, 142, 106326. [CrossRef]

35. Bimpikis, K.; Candogan, O.; Ehsani, S. Supply disruptions and optimal network structures. Manag. Sci. 2019, 65, 5504–5517.
[CrossRef]

36. Kungwalsong, K.; Mendoza, A.; Kamath, V.; Pazhani, S.; Marmolejo-Saucedo, J.A. An application of interactive fuzzy optimization
model for redesigning supply chain for resilience. Ann. Oper. Res. 2022, 315, 1803–1839. [CrossRef]

37. Hu, H.; Guo, S.; Qin, Y.; Lin, W. Two-stage stochastic programming model and algorithm for mitigating supply disruption risk on
aircraft manufacturing supply chain network design. Comput. Ind. Eng. 2023, 175, 108880. [CrossRef]

38. Arabi, M.; Gholamian, M.R. Resilient closed-loop supply chain network design considering quality uncertainty: A case study of
stone quarries. Resour. Policy 2023, 80, 103290. [CrossRef]

https://doi.org/10.1080/00207543.2020.1798035
https://doi.org/10.1080/0740817X.2012.654846
https://doi.org/10.1287/msom.1120.0413
https://doi.org/10.1080/00207543.2019.1696999
https://doi.org/10.1080/00207543.2022.2025942
https://doi.org/10.1016/j.ijpe.2014.12.017
https://doi.org/10.1016/j.trd.2016.10.033
https://doi.org/10.1109/TASE.2015.2445316
https://doi.org/10.1287/trsc.2013.0505
https://doi.org/10.1016/j.ejor.2017.09.046
https://doi.org/10.1016/j.eswa.2023.119667
https://doi.org/10.1016/j.jclepro.2023.137612
https://doi.org/10.3390/su15043677
https://doi.org/10.1007/s00500-022-07152-2
https://doi.org/10.1016/j.ijpe.2019.07.007
https://doi.org/10.1016/j.trd.2020.102253
https://doi.org/10.1080/23302674.2021.2009932
https://doi.org/10.1007/s10479-021-04286-8
https://doi.org/10.1016/j.cie.2021.107406
https://doi.org/10.1016/j.spc.2021.12.003
https://doi.org/10.1016/j.ijpe.2022.108441
https://doi.org/10.1016/j.ijpe.2020.107803
https://doi.org/10.1016/j.cie.2020.106326
https://doi.org/10.1287/mnsc.2018.3217
https://doi.org/10.1007/s10479-022-04542-5
https://doi.org/10.1016/j.cie.2022.108880
https://doi.org/10.1016/j.resourpol.2022.103290


Symmetry 2023, 15, 1707 22 of 22

39. Mohammed, A.; Zubairu, N.; Yazdani, M.; Diabat, A.; Li, X. Resilient supply chain network design without lagging sustainability
responsibilities. Appl. Soft. Comput. 2023, 140, 110225. [CrossRef]

40. Jabbarzadeh, A.; Fahimnia, B.; Sheu, J.B.; Moghadam, H.S. Designing a supply chain resilient to major disruptions and sup-
ply/demand interruptions. Transp. Res. Pt. B-Methodol. 2016, 94, 121–149. [CrossRef]

41. He, Y.; Li, S.; Xu, H.; Shi, C. An in-depth analysis of contingent sourcing strategy for handling supply disruptions. IEEE Trans.
Eng. Manag. 2018, 67, 201–219. [CrossRef]

42. Rezapour, S.; Farahani, R.Z.; Pourakbar, M. Resilient supply chain network design under competition: A case study. Eur. J. Oper.
Res. 2017, 259, 1017–1035. [CrossRef]

43. Eghbali, S.K.; Mousavi, S.M.; Salimian, S. Designing blood supply chain networks with disruption considerations by a new
interval-valued fuzzy mathematical model: M/M/C queueing approach. Comput. Ind. Eng. 2023, 182, 109260. [CrossRef]

44. Alikhani, R.; Eskandarpour, M.; Jahani, H. Collaborative distribution network design with surging demand and facility disrup-
tions. Int. J. Prod. Econ. 2023, 262, 108912. [CrossRef]

45. Zeng, L.; Liu, S.Q.; Kozan, E.; Burdett, R.; Masoud, M.; Chung, S.H. Designing a resilient and green coal supply chain network
under facility disruption and demand volatility. Comput. Ind. Eng. 2023, 183, 109476. [CrossRef]

46. Rinaldi, M.; Murino, T.; Gebennini, E.; Morea, D.; Bottani, E. A literature review on quantitative models for supply chain risk
management: Can they be applied to pandemic disruptions? Comput. Ind. Eng. 2022, 170, 108329. [CrossRef] [PubMed]

47. Suryawanshi, P.; Dutta, P. Optimization models for supply chains under risk, uncertainty, and resilience: A state-of-the-art review
and future research directions. Transp. Res. Pt. E-Logist. Transp. Rev. 2022, 157, 102553. [CrossRef]

48. Zhang, Y.; Snyder, L.V.; Qi, M.; Miao, L. A heterogeneous reliable location model with risk pooling under supply disruptions.
Transp. Res. Pt. B-Methodol. 2016, 83, 151–178. [CrossRef]

49. Zhou, J.; Jiang, Y.; Pantelous, A.A.; Dai, W. A systematic review of uncertainty theory with the use of scientometrical method.
Fuzzy Optim. Decis. Making 2023, 22, 463–518. [CrossRef]

50. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

51. Daskin, M.S. Network and Discrete Docation: Models, Algorithms and Applications; John Wiley & Sons: New York, NY, USA, 1995.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.asoc.2023.110225
https://doi.org/10.1016/j.trb.2016.09.004
https://doi.org/10.1109/TEM.2018.2868716
https://doi.org/10.1016/j.ejor.2016.11.041
https://doi.org/10.1016/j.cie.2023.109260
https://doi.org/10.1016/j.ijpe.2023.108912
https://doi.org/10.1016/j.cie.2023.109476
https://doi.org/10.1016/j.cie.2022.108329
https://www.ncbi.nlm.nih.gov/pubmed/35722204
https://doi.org/10.1016/j.tre.2021.102553
https://doi.org/10.1016/j.trb.2015.11.009
https://doi.org/10.1007/s10700-022-09400-4
https://doi.org/10.1109/4235.996017

	Introduction 
	Literature Review 
	Supply Chain Network Design Considering Carbon Emissions 
	Supply Chain Network Design Considering Disruption Risk 
	Gap Analysis 

	Optimization Models 
	Problem Description 
	Methodology 
	Notations 
	Model Formulation 


	Model Analysis 
	Supply Chain Uncertain Disruption Risk Analysis 
	Objective Function Analysis 
	Linearized Constraint 

	Solution Method 
	Considering Single-Objective Optimization 
	Minimizing Cost 
	Minimizing Carbon Emission 

	Bi-Objective Optimization 

	Case Study 
	Case Description 
	Analysis of the Single-Objective Optimization Results 
	Analysis of the Cost and Carbon Emission Objectives 
	Analysis of the Multi-Level Backup Strategy for Uncertain Disruptions 
	Analysis of the Impact of the Carbon Emission Constraint 
	Analysis of the Impact of the Belief Degree of Disruption 
	Analysis of the Supply Chain Uncertain Disruption Risk 

	Analysis of the Bi-Objective Optimization Results 

	Conclusions 
	References

