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Abstract: A Bianchi type-III cosmological model with self-similarity symmetry is investigated in
cases with perfect fluid distribution and a cosmic string cloud. We show that this model admits a non-
trivial homothetic vector field which possess non-null homothetic bivectors. This homothetic vector
field is not parallel to its source vector (current vector). We discussed cases where the homothetic
vector is either orthogonal or parallel to the 4-velocity of a fluid element. We solved Einstein’s field
equations without making any assumptions on the geometry of space-time, only assuming that it
admits self-similarity symmetry. We obtained new exact self-similar solutions for the Bianchi type-III
model. We show that all obtained solutions are shear, and space-time is shear free in only the case
where the homothetic vector field is parallel to the 4-velocity vector. The kinematical and physical
properties of the obtained solutions are discussed.

Keywords: homothetic vector field; homothetic bivector vector field; Einstein’s field equations;
self-similar solutions; kinematical parameters; energy condition
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1. Introduction

The basic equation of the theory of general relativity is Einstein’s field equation
Gab = κTab, where the left-hand side represents the geometry of a given cosmological model
and the right-hand side, the energy momentum tensor, represents the matter content in that
model. These equations are nonlinear partial differential equations of a quadratic degree,
and are usually difficult to handle unless some constraints are assumed on the geometry
of a given model and there exist some conditions on the matter content. These geometric
constraints assume some symmetry properties in space-time such as spherical symmetry,
axial symmetry, cylindrical symmetry, stability, and spatial homogeneity. The assumed
conditions on the stress energy–momentum tensor are that the matter is represented by dust,
perfect fluid, cosmic strings cloud, bulk viscosity, etc. These constraints and conditions
reduce the variables derived from the basic equations, and the partial differential equations
are then reduced to ordinary differential equations with fewer variables which, in some
special cases, can be solved more easily.

In addition to the above symmetry properties, different types of symmetries, such as
isometry, homothetic, conformal, Ricci collineations, matter collineations, etc., are used to
obtain exact solutions of Einstein’s field equations. In the context of the theory of general
relativity, these symmetries have been extensively studied [1–19]. Collinson and French [20],
Katzin, Lavine and Davis [21], and Collinson [22] studied more general geometric sym-
metries. Furthermore, some of these symmetries have been studied in the context of the
theory of teleparallel gravity [23–26].
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These symmetries have attracted a lot of attention, not only because of their classical
physical implications, but also because they simplify Einstein’s field equations. One of these
symmetries that plays an important role in cosmological situations and/or gravitational
collapse is self-similarity symmetry. The main advantage of this symmetry is that it reduces
the number of independent variables by introducing a self-similar variable and thus reduces
the Einstein field equations. This variable is a dimensionless set of independent variables
which are the coordinates of space and time.
Another important role of self-similar solutions is to describe asymptotic behaviors of more
general non-self-similar solutions, which are dynamical and inhomogeneous solutions that
are easy to obtain.

Spherically symmetric distributions of self-gravitating perfect fluid with self-similarity
have been analyzed by Cahill and Taub [5]. Homotheties of plane-symmetric space-times
underlining the physical significance of homotheties in general relativity studied Taub [27].
Godfrey [28] constructed all homothetic Wyel space-times. Shabbir and Khan [29] utilized
algebraic and direct integration techniques to find self-similar vector fields in static spheri-
cally symmetric space-times including the orthogonal, parallel, and non-parallel non-tilted
proper self-similar vector fields for a special choice of the metric functions. Sharif and
Sehar [30,31] studied kinematic self-similar solutions of cylindrically and plane-symmetric
space-times for perfect fluid and dust. A self-similar solution of a fluid with a spherical
distribution was investigated in the context of general relativity in [32].

Self-similarity symmetry based on Lyra’s geometry has been studied in [33–37]. The
authors classified space-times according to admittance of such a symmetry. For the zero-
displacement vector field, they obtained results consistent with those obtained previously
in the theory of general relativity, based on Riemannian geometry. They also showed that
in the case where the displacement vector field is constant, results obtained in the context
of Lyra’s geometry cannot be compared with those obtained in general relativity, using
Riemannian geometry.

Our aim in the present work is to address the problem regarding the existence of
a proper homothetic vector field (HVF) for the Bianchi type-III model and study the
dynamical and physical implications of the obtained results in hopes of providing a way to
obtain a better understanding of their asymptotic dynamics in the past and future.

As mentioned in [38], because of the fact that the Einstein tensor is invariant under
homothetic transformations, the existence of solutions of Einstein’s equations with this
symmetry is naturally suggested.

Einstein’s equations were solved for a cloud of string with heat flux in Bianchi type-III
space-time by Yavuz and Yilmmaz [39]. They found five field equations that connect six
unknown quantities, so they hypothesized that there is a relationship between the unknown
quantities C = An.

2. Space-Time and Homothetic Vector Field

In the theory of general relativity, homothety or self-similarity is defined in terms of
the homothetic vector H = Ha ∂

∂xa = Hadxa. A vector field H on a space-time M is called
homothetic vector field if one of the following conditions holds on a local chart :

£H gab = Ha;b + Hb;a = 2ψgab ⇔ Ha;b = ψgab + Fab, (1)

same in whole manuscipt. where £H stands for the lie derivative over H, ψ is a
constant on M, and a semi-colon denotes a covariant derivative with respect to the metric
connection.

If ψ = 0, H is a trivial homothetic vector field or Killing vector field on M; if ψ 6= 0, H
is a nontrivial homothetic vector field. Thus,

Fab = H[a;b] = −Fba (2)
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is the so-called homothetic bivector field (HBV). According to the definition of the Killing
bivector given by [40,41], the homothetic bivector field can be interpreted as a test electro-
magnetic field [42,43]. The definition of the current vector, J, and the test electromagnetic
field generated by the homothetic bivector, Fab, are defined as follows [42]

Fab
;b = −Hb;a

;b = RabHb = 4π Ja, (3)

where Rab = Rm
abm is the Ricci tensor. In the case of vacuum space-time, Rab = 0, the current

vector J = 0 and the test electromagnetic field is then source-free. The source vector J given
by Equation (3) satisfies

Ja
;a = 0.

For a geometric interpretation of Equation (1), we refer the reader to the references [3,5],
and for physical properties, we refer reference [9].

We consider the diagonal form of the homogeneous and anisotropic space-time de-
scribed by Bianchi type-III metric in the following form

ds2 = dt2 − A2(t)dx2 − B2(t)e−2αxdy2 − C2(t)dz2, (4)

with the convention (x0 = t, x1 = x, x2 = y, x3 = z), α is a constant and A(t), B(t) and
C(t) are the scale factors (metric components) and functions of the cosmic time t.

For a vector field H = (Ha(t, x, y, z) ∂
∂xa )4

a=1, the homothetic Equation (1) for the
model (4) is reduced to the following system of equations:

H0
,0 = ψ. (5)

H0
,1 − A2H1

,0 = 0, (6)

H0
,2 − B2e−2αx H2

,0 = 0, (7)

H0
,3 − C2H3

,0 = 0, (8)

H1
,1 +

Ȧ
A

H0 = ψ, (9)

A2H1
,2 + B2e−2αx H2

,1 = 0, (10)

A2H1
,3 + C2H3

,1 = 0, (11)

H2
,2 − αH1 +

Ḃ
B

H0 = ψ, (12)

C2H3
,2 + B2e−2αx H2

,3 = 0, (13)

H3
,3 +

Ċ
C

H0 = ψ, (14)

The commas denote partial derivatives with respect to the coordinate indicated.
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After straightforward calculation, the solutions of the above system of equations give
the following differential constraint relations

Ȧ
A = a

ψt+c0
= ψ

ψt+c0
,

Ḃ
B = b

ψt+c0
= ψ

ψt+c0
Ċ
C = d

ψt+c0
,

(15)

where c0, a, b, and d are arbitrary non-zero constants, and the contravariant components of
the homothetic vector field are

H0 = ψt + c0, (16)

H1 = c1, (17)

H2 = αc1y + c2, (18)

H3 = (ψ− d)z + c3, (19)

where c1, c2, and c3 are constants of integration.
The covariant components of the homothetic vector, Ha = gabHb, are

H0 = ψt + c0, (20)

H1 = −c1 A2, (21)

H2 = −(αc1y + c2)e−2αxB2, (22)

H3 = −((ψ− d)z + c3)C2, (23)

From Equations (16)–(19) and (20)–(23), we see that the obtained homothetic vector is
non-null homothetic vector field (Ha Ha 6= 0).

Integrating Equation (15), we obtain the components of the metric as follows

A(t) = n1(ψt + c0),
B(t) = n2(ψt + c0),

C(t) = n3(ψt + c0)
d
ψ ,

(24)

where n1, n2, and n3 are constants of integration.
According to the above discussion, we can state that the solutions with proper homo-

thetic motion for the metric (4) are space-times with metric

ds2 = dt2 − (ψt + c0)
2(n2

1dx2 + n2
2e−2αxdy2 + n2

3(ψt + c0)
d
ψ−2dz2), (25)

We choose, without loss of generality, c0 = c2 = c3 = 0 and c1 = 1. So, the space-
time (4) admits the following non-null homothetic vector field

H = Ha ∂

∂xa = ψt
∂

∂t
+

∂

∂x
+ αy

∂

∂y
+ (ψ− d)z

∂

∂z
, (26)

and the scale factors are
A(t) = n1ψt,
B(t) = n2ψt,

C(t) = n3(ψt)
d
ψ .

(27)
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In this case, the self-similar solutions of the metric (4) can be written in the following
form

ds2 = dt2 − q2
1t2dx2 − q2

2t2e−2αxdy2 − q2
3t

2d
ψ dz2, (28)

where q1, q2, and q3 are non-zero constants. Without loss of generality, we choose
n1 = n2 = n3 = 1; then, we have the following solution

A(t) = ψt,
B(t) = ψt,

C(t) = (ψt)
d
ψ ,

(29)

Homothetic Bivector Field

From Equation (2), the components of the covariant homothetic bivector of the
model (4) are given by

Fab =


0 c1 AȦ (c1αy + c2)BḂe−2αx ((ψ− d) + c3)CĊ

−AȦc1 0 0 0
−(c1αy + c2)BḂe−2αx 0 0 0
−((ψ− d) + c3)CĊ 0 0 0

 (30)

and the contravariant components are

Fab =


0 −c1

Ȧ
A −(c1αy + c2)

Ḃ
B −((ψ− d) + c3)

Ċ
C

c1
Ȧ
A 0 0 0

(c1αy + c2)
Ḃ
B 0 0 0

((ψ− d) + c3)
Ċ
C 0 0 0

 (31)

The non-vanishing components of the current vector J are

J1 = c1
Ä
A ,

J2 = (c1αy + c2)
B̈
B ,

J3 = ((ψ− d)z + c3)
C̈
C .

(32)

From the components of the space-like homothetic vector (16)–(19) and the components
of the above current vector J, we obtain

H× J 6= 0

Then, the homothetic vector field H is not parallel to its source vector J. Consequently,
Bianchi type III (4) admits a non-trivial homothetic vector field (see theorem 4.2 in [42]).

From Equations (30) and (31), we note that the Bianche type-III space-time (4) with a
symmetry (homothetic symmetry) admits nontrivial homothetic vector fields which possess
non-null homothetic bivectors.

3. Einstein’s Field Equations and Dynamical Variables of the Model for Perfect Fluid
Distribution

In this section, we study the gravitational effects of a perfect fluid. In this case, the
energy momentum tensor is taken as

Tab = (ρ + p)uaub − pgab, (33)

where p is the pressure, ρ is the energy density, u the 4-velocity vector, and it must verify
£Hua = 0. For the space-time (4) the 4-velocity vector is defined by ua = ub = (1, 0, 0, 0),
and it is verified gabuaub = 1.
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In natural units (G = 1 and c = 1), the Einstein field equations are

Gab = Rab −
1
2

Rgab = 8πTab (34)

where Rab is the Ricci tensor, R is the Ricci scalar, and Tab is the energy–momentum tensor
given by Equation (33). For anisotropic Bianchi type-III space-time (4) in a comoving
coordinate system, Einstein’s field Equation (34) is read as

B̈
B
+

C̈
C
+

ḂĊ
BC

= −8πp, (35)

Ä
A

+
C̈
C
+

ȦĊ
AC

= −8πp, (36)

B̈
B
+

Ä
A

+
ȦḂ
AB
− α2

A2 = −8πp, (37)

ȦḂ
AB

+
ḂĊ
BC

+
ȦĊ
AC
− α2

A2 = 8πρ, (38)

α(
Ȧ
A
− Ḃ

B
) = 0, (39)

Integration of Equation (39) using (24) yields

A = nB, n =
n2

n1
. (40)

where n is a constant of integration which can be taken as unity without loss of any
generality. We notice that we obtain the same results if we use the components (24); so, for
n = 1, we have

A = B (41)

From Equations (35)–(38), using (24), we obtain the relations between the three con-
stants ψ, α, and d as follows

d2 = ψ2 − α2, (42)

and the physical variables p and ρ (pressure and density) are

p =
α2 − ψ2

8π(ψt + c0)2 , (43)

and

ρ =
ψ2 + 2ψd− α2

8π(ψt + c0)2 . (44)

Without loss of generality, we choose n1 = n2 = n3 = 1; then, we have the following
new self-similar solution

ds2 = dt2 − (ψt + c0)
2(dx2 + e−2αxdy2 + (ψt + c0)

ψ2−α2

ψ2 −2
dz2). (45)

Again, without loss of generality, if we choose c0 = 0, we obtain the following self-
similar solution

ds2 = dt2 − (ψt)2(dx2 + e−2αxdy2 + (ψt)
ψ2−α2

ψ2 −2
dz2). (46)
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4. Two Special Cases
4.1. HVF Parallel to 4-Velocity Vector

In this case, the 4-velocity vector is proportional to the time component H0, that is,
H1, H2, H3 = 0. The homothetic Equations (5)–(14) reduce to the following equations

H0
,0 = ψ. (47)

and
Ȧ
A

H0 = ψ,
Ḃ
B

H0 = ψ
Ċ
C

H0 = ψ (48)

From the above equations, we obtain

Ȧ
A

=
Ḃ
B
=

Ċ
C

=
ψ

ψt + c0
, (49)

which gives

A(t) = n1(ψt + c0), B(t) = n2(ψt + c0), C(t) = n3(ψt + c0). (50)

Without loss of generality, we choose n1 = n2 = n3 = 1. Consequently, the self-similar
solution assumes the form

ds2 = dt2 − (ψt + c0)
2(dx2 + e−2αxdy2 + dz2). (51)

If we choose c0 = 0, the above self-similar solution leads to the following solution

ds2 = dt2 − (ψt)2(dx2 + e−2αxdy2 + dz2). (52)

4.2. HVF Orthogonal to 4-Velocity Vector Field

In this case, the component H0 = 0 which implies that ψ = 0; then, the space-time (4)
does not admit any self-similar solution.

5. Gravitational Effects of a Cosmic Strings Cloud

In this section, we will study the gravitational effects of the space-time cosmic string
cloud (4) without making any assumptions between the scale components of the space-time
under study. To execute this case, we consider the energy–momentum tensor Ta

b which
takes the following form

Ta
b = µuaub + λXaXb, (53)

where µ is the rest energy density for a string cloud with particles attached to it, and λ is
the string cloud tension density.

Here, ua is the four-velocity vector of particles and Xa is the unit space-like vector repre-
senting the direction of strings orthogonal to ua. We choose Xa parallel to
∂
∂z (X0 = X2 = X3 = 0, X1 6= 0). These two vectors ua and Xa satisfy the following conditions

uaua = 1 = −XaXa, uaXa = 0. (54)

For the space-time (4), in a comoving coordinate system, we obtain

ua = ua = (1, 0, 0, 0), Xa = (0,
1

A(t)
, 0, 0), Xa = (0, A(t), 0, 0)

If the particle density of the configuration is given by µp, then we have

µ = µp + λ. (55)
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Einstein’s field Equation (34) for anisotropic Bianchi type-III space-time (4), in case of
a cosmic strings cloud, read as

B̈
B
+

C̈
C
+

ḂĊ
BC

= 0, (56)

Ä
A

+
C̈
C
+

ȦĊ
AC

= 0, (57)

Ä
A

+
B̈
B
+

ȦḂ
AB
− α2

A2 = −λ, (58)

ȦḂ
AB

+
ȦĊ
AC

+
ḂĊ
BC
− α2

A2 = µ, (59)

α(
Ȧ
A
− Ḃ

B
) = 0, (60)

Before solving the above Einstein’s field equations, we notice that if we assume that
the direction of strings parallel to ∂

∂x (or ∂
∂y ), the left-hand side of Equations (56) or (57)

becomes equal λ; then, from Equation (24), we obtain λ = 0. So, the direction of strings
was taken in the ∂

∂z direction.
Because all the scale factors A, B, C that appear in the left-hand sides of Einstein’s field

Equations (56)–(60) are functions of t alone, then λ and µ are function of t alone.
Using the components (24) in Equation (56), we obtain d = 0. Equations (58) and (59)

give, respectively

λ = − ψ2 − α2

(ψt + c0)2 , (61)

µ =
ψ2 − α2

(ψt + c0)2 , (62)

According to the above discussion, the only self-similar solution for a Bianchi type-III
model (4), with a cosmological strings cloud in ∂

∂z direction, is

ds2 = dt2 − (n2
1(ψt + c0)

2dx2 + n2
2(ψt + c0)

2e−2αxdy2 + n2
3dz2), (63)

Without loss of generality, if n1 = n2 = n3 = 1 and c0 = 0, we obtain the following
self-similar solution

ds2 = dt2 − (ψt)2dx2 + (ψt)2e−2αxdy2 + dz2), (64)

6. Physical and Kinematical Parameters of the Obtained Solutions

To discuss the physical behavior of the obtained self-similar models given by the
metrics (45), (46), (51), (52), and (63), we find the following physical and kinematical
properties of the solutions which are very important in the discussion of cosmology.
The following are the parameters for the metric (45)

1. The spatial volume is defined by

V = a3(t) = A(t)B(t)C(t) = (ψt + c0)
2+ d

ψ ,

where a(t) is the average scale factor of the universe.

2. The scalar expansion, Θ, is

Θ = ua
;a =

Ȧ
A

+
Ḃ
B
+

Ċ
C

=
2ψ + d
ψt + c0

.
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3. The components of the shear tensor σ
j
i are given by

σ0
0 = 0,

σ1
1 =

1
3
(2Ȧ

A
− Ḃ

B
− Ċ

C

)
=

1
3

( ψ

ψt + c0
− d

ψt + c0

)
,

σ2
2 =

1
3
(2Ḃ

B
− Ȧ

A
− Ċ

C

)
=

1
3

( ψ

ψt + c0
− d

ψt + c0

)
,

σ3
3 =

1
3
(2Ċ

C
− Ȧ

A
− Ḃ

B

)
=

1
3

( 2d
ψt + c0

− 2ψ

ψt + c0

)
,

4. The shear scalar σ is given by

σ =
(1

3

[( Ȧ
A
)2

+
( Ḃ

B
)2

+
( Ċ

C
)2 − ȦḂ

AB
− ḂĊ

BC
− ĊȦ

CA

]) 1
2
=

ψ− d√
3(ψt + c0)

.

5. The average Hubble parameter is defined as

H̄ =
1
3

Θ =
1
3
(H̄1 + H̄2 + H̄3) =

1
3
(

Ȧ
A

+
Ḃ
B
+

Ċ
C
) =

2ψ + d
3(ψt + c0)

,

6. The anisotropy parameter δ of the expansion is

δ =
1
3

Σ3
i=1
( H̄i − H̄

H̄
)2

=
3(ψ2 + d2)

(2ψ + d)2 −
5
3

in which H̄i, i = 1, 2, 3 represent the Hubble parameter in the directions of x, y, and z,
respectively.

7. Solution (46)

For the obtained solution (46), we obtain

V = a3(t) = (ψt)2+ d
ψ .

Θ =
2ψ + d

ψt
,

σ0
0 = 0,

σ1
1 = σ2

2 =
1
3

( ψ

ψt
− d

ψt
),

σ3
3 =

1
3

(2d
ψt
− 2ψ

ψt
),

σ =
ψ− d√
3(ψt)

,

H̄ =
2ψ + d

3ψt
,

δ =
3(ψ2 + d2)

(2ψ + d)2 −
5
3

.
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8. Solution (51)

For the obtained solution (51), we have

V = (ψt + c0)
3.

Θ =
3ψ

ψt + c0
,

σ = 0.

H̄ =
ψ

ψt + c0
,

δ = −2
3

.

We notice from the above that the space-time (51) admits a time-like homothetic vector,
H0 = ψt + c0, which is parallel to the four-velocity vector. This space-time is shear free, i.e.,
σ = 0, and the homothetic factor ψ = ΘH0

3 . This result agrees with the proposition given
in [44], which states that a space-time admits a time-like homothetic vector field parallel to
the unit time-like vector field ua (uaua = 1) if and only if σab = 0 and the homothetic factor
ψ satisfies ψ = HΘ

3 .

9. Solution (63)

For the obtained solution (46) (if n1 = n2 = n3 = 1), we obtain

V = (ψt + c0)
2.

Θ =
2ψ

ψt + c0
,

σ0
0 = 0,

σ1
1 = σ2

2 =
ψ

3(ψt + c0)
,

σ3
3 = − 2ψ

3(ψt + c0)
,

σ =
ψ√

3(ψt + c0)
,

H̄ =
2ψ

3(ψt + c0)
,

δ = −1
3

.

10. Conclusions

This work is devoted to the study of symmetries, in particular homothetic symmetry,
of a Bianchi type-III model based on Riemannian geometry. We focused on this type of
symmetry because space-time admitting it is recognized as stable from the point of view of
a dynamical system; therefore, it is important from a physical point of view. For Bianchi
type-III space-time, we have shown that such space-time admits non-trivial homothetic
vector fields which possess non-null homothetic bivectors.

Exact solutions of Einstein’s equations are of great importance in understanding the
behavior of a variety of celestial phenomena. The literature abounds with many different
techniques that have been used in an attempt to obtain new exact solutions for different
configurations of matter.
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In this paper, we studied Bianchi-type III space-time (4) and attempted to obtain exact
solutions to Einstein’s field Equation (34). To do this, in addition to self-similarity symmetry,
we assumed that the matter is represented by a perfect fluid, as in Section 4, and by a cosmic
string cloud, as in Section 5. In both cases, we obtained exact self-similar solutions for the
space-time (4). Furthermore, we classified the space-time (4) under study according to
admitting a homothetic vector field. For the obtained solutions (45), (51), and (63), we have
the following: The spatial volume V increases as time increases, and it is finite when t = 0
and becomes infinite when t→ ∞. The expansion, shear, and average Hubble parameter
decrease as time increases and tends to zero as t→ ∞. σ

Θ is a constant, that is, the expansion
Θ in each model is proportional to the shear σ. The model (46) and (52) are began with a
big bang at t = 0 and the expansion in the model decreases as time increases. These models
have point-type singularity at t = 0. For the model (46), the energy density ρ→ ∞ when
t→ 0 and ρ→ 0 when t→ ∞ provided (ψ2 + 2ψd− α2) 6= 0. The energy condition ρ ≥ 0
requires that (ψ2 + 2ψd− α2) ≥ 0.
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