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Abstract: The autonomous traffic system has imposed higher requirements on the speed estimation of
connected vehicles, where the speed of connected vehicles, as one of the control conditions for refined
traffic management, plays a crucial role in the evaluation and optimization of network performance. In
this paper, we propose a multi-source speed measurement sensor network consensus filtering (MSCF)
algorithm based on information weight for the problem of optimal speed consistency estimation for
connected vehicles. Specifically, we first utilize dynamic linearization techniques and data-driven
parameter identification algorithms to handle the derived state equations of connected vehicles.
We then establish observation models for four different types of sensors and construct distributed
direct and indirect measurement models by dynamically adjusting the information weights of sensor
nodes. Following this, we combine the Kalman consistency filtering algorithm to derive the speed
state estimation update rate and design a new state estimator to achieve the optimal consistent
convergence estimation for connected vehicles’ speed. The MSCF algorithm can solve the problem
of consistency filtering for noisy sensor data under observation- and communication-constrained
conditions, enabling each sensor node to obtain a consistent convergence estimation value for the
speed of the connected vehicle. The convergence of the algorithm is proved using the Lyapunov
function. Through numerical simulation, the results are verified, indicating that compared to existing
methods, this method can achieve a higher precision speed estimation effect.

Keywords: autonomous transportation systems; connected vehicle; speed estimation; data driven
control; sensor network consistency filter; Kalman consensus filter

1. Introduction

In the epoch of connected intelligent transportation, a higher degree of precision in
estimating vehicular speed is becoming increasingly critical to accommodate the necessities
posed by the evolution of autonomous transportation [1]. Intelligent connected vehicles
necessitate paramount safety, of which an accurate speed estimation serves as an integral
part. This precise estimation aids the vehicular system to adeptly respond to emergencies,
ensuring prompt braking, evasion, and similar maneuvers, thus safeguarding the security
of both drivers and pedestrians [2,3]. The autonomous driving function of intelligent
connected vehicles demands high-precision speed estimation, facilitating superior control
over the vehicle’s speed and direction, thereby actualizing the principles of safety, efficiency,
and precision intrinsic to autonomous driving [4]. Furthermore, a high-precision estimation
of vehicular speed augments the tracking of the vehicle’s location and driving direction,
thereby enhancing the navigational accuracy of the connected vehicle. This improvement
assists the vehicle system in better controlling energy consumption, thereby enhancing the
vehicle’s energy efficiency [5,6].

With the development of measurement and manufacturing technologies, it is difficult
for a single sensor to estimate the target state to meet the needs of future vehicle network-
ing and autonomous transportation. The technique of multi-sensor information fusion
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can augment the perception of environmental variations in the vehicle speed estimation
system, providing more accurate cognizance, and further facilitating optimal estimation
and decision-making. This technique has already found extensive application in fields such
as SLAM [7], industrial processing [8], and biomedical science [9], and it also holds consid-
erable potential in vehicle speed estimation and positioning. The consistent coordination
algorithm for observing target nodes in a sensor network composed of multiple sensors
has achieved good results. Consistency coordination is an important concept in distributed
computing, used to achieve a consistent view or state among nodes in a distributed net-
work, even in the event of some node failures. Consistency coordination algorithms are
widely used in UAV coordination control, vehicle formation control, distributed power grid,
satellite attitude control, etc. [10–13]. Through multi-sensor information fusion technology,
a vehicle speed estimation system can simultaneously exploit data from a variety of sensors,
such as the Global Navigation Satellite Sensor (GNSS), inertial sensors, visual sensors, and
LiDAR (Light Laser Detection and Ranging) [14]. These data can be collaboratively merged,
reducing overall uncertainty, and enhancing the precision of speed estimation. Moreover,
this technology can rectify errors inherent in the sensors, thereby further bolstering the
system’s reliability and stability [15–18].

In the field of system state estimation, Kalman filtering is one of the most widely
applied methods. Kalman filtering is an efficient recursive filtering algorithm capable of
estimating the state of a dynamic system from a series of incomplete and noisy measure-
ments [19]. For a dynamic linear system, Kalman filtering uses a prediction model to antici-
pate its next state, and based on measurement data, this prediction is corrected, yielding a
more accurate estimation of the system state. For systems with non-linear characteristics
or non-Gaussian noise, numerous researchers have developed extensions to the Kalman
filter, including the Extended Kalman Filter (EKF) [20–22] and the Unscented Kalman Filter
(UKF) [23], building upon its foundational methodology. A probability-weighted fusion
method based on the Extended Kalman Filter was proposed in reference [24]. However, due
to the higher-order stage error introduced by Taylor linear approximation, its estimation
results might not be optimal and could even diverge [25]. Reference [26] put forward an
Unscented Kalman Filter algorithm to estimate the speed of dynamic targets. This method
can avoid the high-order terms in the linearization process, but it entails a substantial
computational load. It is noteworthy that scholars have also proposed the Interacting
Multiple Model (IMM) algorithm [27]. The IMM constructs multiple models of a target,
synthesizing information from different models via the update of probability weights. It
can effectively enhance the tracking performance [28], but it increases the computational
overhead. Moreover, its performance also depends on whether the selected collection of
models can adequately describe all possible motions of the target [29–31]. In addition, many
existing fusion algorithms require a fusion center to obtain dynamic estimations of the
target. Therefore, in recent years, scholars have also proposed Kalman consistency filtering
methods such as the Distributed Extended Kalman Consensus Filter (DEKCF) [32] and
Distributed Unscented Consensus Kalman Filter (DUKCF) [33,34] algorithms. These filters
accomplish distributed target dynamic estimation through local information fusion among
adjacent sensors. Combining the Kalman filter algorithm with the consistency coordination
algorithm, the distributed communication interaction of the information flow improves the
estimation accuracy of the entire sensor network for the target and improves the robustness
of the system [35,36]. However, these consistency filters require precise modeling of the
system, making the estimation process relatively complex and computationally expensive.

Furthermore, particle filters are another class of system state estimation methods that
merit attention. They are a type of non-parametric and non-linear Bayesian filter, applicable
to any type of system (linear or non-linear, Gaussian or non-Gaussian). Particle filters use a
set of random samples (particles) to represent the state space of the system and drive the
evolution of these particles in prediction and update steps. However, when dealing with
high-dimensional systems, using a large number of particles to accurately represent the
state space could lead to substantial computational costs [37–39].
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Apart from model-based methods, deep neural networks have also achieved satisfac-
tory results in target tracking and estimation. Target tracking can provide the preconditions
for speed estimation and can be transformed into a category of state estimation problems.
Reference [40] proposes a method based on Recurrent Neural Networks (RNNs) to handle
the uncertainty of target movement. It can still guarantee a good tracking performance
when sudden changes occur in the dynamic behavior of the target.

In summary, to satisfy the requirements of proactive safety control functions of vehicles,
it is essential to enhance the precision of state observation under the strong non-linear
characteristics of vehicles. Multi-sensor information fusion technology can augment the
accuracy and reliability of a vehicle speed estimation system, holding significant value
in applications related to autonomous driving and safe travel. However, data-driven
consensus filtering is seldom applied to the speed estimation of connected vehicles.

This study focuses on a non-linear, discrete connected vehicle motion system. It selects an
information flow topology sensor network composed of multiple types of sensors and proposes
a distributed fusion algorithm based on information weight. This realizes that each sensor
node can obtain a true estimation of the speed of the connected vehicles under observation and
communication constraints. The main contributions of this paper are as follows:

(1) By introducing the Full Form Dynamic Linearization (FFDL) dynamic linearization
technique, the non-linear, discrete connected vehicle motion model is transformed
into a quasi-linear state space model.

(2) A multi-source speed measurement sensor network consensus filtering algorithm (MSCF)
is proposed. This algorithm enables each sensor to make an optimal estimate of the
speed of connected vehicles, which consistently converges to the true target value.

(3) Based on Lyapunov techniques, a convergence analysis of the MSCF algorithm was
conducted, providing a rigorous mathematical proof.

(4) Through numerical simulation, the MSCF algorithm proposed in this paper shows
superior estimation accuracy for the speed of connected vehicles compared to the
DEKCF and DUKCF algorithms. This remains true in the presence of process noise,
measurement noise, and communication noise.

The structure of this paper is as follows: In Section 2, the dynamic model of connected
vehicles is established. In Section 3, the multi-source sensor speed measurement network
and the MSCF algorithm are constructed. Section 4 provides the convergence analysis of
the state estimators. Section 5 verifies the effectiveness of the proposed method through
simulations. Section 6 puts forth the conclusions and future work.

2. Vehicle Dynamics Modeling
2.1. Discrete-Time Dynamics Modeling

Vehicular motion, a highly intricate process involving multiple degrees of freedom,
embodies both complexity and uncertainty. A connected vehicle, during its travel, can be
viewed as a rigid single particle, simplified by the vehicle longitudinal dynamics model in
reference [41], and its dynamics can be expressed as:

M · dv(t)
dt = F(t)− fB(t)− fO(t, v)

fO(t, v) = fm,s(t) + fm,a(t) + fs(v)

fs(v) = 1
2 ρ(t)d(t)Av2(t) + µ(t)v(t)

(1)

Here, t denotes the continuous time index, v(t) is the vehicle’s velocity (m/s), M is
the vehicle’s mass (kg), a(t) is the vehicle’s acceleration (m/s2), F(t) is the tractive force
provided by the vehicle engine (N), fB(t) is the resistance due to the vehicle’s braking sys-
tem or engine brake, fO(t, v) is the total resistance the vehicle experiences (N), fm(t) is the
resistance encountered by the vehicle when stationary, fm,s(t) = l(t) sin(θ(t)) denotes the
additional resistance due to the gravity component, θ is the slope angle of the road surface
where the vehicle travels, fm,a(t) represents the vehicle’s mechanical drive resistance, fs(v)
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is the aerodynamic drag and rolling resistance of the tires experienced during motion, ρ(t)
is the air density (kg/m3), d(t) is the drag coefficient also known as the aerodynamic drag
coefficient, A is the vehicle’s frontal area (m2), and µ(t) is the rolling friction coefficient
between the tire and road surface, which is related to tire material and structure, road
condition, and weather.

In practical control systems, in order to reduce computational complexity, linear and
quadratic terms are merged, and Euler’s theorem is used to sample continuous time state
variables to obtain a discrete time dynamic model of connecting vehicles:

s(k + 1) = s(k) + ∆v(k)

v(k + 1) = v(k) + ∆

[
(F(k)− fB(k)− c0(k)− c1(k)v(k)− c2(k)v2(k)−l(k) sin

(
θ(t)

k
∑

j=1
∆ · v(k)

)]
(2)

Here, k denotes the sampling moment, and k ∈ [0, 1, . . . , K] signifies the sampling
period (s). Therefore, the total travel time T of the connected vehicle can be expressed as
T = ∆K.

It is evident that the speed of connected vehicles is influenced and interfered with by
many factors, and accurately representing vehicle speed through mechanism modeling is
challenging. Therefore, data-driven methods are widely used for the speed estimation of
networked vehicles, which can effectively handle unmodeled dynamic factors and improve
the accuracy of speed estimation.

2.2. Data-Driven Vehicle Speed Modelling

Given the modeling uncertainties in the operation of connected vehicles, we establish
the following nonlinear discrete system model:

v(k + 1) = f (v(k), · · · , v(k− Sy), F(k), · · · , F(k− Su)) + ϑω(k) (3)

Here, v(k) ∈ R denotes the output of the connected vehicle system at moment k, that is,
the vehicle’s speed; F(k) ∈ R denotes the control input of the vehicle; f (·) : RSu+Sy+2 → R
denotes an unknown nonlinear function, with positive integers Su and Sy representing the un-
known orders of the system’s input and output; ω(k) denotes the system’s uncertainty, following
a normal distribution with zero mean and covariance S; and ϑ denotes the noise coefficient.

In order to transform the complex nonlinear system to a linear characteristic, this
paper utilizes FFDL technology [42], which is conducive to studying the complex operating
characteristics of connected vehicles.

Given the length constants for control output linearization as Ly(0 ≤ Ly ≤ Sy) and
control input linearization as Lu(1 ≤ Lu ≤ Su), when satisfying ‖∆TLy ,Lu(k)‖ 6= 0, the
full-format dynamic linearization data model can be obtained as:

∆v(k + 1) = φT
f ,Ly ,Lu

(k)∆TLy ,Lu(k) + ϑω(k) (4)

Herein, the time-varying parameter vector φT
f ,Ly ,Lu

(k) is referred to as the Pseudo
Gradient (PG), where ∆Tk(Ly, Lu) = Tk(Ly, Lu)− Tk−1(Ly, Lu), ω(k) = ω(k)− ω(k− 1),
φ f ,Ly ,Lu =

[
φ(1), · · · , φ(Ly)φ(Ly + 1), · · · , φ(Ly + Lu)

]
.

Following the time-varying autoregressive model conversion method in reference [43],
through parameter separation, the above equation can yield the time-varying autoregressive
(TVARX) model of order (n + 2):

n+1

∑
i=0

ai(k)v(k− i + 1) =
n+1

∑
j=0

bj(k)F(k− j + 1) + ϑω(k) (5)

Herein, n = max
{

Ly, Lu
}

, ai(k) represents the time-varying autoregressive coefficient,
satisfying a0(k) = 1, and when Ly + 1 < i ≤ n + 1, satisfying a0(k) = 0. bi(k) refers to
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the time-varying exogenous input excitation coefficient, which satisfies bj(k) = 0 when
j = 0 or Lu + 1 < j ≤ n + 1. Hence, the nonlinear characteristics of connected vehicles are
transformed into time-varying coefficients ai(k) and bi(k), requiring identification of these
two time-varying coefficients.

Rewriting the TVARX model, we obtain the following parameter identification equation:
v(k + 1) = ΞT(k)Θ(k) + ϑω(k)

Θ(k) = [−a1(k),−a2(k), · · · ,−an+1(k), b1(k), b2(k), bn+1(k), · · · , bn+1(k)]
T

Ξ(k) = [v(k), · · · , v(k− n), F(k), · · · , F(k− n)]

(6)

where ω(k) ∼ (0, S) and Θ(k) denote the unknown time-varying parameter vectors, and
Ξ(k) is the time-varying status vector (speed and tractive force) of the continuous system
input and output.

Based on the model given above, the following data-driven parameter identification
algorithm is proposed:

P(k) =
(

I − K(k)ΞT(k)
)

P(k− 1)

K(k) = P(k− 1)Ξ(k)(FSFT + Ξ(k)T P(k− 1)Ξ(k))−1

Θ̂(k + 1) = Θ̂(k) + K(k)
(

y(k + 1)− ΞT(k)Θ̂(k)
) (7)

Equivalent transformation of the equation, the state equation, and output equation of
the connected vehicle system can be derived:{

V(k + 1) = A(k)V(k) + B(k)F(k) + ϑω(k)

v(k) = CV(k)
(8)

wherein V(k) = [V1(k), V2(k), · · · , Vn+1(k)]
T ∈ Rn+1, F(k) = [F(k), F(k− 1), · · · , F(k− n)]T ,

ω(k) = [0, · · · , 0, ω(k)]T ∈ Rn+1, C = [0 · · · 0 1],

A(k) =


0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 1

−an+1(k) −an(k) · · · −a1(k)

, B(k) =


0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

b1(k) b2(k) · · · bn+1(k)


Thus, the time-varying parameters A(k) and B(k) of the system can be estimated,

thereby obtaining the discrete-time system state equation for the connected vehicle.

3. Design of State Estimator
3.1. Multi-Source Sensors Modeling

Given a network composed of N interconnected sensor nodes, its topological structure
can be represented as G = (V , E ,A). Here, V = {1, 2, . . . , N} denotes the set of nodes
composed of sensor nodes N, E ⊆ V × V is the set of edges composed of the communication
channels between the sensors, and A = [a(i, j)] ∈ RN×N is the adjacency matrix of the
multi-sensor nodes. For the elements in the adjacency matrixA, if (i, j) ∈ E , then a(i, j) = 1,

otherwise a(i, j) = 0. d(i) =
N
∑

j=1
a(i, j) is the in-degree of sensor i, and D = diag{di} ∈

RN×N is the in-degree matrix of the graph G. The Laplacian matrix of the sensor network
is L = D −A. The set of neighbors that can communicate with sensor node i is defined as
N (i) = {j|(j, i) ∈ E , ∀j 6= i}. E{·} represents the mathematical expectation, diag{·} refers to
the diagonal matrix, and the mathematical symbol ⊗ denotes the Kronecker product operation.
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The distributed connected vehicle speed sensor network is shown in the Figure 1.
The connected vehicle travels on the road network, and the sensor nodes are used to
measure the speed of the vehicle. Connected vehicles can also be equipped with sensors.
Its observation range and corresponding communication topology are shown in Figure 1.
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When the connected vehicle is within the effective observation range of the sensor
node, the sensor node can communicate with neighboring sensors and estimate the vehicle
speed based on its own and other sensors’ measurements; when the connected vehicle is
outside of the observation range of the sensor node, it estimates the vehicle speed through
the communication topology of neighboring sensors.

In order to ensure the safe operation of connected vehicles, this paper chooses four
speed sensors based on different principles: inertial navigation sensors (INS), Global
Navigation Satellite System (GNSS), visual image sensors (VS), and laser radar (LR). The
measurement error model can be written as follows:

Zi(k) = Hi(k)V(k) + vi(k) (9)

where Zi(k) = [zi(k− n), zi(k− n + 1), . . . , zi(k)]
T ∈ Rn+1, Hi(k) = diag(hi(k)) ∈ R(n+1)×(n+1),

V(k) = [v(k− n), v(k− n + 1), . . . , v(k)]T ∈ Rn+1, vi(k) = [vi(k− n), vi(k− n + 1), . . . , vi(k)]
T ∈

Rn+1, Zi(k) represents the measurement vector of the speed of the connected vehicle by
the sensor node i, Hi(k) is the measurement matrix of sensor node i, and vi(k) is the
measurement error and noise of the sensor node i,

hi(k) =


1 i = INS
1 i = GNSS
(1 + Gvs) i = Visual Sensor
(1− Glr) i = Laser Radar

, vi(k) =


(δacc + δins) i = INS
(δdely + δme + δgnss) i = GNSS
(δenv + δmotion + δvi) i = VS
(δecho + δtarget + δir) i = LR

,

v(k) is the real driving speed of the connected vehicle; ZINS, ZGNSS, ZVS, ZLR are the speed
measurement value of each sensors; δacc, δins are the measured cumulative error and other
errors of INS. δdely, δme, δgnss are the atmospheric delay error, multipath effect error and
other errors of GNSS. Gvi, δenv, δmotion, δvs are the correction parameters for the camera lens
distortion, environmental noise error, motion blur error, and other errors of VS. Glr, δecho,
δtarget, δir are the optical distortion correction coefficient, reflectance of the material error,
multi-target measurement error, and other errors of VR. Glr, δecho, δtarget, δir are the optical
distortion correction coefficient, reflectance of the material error, multi-target measurement
error, and other errors of LR.
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Combining data from multiple sensors, the generalized measurement model of the
sensor network can be expressed as:

Z(k) = H(k)⊗V(k) + v(k) (10)

wherein Z(k) = [Z1(k)
T , Z2(k)

T , . . . , ZN(k)
T ]

T
, H(k) = [HT

1 (k), HT
2 (k), . . . , HT

N(k)]
T , and

v(k) = [v1(k)
T , v2(k)

T , . . . , vn(k)
T ]

T
.

3.2. Distributed Measurement Model of Connected Vehicle Speed

The distributed multi-sensor fusion architecture adopted in this paper allows each sensor
node in the sensor network to communicate through a consistency strategy to achieve the
optimal estimation of fusion. First, two basic assumptions of the sensor network are given:

Assumption 1. The multi-sensor network consists of a spanning tree, and the speed of the connected
vehicle can be observed by at least one root sensor node.

Assumption 2. The real driving speed v(t) of the connected vehicle can be observed by the overall
multi-sensor network, that is, H(k) = [HT

1 (k), . . . , HT
i (k), . . . HT

N(k)]
Tis observable.

For the multi-sensor speed measurement network system of connected vehicles, at the
sensor node i, introducing the Fisher information matrix, we consider the following form
of distributed measurement model based on the sensor network topology:

zi(i) =

(
zdir(i, k)

zind(i, k)

)

=

 g(i0)
(

H̃(i, k)V(i, k) + ṽ(i, k)
)

N
∑

j=1
a(i, j)γ(i)

[
(P−(j, k))−1

(
_
V
−
(j, k) + Ω(i, j, k)

)
− (P−(i, k))−1_V

−
(i, k)

] 
≡ H(i, k)V(k) + v(i, k)

(11)

wherein H(i, k) =
(

g(i0)(H̃(i, k) d(i)
)T , d(i) =

N
∑

j=1
a(i, j),

v(i, k) =

 g(i0)ṽ(i, k)

N
∑

j=1
ag(i, j)

{
γ(i)

[
(P−(j, k))−1

(
_
V
−
(j, k) + Ω(ij, k)

)
− (P−(j, k))−1_V

−
(i, k)

]
−V(k)

}  (12)

wherein H̃(i, k) is the distributed observation matrix of the sensor node i,
_
V
−
(i, k) is the a

priori estimation value of the sensor node i itself, P−(i, k) = E

{(
V(k)−

_
V
−
(i, k)

)(
V(k)−

_
V
−
(i, k)

)T
}

is

the a priori covariance matrix of the estimation error of the vehicle speed of the sensor node
i, ṽ(i, k) is the measurement noise of the sensor node i, Ω(i, j, k) is the communication noise
between the sensor node i and the sensor node j and satisfies Ω(i, j, k) ∼ (0, Π(i, j)). γ(i)
is the learning parameter and γ(i) > 0. g(i0) indicates whether the sensor node can directly
observe the speed of the connected vehicle. If it can measure its speed information, then
g(i0) = 1, H̃(i, k) 6= 0; otherwise g(i0) = 0 and H̃(i, k) = 0. As known from Assumption 1,
at least one sensor node i in the multi-sensor network measuring the speed of connected
vehicles can observe the vehicle speed, i.e., it satisfies g(i0) 6= 0. (P−(r, k))−1, r = i, j is the
Fisher information matrix, representing the weight matrix of the consistent filter estimation
of the sensor network, that is, the inverse of the speed error covariance matrix.
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Theorem 1. Given a discrete-time nonlinear connected vehicle system, given the multi-sensor for
speed estimation of connected vehicles (10), the optimal estimate of the driving speed of the connected
vehicle can be obtained through the multi-source speed measurement sensor network consensus
filtering (MSCF) algorithm.

The MSCF algorithm of the multi-sensor for the speed estimation of connected vehicles
includes direct and indirect Kalman consistent gain (15) and (16), the speed estimation error
covariance propagation of the sensor node (17), and the updates of the speed estimation of
the sensor node (18), as follows:

Ndir(i, k) = g(i0)P(i, k)
(

g2(i0)H̃(i, k)P(i, k)H̃T(i, k) + Rdir(i, k)
)−1

(13)

Nind(i, k) = d(i)P(i, k)
(

d2(i)P(i, k) + Rind(i, k)
)−1

(14)

Kdir(i, k) =
(

I − d(i)Nind(i, k)
)[(

Ndir(i, k)
)−1
− g(i0)d(i)H̃(i, k)Nind(i, k)

]−1
(15)

Kind(i, k) =
(

I − g(i0)Ndir(i, k)H̃(i, k)
)[(

Nind(i, k)
)−1
− g(i0)d(i)Ndir(i, k)H̃(i, k)

]−1
(16)

P(i, k + 1) = A(i, k)M(i, k)P(i, k)AT(i, k) + ϑ(k)S(k)ϑT(k) (17)

_
V(i, k + 1) = A(k)

_
V(i, k) + B(k)F(k) + g(i0)A(i, k)Kdir(i, k)

[
H̃(i, k)

·
(

V(k)−
_
V(i, k)

)
+

_
v (i, k)

]
+ γ(i)A(i, k)Kind(i, k)

N
∑

j=1
a(i, j)

·P−1(j, k)
(
_
V(j, k)−

_
V(j, k) + Ω(i, j, k)

) (18)

wherein Rdir(i, k) = ω(i), Rind(i, k) = γ2(i)
N
∑

j=1
a(i, j)P−1(j, k)Π(i, j, k)P−1(i, k),

Π(i, j, k) = E
{

ω(i, j, k)ωT(i, j, k)
}

, M(i, k) = I − g(i0)Kdir(i, k)H̃(i, k) − d(i)Kind(i, k),

A(i, k) = A(k)

[
I − d(i)Kind(i, k) + γ(i)Kind(k)

N
∑

j=1
a(i, j)(P−1(j, k)− P−1(i, k))

]−1

.

Proof. According to the multi-sensor measurement model (11), its direct and indirect
connected vehicle speed measurement models can be written as follows.

zdir(i, k) = Hdir(i)V(k) + vdir(i, k) (19)

zind(i, k) = Hind(i)V(k) + vind(i, k) (20)

wherein Hdir(i) = g(i0)H̃(i), Hind(i) = d(i)I, vdir(i, k) = g(i0)ṽ(i),

vind(i) =
N
∑

j=1
a(i, j)

{
γ(i)

[
(P−(i))−1

(
_
V
−
(j) + Ω(i, j)

)
− (P−(i))−1_V

−
(i)
]
−V

}
.
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Knowing the discrete-time system state equation of the connected vehicle from
Equation (8), and the direct and indirect measurement models of multiple sensors from
Equations (19) and (20), the speed estimator of the connected vehicle can be made:

_
V(i, k) =

_
V
−
(i, k) + g(i0)Kdir(i, k)

(
H̃(i)(V(k)−

_
V
−
(i, k)) + ṽ(i, k)

)
+Kind(i, k)

(
N
∑

j=1
a(i, j)

(
V(k)−

_
V
−
(i, k)

)
+ vind(i, k)

) (21)

_
V(i, k + 1) = A(i, k)

_
V i(k) + B(k)F(k) (22)

where A(i) = A

[
I − d(i)Kind(i) + γ(i)Kind(i)

N
∑

j=1
a(i, j)

(
(P−(j))−1 − (P−(i))−1

)]−1

.

We let the state error covariance, the a priori estimation covariance, the posterior state
estimation error, and the a priori state estimation error be as follows:

P(i, k) = E
{

Ṽ(i, k)ṼT(i, k)
}

, P−(i, k) = E
{

Ṽ−(i, k)
(
Ṽ−(i, k)

)T
}

(23)

Ṽ(i, k) = V(k)−
_
V i(k), Ṽ−(i, k) = V(k)−

_
V
−
(i, k) (24)

Substituting Equation (21) into (24), we obtain:

Ṽ(i, k) = V(k)−
_
V
−
(i, k)− g(i0)Kdir(i, k)

(
H̃(i)

(
V(k)−

_
V
−
(i, k)

)
+ ṽ(i, k)

)

−Kind(i, k)

(
N
∑

j=1
a(i, j)

(
V(k)−

_
V
−
(i, k)

)
+ vind(i, k)

)
= M(i, k)Ṽ−(i, k)− g(i0)Kdir(i, k)ṽ(i, k)− Kind(i, k)vind(i, k)

(25)

wherein M(i, k) = I − g(i0)Kdir(i, k)H̃(i)− d(i)Kind(i, k).
In Equation (25), since the posterior estimation error Ṽ(i, k) is only correlated to the

measurement noise ṽ(i, k) of the sensor and is irrelevant to the rest of Ṽ−(i, k),
_
V
−
(i, k),

and V(k); therefore, their product expectation is zero.
In this context, the covariance matrices of process noise, communication noise, direct

measurement noise, and indirect measurement noise are defined as follows:

S(k) = E
{

w(k)wT(k)
}

(26)

Π(i, j, k) = E
{

Ω(i, j, k)ΩT(i, j, k)
}

(27)

Rdir(i, k) = E
{

g2(i0)ṽ(i, k)ṽT(i, k)
}
= ω(i) (28)

Rind(i, k) = E
{

vind
(

vind
)T
}

= γ2(i)
N

∑
j=1

a(i, j)
(

P−(j)
)−1Π(i, j)

(
P−(j)

)−1 (29)

Substituting Equation (25) into Equation (23), P(i, k) can be expressed as:

P(i, k) = E
{

Ṽ(i, k)ṼT(i, k)
}

= M(i, k)P−(i, k)MT(i, k) + Kdir(i, k)Rdir(i, k)
(

Kdir(i, k)
)T

+Kind(i, k)Rind(i, k)
(

Kind(i, k)
)T

(30)
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wherein P(i, 0) = E
{

Ṽ(i, 0)ṼT(i, 0)
}

, Rind(i, k) = γ2(i)
N
∑

j=1
a(i, j)(P−(j))−1Π(i, j)(P−(j))−1.

To obtain the direct and indirect Kalman gains Kdir and Kind, we minimize the trace of
P(i, k), and the direct and indirect Kalman gains can be written as:

Kdir(i) = (I − d(i)Nind(i, k))
[(

Nind(i, k)
)−1
− g(i0)d(i)H̃(i)Nind(i, k)

]−1
(31)

Kind(i) = (I − g(i0)Ndir(i)H̃(i))
[(

Nind(i, k)
)−1
− g(i0)d(i)Ndir(i)H̃(i)

]−1
(32)

wherein Ndir(i, k) = g(i0)P−(i, k)
(

g2(i0)H̃(i)P−(i, k)H̃T(i) + Rdir(i)
)−1

,

Nind(i, k) = d(i)P−(i, k)
(

d2(i)P−(i, k) + Rind(i, k)
)−1

.

By substituting the covariance matrix P(i, k) into the a priori covariance matrix P−(i, k)
in the invertible matrices Ndir and Nind, we can obtain the direct and indirect Kalman
consistent gain from Equations (15) and (16).

Substituting the derivative result of the Kalman gain into the covariance Equation (30),
we obtain:

P(i, k) = M(i, k)P−(i, k)MT(i, k)

+g(i0)M(i, k)P−(i, k)H̃T(i, k)
(

Kdir(i, k)
)T

+ d(i)M(i, k)P−(i, k)
(

Kind
i (i, k)

)T

= M(i, k)P−(i, k)
[

MT(i, k) + g(i0)
(

Kdir(i, k)H̃(i, k)
)T

+ d(i)
(

Kind(i, k)
)T
] (33)

Substituting M(i, k) = I − g(i0)Kdir(i)H̃(i, k)− d(i)Kind(i, k) into the Equation (33),
we can obtain:

P(i, k) = M(i, k)P−(i, k) (34)

We redefine the distributed state transition matrix A(i) as:

A = A(i)− d(i)A(i)Kind(i) + γ(i)A(i)Kind(i)
N

∑
j=1

a(i, j)
((

P−(j)
)−1 −

(
P−(i)

)−1
)

(35)

Substituting Equations (8), (21), and (35) into Equation (24), we obtain:

V−(i, k + 1) = A(i, k)Ṽ(i, k) + ϑ(k)ω(k)− A(i, k)
[
d(i)Kind(i)− γ(i)

·Kind(i)
N
∑

j=1
a(i, j)

(
(P−(j))−1 − (P−(i))−1

)]
V(k)

(36)

In Equation (36), both Ṽ(i, k) and V(k) are not correlated with ω(k), only V−(i, k + 1)
correlated with ω(k), so the expected value of their product is zero; that is, E

{
Ṽ(i, k)ω(k)

}
=

E
{

ω(k)ṼT(i, k)
}
= 0, E{V(k)ω(k)} = E

{
ω(k)VT(k)

}
= 0.

Therefore, based on Equation (36), the prior state error covariance matrix P−(i, k + 1)
can be simplified as:

P−(i, k + 1) = E
{

Ṽ−(i, k + 1)(V−(i, k + 1))T
}

= E
{

A(i, k)Ṽ(i, k)VT(i, k)AT(i, k)
}
+ E

{
ϑ(k)ω(k)ωT(k)ϑT(k)

}
= A(i, k)P(i, k)AT(i, k) + ϑ(k)S(k)ϑT(k)

(37)

wherein P−(i, 0) = E
{

Ṽ−(i, 0)(V−(i, 0))T
}

, S(k) = E
{

ω(k)ωT(k)
}

.
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Substituting Equation (34) into the above Equation (37), we can obtain:

P−(i, k + 1) = A(i, k)M(i, k)P−(i, k)AT(i, k) + ϑ(k)S(k)ϑT(k) (38)

By replacing the prior covariance matrix P−(i, k) with the covariance matrix P(i, k),
the expression for the sensor node speed estimation error covariance updates P(i, k + 1)
can be obtained:

P(i, k + 1) = A(i, k)M(i, k)P(i, k)AT(i, k) + ϑ(k)S(k)ϑT(k) (39)

Substituting Equation (21) into Equation (22) and combine like terms, we can obtain:

_
V
−
(i, k + 1) = A(i)

[
I − d(i)Kind(i) + γ(i)Kind(i)

N
∑

j=1
a(i, j)

(
(P−(j))−1 − (P−(i))−1

)
)]_

V
−
(i, k)

+BF(k) + g(i0)A(i)Kdir(i)
(

H̃(i)(V(k)−
_
V
−
(i, k)

)
+ ṽ(i))

+γ(i)A(i)Kind(i)
N
∑

j=1
a(i, j)(P−(j))−1

(
_
V
−
(j, k)−

_
V
−
(i, k) + Ω(i, j)

)
(40)

Then, according to Equation (35), we replace the prior covariance matrix P−(i, k) with

the covariance matrix P(i, k) and replace the prior state estimate
_
V
−
(i, k) with the state

estimate
_
V(i, k). It is known that the speed estimation update

_
V(i, k + 1) for each sensor

node is:

_
V(i, k + 1) = A(k)

_
V(i, k) + B(k)F(k) + g(i0)A(i, k)Kdir(i, k)

(
H̃(i, k)

(
V(k)−

_
V(i, k)

)
+ ṽ(i, k)

)
+γ(i)A(i, k)Kind(i, k)

N
∑

j=1
a(i, j)P−1(j, k)

(
_
V(j, k)−

_
V(i, k) + Ω(i, j, k)

) (41)

Proof is completed. �

4. Convergence Analysis of State Estimators

In dealing with discrete linear time-varying systems in Equation (8) and distributed
state measurement models in Equation (11), Theorem 1 introduces the MSCF algorithm.
This part will conduct rigorous mathematical analysis on the consistency convergence
of the MSCF algorithm. Here are some lemmas about the Laplace matrix L, which will
provide the necessary conditions for the proof of convergence.

Lemma 1. If and only if the directed graph Gg has a spanning tree, then the rank of the corresponding
Laplacian matrix L is rank(L) = E− 1 , that is, L has and only has one nonzero eigenvalue λ1 = 0 ,
and the rest of the non-zero eigenvalues have positive real parts.

Under the condition of Lemma 1, λ1 = 0 exists and is unique, satisfying L1m − 0,
where 1 is a vector composed of N ones, satisfying 1 = [1 · · · 1]T ∈ RN , and m is any
constant. At the same time, the Laplacian matrix L is a singular M matrix, so the following
Lemma 2 also applies.

Lemma 2. If the Laplacian matrix L is a singular M matrix, there always exists a positive vector
s = [s(1), s(2), · · · , s(N)]T , where s(1) > 0, ∀i = 1, 2, . . . , N, such that sT L ≥ 0, and there

exists s(i)
N
∑

i=1
a(i, j) ≥

N
∑

i=1
s(j)s(j, i) ≥ 0, ∀i = 1, 2 · · · , N.

These two lemmas will be used for the proof of convergence analysis.
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Theorem 2. Under the conditions of Assumptions 1 and 2, for a discrete-time nonlinear system of
connected vehicles with process noise, given the sensor node i and target speed measurement model,
if the process noise ω(k), measurement noise ṽ(i, k), and communication noise Ω(i, j, k) are all
zero, using the distributed MSCF algorithm (13)–(18) can ensure that the state estimation V(i, k)
of each sensor node consistently converges to the actual speed state V(k) of the connected vehicle;

that is, when k→ ∞ , the distributed speed state estimation error Ṽ(i, k) = V(k)−
_
V(i, k) ∈ Rn

will eventually converge to zero.

Proof. Since the system process noise w(k) = 0, the velocity estimation error covariance
update rate P(i, k + 1) of sensor node i is:

P(i, k + 1) = A(i, k)M(i, k)P(i, k)AT(i, k) (42)

Based on Assumption 2, (A(k), H(k)) is observable, and P(i, k) is symmetrically posi-
tive definite. Therefore, P(i, k) is invertible, satisfying:

P−1(i, k + 1) = A−T(k)P−1(i, k)M−1(i, k)A−1(k)

= A−T(k)M−T(i, k)P−T(i, k)A−1(k)
(43)

Based on Assumption 1, the speed of connected vehicles can be observed by at least one
sensor node i, satisfying g(i0) = 1. When not considering measurement noise, according to
the distributed direct speed measurement model and indirect speed measurement model
in Equation (11), the prior measurement noise model can be obtained as:

zdir(i, k) = g(i0)H̃(i)V(k) (44)

zind(i, k) =
N

∑
j=1

a(i, j)γ(i)
(

P−1(j, k)
_
V
−
(j, k)− P−1(i, k)

_
V
−
(i, k)

)
(45)

When the measurement noise ṽ(i) of multiple sensors is 0, the velocity estimation
update in Equation (8) of sensor node i is:

_
V(i, k + 1) = A(i)

_
V(i, k) + BF(k) + g(i0)A(i)Kdir(i)H̃(i)

(
V(k)−

_
V(i, k)

)
+γ(i)A(i)Kind(i)

N
∑

j=1
a(i, j)

(
P−1(j)

_
V(j, k)− P−1(i)

_
V(i, k)

)
−d(i)A(i)Kind(i)

_
V(i, k)

(46)

When the process noise ω(k) is zero, the state equation of the connected vehicle
driving system (8) can be written as:

V(k + 1) = AV(k) + BF(k) (47)

Combining Equations (46) and (47), the prior speed state estimation error dynamics
Ṽ(i, k + 1) can be written as:

Ṽ(i, k + 1) = V(k + 1)−
_
V(i, k + 1)

= AV(k) + BF(k)− A(i)
_
V(i, k)− BF(k)− g(i0)A(i)Kdir(i)H̃(i)

(
V(k)−

_
V(i, k)

)
+d(i)A(i)Kind(i)

_
V(i, k)− γ(i)A(i)Kind(i)

N
∑

j=1
a(i, j)

(
P−1(j)

_
V(j, k)− P−1(i)

_
V(i, k)

) (48)
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Substituting the equation A = A(i)− d(i)A(i)Kind(i) + γ(i)A(i)Kind(i)
N
∑

j=1
a(i, j)

(
P−1(j)− P−1(i)

)
into the above equation, we obtain:

Ṽ(i, k + 1) = A(i)Ṽ(i, k)− g(i0)A(i)Kdir(i)H̃(i)Ṽ(i, k)− d(i)A(i)Kind(i)Ṽ(i, k)

+γ(i)A(i)Kind(i)
N
∑

j=1
a(i, j)

(
P−1(j)Ṽ(j, k)− P−1(i)Ṽ(i, k)

)
= A(i)M(i)Ṽ(i, k) + γ(i)A(i)Kind(i)

N
∑

j=1
a(i, j)

(
P−1(j)Ṽ(j, k)− P−1(i)Ṽ(i, k)

) (49)

When the communication noise Ω(i, j, k) = 0, its covariance matrix Π(i, j) = 0, so
that Rind(i, k) = 0. Substituting into Equation (14), we can get Nind(i, k) = 1/di, and
then substitute it into Equation (16); thus, the distributed indirect Kalman gain matrix
Kind(i, k) = 1/d(i) can be updated.

A discrete-time Lyapunov function candidate can be defined as:

L
(
Ṽ(k)

)
=

N

∑
i=1

d(i)s(i)
γ(i)

ṼT(i, k)P−1(i, k)Ṽ(i, k) (50)

where s(i) is the positive component of the positive vector s defined in Lemma 2, satisfying
s(i) > 0. Based on Assumption 2, (A, H) is observable, P(k) = diag

(
P−1(i)

)
is positive

definite, and L
(
Ṽ(k)

)
> 0 can be known by d(i) > 0 and γ(i) > 0.

Calculate the first order difference of L
(
Ṽ(k)

)
and substituting Equations (49) and (50),

we obtain:

∆L
(
Ṽ(k)

)
=

N
∑

i=1

d(i)s(i)
γ(i) ṼT(i, k)

{
MT(i)AT(i)P−1(i, k + 1)A(i)M(i)− P−1(i, k)

}
Ṽ(i, k)

+2
N
∑

i=1
s(i)ṼT(i, k)P−T(i, k)

N
∑

j=1
a(i, j)

(
P−1(j, k)Ṽ(j, k)− P−1(i, k)Ṽ(i, k)

)
+

N
∑

i,j=1

γ(i)s(i)
d(i) a(i, j)

[(
P−1(j, k)Ṽ(j, k)− P−1(i, k)Ṽ(i, k)

)T

·P−1(i, k)M−1(i, k)
(

P−1(j, k)Ṽ(j, k)− P−1(i, k)Ṽ(i, k)
)]

(51)

It is known from Lemma 2 that the second term on the right side of Equation (51)
needs to satisfy the following conditions:

2
N
∑

i=1
s(i)ṼT(i, k)P−T(i, k)

N
∑

j=1
a(i, j)

(
P(j, k)Ṽ(j, k)− P−1(i, k)Ṽ(i, k)

)
≤ −

N
∑

i,j=1
s(i)a(i, j)

(
P−1(j, k)Ṽ(j, k)− P−1(i, k)Ṽ(i, k)

)T

·
(

P−1(j, k)Ṽ(j, k)− P−1(i, k)Ṽ(i, k)
)

(52)

Based on Equation (52) and Lemma 6 in [44], the first-order difference ∆L
(
Ṽ(k)

)
can

be updated to:

∆L
(
Ṽ(k)

)
=

N
∑

i=1

d(i)s(i)
γ(i) ṼT(i, k)

{
MT(i)AT(i)P−1(i, k + 1)A(i)M(i)− P−1(i, k)

}
Ṽ(i, k)

−
N
∑

i,j=1
s(i)a(i, j)

{(
P−1(j, k)Ṽ(j, k)− P−1(i, k)Ṽ(i, k)

)T

·
(

I − γ(i)
d(i) P−1(i, k)M−1(i, k)

)(
P−1(j, k)Ṽ(j, k)− P−1(i, k)Ṽ(i, k)

)}
(53)
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Therefore, the stable convergence of the connected vehicle driving discrete system
needs to satisfy the following two necessary conditions:

MT(i, k)AT(i, k)P−1(i, k + 1)A(i, k)M(i, k)− P−1(i, k) <0 (54)

I − γ(i)
d(i)

P−1(i, k)M−1(i, k) > 0 (55)

The proof of condition in Equation (54) is shown as follows.
When the process noise is zero, it is known from Equations (30) and (37) that the

velocity estimation error covariance matrix P(i, k + 1) can be represented as:

P(i, k + 1) = A(i, k)M(i, k)P(i, k)MT(i, k)AT(i, k)

+A(i, k)Kdir(i, k)Rdir(i, k)
(

Kdir(i, k)
)T

AT(i, k)

+A(i, k)Kind(i, k)Rind(i, k)
(

Kind(i, k)
)T

AT(i, k)

(56)

It can be seen from Equations (31) and (32) that:

Kdir(i, k) = g(i0)M(i, k)P−(i, k)H̃T(i)
(

Rdir(i, k)
)−1

(57)

Kind(i, k) = d(i)M(i, k)P−(i, k)
(

Rind(i, k)
)−1

(58)

Then, substituting Equations (57) and (58) and into (56), we obtain:

P(i, k + 1) = A(i, k)M(i, k)P(i, k)MT(i, k)AT(i, k) + g2(i0)A(i, k)M(i, k)

·P(i, k)H̃T(i, k)
(

Rdir(i, k)
)−1

H̃(i, k)PT(i, k)MT(i, k)AT(i, k)

+d2(i0)A(i, k)M(i, k)P(i, k)
(

Rind(i, k)
)−1

·PT(i, k)MT(i, k)AT(i, k)

(59)

Substituting Equation (59) into Equation (54), we obtain:

MT(i, k)AT(i, k)P−1(i, k + 1)A(i, k)M(i, k)− P−1(i, k)

=
(

P(i) + P(i)ψ(k)PT(i)
)−1 − P−1(i)

(60)

where ψ(k) = g2(i0)H̃T(i)
(

Rdir(i)
)−1

H̃(i) + d2(i0)
(

Rind(i)
)−1

.
Based on the inverse lemma of the matrix:

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)
−1

DA−1 (61)

Equation (60) can be updated to:

MT(i, k)AT(i, k)P−1(i, k + 1)A(i, k)M(i, k)− P−1(i, k) = −
(

ψ−1 + P(i)
)

(62)

Rdir(i, k) and Rind(i, k) are both positive definite symmetric; therefore, ψ(k) and P(i)
are both positive definite symmetric matrices, therefore satisfying −

(
ψ−1 + P(i)

)
< 0.

Therefore, the proof of Equation (54) is completed. �

The proof of the condition in Equation (55) is shown as follows.
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Equation (55) can be equivalently transformed into:(
M(i, k)P(i, k)− γ(i)

d(i)
I
)

P−1(i, k)M−1(i, k) >0 (63)

Based on Equation (43), we obtain,

P−1(i, k)M−1(i, k) = AT(i, k)P−1(i, k + 1)A(i, k) >0 (64)

Therefore, P−1(i, k)M−1(i, k) is symmetrically positive definite, and when
0 <γi <γ∗i <d(i)λmin(M(i, k)P(i, k)), the condition in Equation (45) is also true. The two
necessary conditions are satisfied, the first-order forward difference satisfies ∆L

(
Ṽ(k)

)
< 0.

Thus, ∆L
(
Ṽ(k)

)
is the Lyapunov function. In the multi-sensor speed measurement

network of the connected vehicle, assuming the process noise ω(k), measurement noise
ṽ(i, k), and communication noise Ω(i, j, k) are all zero, the speed estimation error dynamics
(49) obtained by applying the MSCF algorithm in Equations (13)–(18) are globally asymptot-
ically stable, and when k→ ∞ , the distributed speed state estimation error Ṽi(k) eventually
converges to zero.

Based on reference [45], if the process noise w(k), measurement noise ṽ(i, k), and
communication noise Ω(i, j, k) are all non-zero, the estimation error of sensor node i for the
speed of the connected vehicle is uniformly ultimately bounded (UUB). This means that
the speed estimation of node i for the connected vehicle falls within a bounded region of
the real speed, and the size of this bounded region depends on the amplitude of the noise.

5. Numerical Simulation

To verify the effectiveness of the algorithm, simulation verification is carried out on
the MATLAB platform. Assuming the connected vehicle is operating on a designated road
section, the operating time is 1800 s, the sampling time is 0.1s, and the operating parameters
of the vehicle are set as follows:

c0(k) = 37.6 ∗ sin(0.0052k) + 211

c1(k) = 1.8 ∗ sin(0.0049k) + 25.17

c2(k) = 0.036 ∗ sin(0.0037k) + 0.2023

(65)

Due to environmental interference on the given road section, the connected vehicle
will be subject to the following time-varying interference resistance:

fm(t) =



−0.04m, t ⊂ [150, 400]

0.08m, t ⊂ [450, 680]

−0.07m, t ⊂ [1030, 1400]

0.075m, t ⊂ [1500, 1700]

0, t = else

(66)

This simulation uses the adaptive iterative learning control AILC) in reference [46] to
simulate the driving state of the connected vehicle. According to multi-sensor modeling, a
speed measurement network composed of four types of sensors is established to estimate
the actual speed of the connected vehicle. The connection topology of the sensor network
is shown in Figure 2, where Node 0 represents the actual speed of the connected vehicle,
and Nodes 1 to 4 are INS, GNSS, VS, and LiDAR sensors, respectively.



Symmetry 2023, 15, 1699 16 of 21

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 22 
 

 

This simulation uses the adaptive iterative learning control AILC) in reference [46] to 
simulate the driving state of the connected vehicle. According to multi-sensor modeling, 
a speed measurement network composed of four types of sensors is established to esti-
mate the actual speed of the connected vehicle. The connection topology of the sensor 
network is shown in Figure 2, where Node 0 represents the actual speed of the connected 
vehicle, and Nodes 1 to 4 are INS, GNSS, VS, and LiDAR sensors, respectively. 

During the vehicle’s driving, it is assumed that the sensor Node 4 fails and cannot 
directly measure the actual state of target Node 0 but can communicate with other sensor 
nodes to achieve indirect measurement; other nodes can directly observe the actual speed 
of the target Node 0. 

 
Figure 2. The sensor network topology map. 

According to the connection relationship of the sensor network, the adjacency matri-
ces between the sensor nodes and between the sensor nodes and the target nodes, and the 
degree matrix are defined as: 

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

g

 
 
 =
 
 
 



, 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

g

 
 
 =
 
 
 



, 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3

g

 
 
 =
 
 
 



  

The parameters value of the sensors is set as Table 1: 

Table 1. Parameters value of each sensor. 

Sensor Type Parameters Value 

INS ( )0.03 1( )INSv k randn=  

GNSS ( )0.02 1( )GNSSv rk andn=  

Visual image 0.01VSG =  ( )0.04 1( )VSv k randn=  

Laser radar 0.01LRG =  ( )0.01 1( )LRv k randn=  

During the operation of the connected vehicle, the process noise and the measure-
ment noise of each sensor are shown in Figure 3. 

Figure 2. The sensor network topology map.

During the vehicle’s driving, it is assumed that the sensor Node 4 fails and cannot
directly measure the actual state of target Node 0 but can communicate with other sensor
nodes to achieve indirect measurement; other nodes can directly observe the actual speed
of the target Node 0.

According to the connection relationship of the sensor network, the adjacency matrices
between the sensor nodes and between the sensor nodes and the target nodes, and the
degree matrix are defined as:

Ag =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

, Gg =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

, Dg =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 3


The parameters value of the sensors is set as Table 1:

Table 1. Parameters value of each sensor.

Sensor Type Parameters Value

INS vINS(k) = 0.03randn(1)
GNSS vGNSS(k) = 0.02randn(1)

Visual image GVS = 0.01 vVS(k) = 0.04randn(1)
Laser radar GLR = 0.01 vLR(k) = 0.01randn(1)

During the operation of the connected vehicle, the process noise and the measurement
noise of each sensor are shown in Figure 3.

In order to simulate vehicles driving on bumpy roads, the expected speed curve
undergoes significant changes due to significant and rapid changes in speed, which could
better test and verify the performance of the MSCF algorithm.

The estimation effect of the proposed MSCF algorithm on the actual speed of the
connected vehicle and its errors are shown in Figure 4.

The results show that all four sensors can achieve the real-time tracking of the speed
of the connected vehicle. The laser radar sensor, which cannot directly observe the speed of
the connected vehicle, can also obtain speed estimation, and the speed estimation error can
be controlled at an ideal level, and its estimation is consistent and ultimately bounded.

To verify the advancement of the proposed MSCF algorithm, a comparative simulation
verification of connected vehicle speed estimation is carried out with the DEKCF and the
DUKCF algorithms.
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The results in Figures 5 and 6 show that both algorithms can achieve a consistent con-
vergence of the speed estimation of connected vehicle, but in terms of the speed estimation
error effect, the proposed multi-sensor speed sensor network consensus filtering algorithm
has a better estimation effect.
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The mean square error (MSE) is used as the evaluation index to quantify the speed
estimation effect of the three algorithms. The calculation method of the MSE is:

MSE =
1
N

N

∑
i=1

MSEi, MSEi =
1
k

k

∑
i=1

(
v(k)−_

v (i, k)
)2

(67)

The MSE of the proposed MSCF algorithm and DEKCF and DU KCF algorithms are
calculated, and the results are shown in the table below.

Compared with the DEKCF and DUKCF algorithms, the speed estimation MSE of
the proposed MSCF algorithm dropped by 74.77% and 58.15%, respectively. The results
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are shown in Table 2. Therefore, the MSCF is more precise in estimating the speed of the
connected vehicle and can meet the speed estimation needs in complex scenarios.

Table 2. Comparison of different algorithms.

Algorithm Speed Estimation Bias MSE

DEKCF 0.0013
DUKCF 0.000798
MSCF 0.000334

6. Conclusions

This work focuses on the speed estimation of a connected vehicle in a network of
different types of speed sensors. Using dynamic linearization techniques, a data-driven
dynamic model of the connected vehicle is established and then distributed between the
direct and indirect measurement models by dynamically adjusting the information weights
of sensor nodes. Combining the Kalman consistency filtering algorithm, we designed a
new state estimator to achieve optimal consistent convergence estimation for the speed
of connected vehicles. The convergence of the algorithm is strictly proven by introducing
the Lyapunov function, and in the case where the process noise, measurement noise, and
communication noise are all zero, the speed estimation error dynamics obtained by using
the MSCF algorithm are globally asymptotically stable, and the distributed speed state
estimation error will eventually converge to zero. The effectiveness of the algorithm has
been proven through simulation.

The MSCF algorithm provides a new solution for the speed estimation problem of a
connected vehicle in autonomous transportation systems, which can not only effectively
improve the accuracy of speed estimation, but also has a good real-time performance and
robustness and is suitable for a variety of complex traffic scenarios. In future work, we will
investigate the problem of vehicle speed estimation in time-varying topologies, which can
be combined with deep neural network-based methods and IMM algorithms to improve the
tracking performance of challenging dynamic targets and meet the needs of autonomous
transportation development.
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