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Abstract: Complex systems of classical physics in certain situations are characterized by intensive
fluctuations of the quantities governing their dynamics. These include important phenomena such
as (continuous) second-order phase transitions, fully developed turbulence, magnetic hydrodynam-
ics, advective–diffusive processes, the kinetics of chemical reactions, percolation, and processes in
financial markets. The theoretical goal of the study of such systems is to determine and predict the
temporal and spatial dependence of statistical correlations of fluctuating variables. Modern methods
of quantum field theory, originally developed in high-energy physics to describe the properties of
elementary particles, allow for quantitative analysis of such correlations. Peculiarities of quantum
field theory in solving two paradigmatic statistical problems related to percolation are reviewed,
and new results on calculating representative universal parameters such as critical exponents that
describe asymptotic behavior are presented.

Keywords: percolation process; field-theoretic renormalization group; multi-loop calculations

1. Introduction

During the last decades, the field of fractal growth phenomena has exhibited continu-
ous rapid growth, with the majority of important new results having been published in this
period. The physics of far-from-equilibrium growth phenomena constitutes just one of the
main fields in which fractal geometry is commonly applied. Much effort has been devoted
to the study of experimental, theoretical, and numerical information on the geometrical
characteristics of fractal growth. Nontrivial features and underlying mechanisms have
been obtained by a thorough analysis of appropriate microscopic models [1,2].

Non-equilibrium systems are common in nature, and most observed phenomena may
be characterized as being in some sort of a non-equilibrium state [3,4]. Typical examples
encompass turbulence [5,6], pattern formations [7], the Earth’s atmosphere [8], living
systems [9], etc. Other relevant examples can be found outside the domain of physics,
for instance in chemistry, economics, and sociology.

At the fundamental level, non-equilibrium systems are inherently dynamic, and their
theoretical analysis cannot be properly captured by standard equilibrium methods. There
are many mechanisms by which systems can fall out of equilibrium. For instance, a contin-
uous supply of energy into a hydrodynamic flow causes the transfer of energy down to
microscopic scales, where it is dissipated due to viscosity effects. From a quantitative point
of view, we expect equilibrium relations such as the well-known fluctuation–dissipation
theorem [10,11] to be violated.
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An important class of non-equilibrium systems is formed by reaction–diffusion models,
which can be used to model a plethora of biological systems, growth processes, ecology,
sociology, etc. These might be interpreted as stochastic processes for which it is possible
to identify slowly varying collective variables. On the other hand, (fast) microscopic
degrees of freedom are modeled by means of appropriate stochastic variables, and their
description follows prescribed probabilistic principles [4,11]. In certain cases, emergent
collective behavior in which many microscopic entities participate, might occur, allowing
continuum approximation to be employed. The main advantage of such an approach lies
in the possibility of using sophisticated field-theoretical methods borrowed from quantum
and statistical field theory [2,11].

One of the paradigmatic models is directed percolation (DP), which constitutes ar-
guably the simplest model for spreading processes [12,13]. It finds applications in systems
which possess a preferred growth direction. Although directed percolation clusters are
known to be self-sustaining, their global scaling behavior displays non-trivial features.
Initially, DP was developed [14] to model the propagation of fluid through irregularly
structured media (i.e., porous material) in the presence of an external force that brings
about spatial anisotropy, e.g., gravity. From a biological point of view, DP can be under-
stood as a simple model of the epidemic spreading of an infectious disease [13]. In this
example, it is assumed that there is no immunization of sick individuals. During disease
proliferation, infected individuals can spread the disease to their immediate neighbors.
Although sick individuals can recover, they may also become infected repeatedly. It turns
out [11] that such a simple model shows a critical behavior that occurs between a state
without sick individuals (the absorbing state) and a fluctuating (active) state with non-zero
sick individuals. Other systems with DP-like behavior have been identified [15] in such
diverse research fields as particle physics [16,17], population dynamics [18,19], various
reaction–diffusion schemes [20], and recently in describing the passage from a laminar flow
to a turbulent one [5,21].

The main characteristics of the DP universality class are concisely encapsulated by
famous Janssen–Grassberger hypothesis [22,23], according to which a model exhibits
asymptotic DP behavior if the following requirements are satisfied: (i) the presence of
a unique absorbing state; (ii) a scalar order parameter with solely positive values; (iii)
local interactions; and (iv) no other special features, e.g. symmetries, quenched disorder,
coupling to additional slow variables, etc. Although this DP hypothesis has not yet been
mathematically proven, there is numerical support in its favor [15,24]. Systems fulfilling the
aforementioned requirements are expected to show identical large-scale behavior near the
critical point, i.e., the same asymptotic regimes and same values of critical indices [10,25].
Analogously to equilibrium critical phenomena, non-equilibrium phase transitions can be
categorized into distinct universality classes [11,24] which contain microscopically different
systems that nevertheless exhibit the same large-scale asymptotic behavior. Despite the
great effort that has been invested in an analytical investigation of the DP process, the
solution of its simplest possible version in (1 + 1) dimensions is not yet known [15].

Typically, non-equilibrium systems suffer from the absence of exact solutions. This
prompts the development of independent analytical, numerical, and computational ap-
proaches to acquire a deeper understanding of the general properties of non-equilibrium
systems. In fact, the usual approach is to attempt to identify some special property of a
system and then take advantage of it. In the case of percolation processes, such a distin-
guished feature is the existence of non-equilibrium continuous phase transition. In this
context, fluctuations on all spatial and temporal scales are simultaneously significant, and
universal critical behavior might be expected.

In this work, we are mainly interested in the universal behavior of two classes of
percolation processes that can be formulated in terms of a suitable reaction–diffusion
system. In particular, the directed percolation process consists of three reaction processes

2A
K21−→ A, A

K12−→ 2A, A
K10−→ ∅, (1)
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which can be interpreted [15] as coagulation, offspring production, and self-destruction,
respectively. The corresponding K factors stand for the appropriate rate constants for a
given reaction process. In Section 2, we provide a concise derivation of the action functional
for such a reaction–diffusion system, which allows us to include effects such as randomness
and spatial inhomogeneities in individual reaction processes. Arguably the most basic
formulation of reaction systems consists in the specification of a corresponding master
equation [26]. We briefly outline the basics of how a generic master equation can be
reformulated by means of an appropriate Fock space, leading to an action functional that
can be systematically treated by the powerful methods of quantum field theory.

Another well-known variation of the percolation process is isotropic percolation (IP),
in the epidemic parlance referred to as the general epidemic process [27–30]. In the IP
process, recovered individuals become immune, making them effectively inactive. In the
given local neighborhood, the disease becomes locally depleted and leaves behind clusters
of immune individuals, which can be satisfactorily described by percolation theory [12].

To make further progress, we concentrate on scaling regimes in the aforementioned
percolation systems and on their corresponding continuum limits. Note that for both of
these this limit might be derived in a controllable fashion [31]. We adopt a field-theoretic ap-
proach, the main advantage of which is the possibility of employing theoretical procedures
such as graphical Feynman methods, perturbative renormalization groups, instantons,
operator product expansion, etc. [25,32,33]. In particular, we employ a perturbative
renormalization group to determine possible asymptotic regimes and calculate critical ex-
ponents perturbatively. Renormalization group methods, while far from the most important
approach to non-equilibrium problems, often provide great insights into the origin of uni-
versality and the justification of scaling relations. Furthermore, and of more relevance for
this paper, they provide a calculational framework which allows for systematic evaluation
of critical exponents. In this regard, the well-known ε-expansion plays an important role,
where ε denotes the deviation from the upper critical dimension dc of an action functional.

In addition, we are interested in a perturbative approach based on the calculation of
Feynman graphs in higher, i.e., more than two, multi-loop approximations. We note that
unlike other analogous models, such as critical statics or dynamics, there are practically
no related calculations for non-equilibrium systems. In the recent past, we managed
to accomplish a complete three-loop analysis for the DP model [34–36]. Our next goal
is to expand the established techniques and apply them in the context of IP, for which
universal quantities have been determined up to two-loop precision in the perturbative
calculation [13]. In the paper, we provide a short summary of three-loop calculations for the
DP model and discuss specific issues related to two-loop approximation of the IP process
that confirm previous results [13].

The rest of this article is organized as follows: in Section 2, we present the major steps
of the Doi approach; in Section 3, we provide a brief overview of the Langevin equation and
related Fokker–Planck equation; Section 4 contains a detailed construction of microscopic
models leading to the percolation process; Section 5 is reserved for a general field-theoretic
analysis; an RG analysis of directed percolation is performed in Section 6; and its isotropic
variant in Section 7 is analyzed together with technical details of the calculation. Finally,
we provide some concluding remarks in Section 8.

2. Doi Formalism

In many physical systems, the number of particles is not conserved. Despite the funda-
mental quantum nature of their microscopic interactions, in many practical circumstances
we may adopt a classical description of their behavior. For a theoretical treatment of such
classical systems with a non-conserved number of particles, a convenient way to begin is
the Doi approach [37,38]. As the topic is well described in the literature, we provide only a
short summary of the main points here.

Let us start with particles A that are located on a d-dimensional regular hypercubic
lattice with lattice spacing a. Lattice sites are enumerated by integers (i = 1, 2, . . .). We
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assume that particles A continuously hop between adjacent lattice sites with the hopping
factor D/a2 (the factor a2 is eliminated later on, when the continuum limit is taken). It is
customary to assume that the reaction process can occur only for those particles located at
the same site, and we denote the corresponding rate as K0. The dynamics of such a stochastic
problem can be summarized by specifying governing equations for probability distributions
P(t; {n}). Here, {n} is a convenient shorthand notation for a given microstate {n1, n2, . . .},
in which there are n1 particles at site 1, n2 at site 2, etc. The corresponding equations,
known in the literature as master equations [11,26], encode information about the gains
and losses of outgoing and incoming probabilities for the given state {n}. In condensed
notation, we can formulate them in the following form:

dP(t; {n})
dt

= ∑
{m}

Rm→nP(t; {m})− ∑
{m}

Rn→mP(t; {n}), (2)

where Rm→n denotes the transition probability rate from microstate m to microstate n.
Doi formalism [11,37,39] of such coupled differential equations (2) can be represented
by a suitable Fock space. The main underlying features that allow this are the linearity
and first-in-time derivative nature of (2). If we do not pose any site restrictions, we
may introduce bosonic operators for each lattice site i with the following bosonic-like
commutation relations: [

âi, â†
j

]
= δij,

[
âi, âj

]
=
[

â†
i , â†

j

]
= 0. (3)

The ground (vacuum) state of the theory |0〉 is defined as âi|0〉 = 0, where i is any site, and
corresponds to the empty system. The bosonic relations (3) imply important commuta-
tion relations:

ân
i â†

i = nân−1
i + â†

i ân
i , âi â†n

i = nâ†(n−1)
i + â†n

i âi . (4)

For the given lattice configuration {n} = {n1, n2, . . .}, we introduce state the |{n}〉 as
follows: |{n}〉 = â†n1

1 â†n2
2 . . . |0〉. In a straightforward manner, we can show the validity of

two relations

âi|{n}〉 = ni|{n1, n2, . . . , ni − 1, . . .}〉, â†
i |{n}〉 = |{n1, n2, . . . , ni + 1, . . .}〉. (5)

Then, we have â†
i âi|{n}〉 = ni|{n}〉, which legitimizes the standard identification for the

particle number operator located at a lattice site i:

n̂i = â†
i âi. (6)

The scalar product between states |{n}〉 and |{m}〉 differs from the usual quantum me-
chanical form

〈{n}|{m}〉 = ∏
i=1

ni!δni ,mi , (7)

where δi,j is the Kronecker symbol and n! denotes standard factorial quotient 1× 2× . . . n.
All relevant information about the studied stochastic process is encoded in the proba-

bility distributions P(t; {n}), which in the Doi mechanism [11,37,40] is transferred to the
corresponding state vector |Φ〉. This state can be introduced in the following way:

|Φ(t)〉 ≡ ∑
{n}

P(t; {n})|{n}〉 = ∑
{n}

P(t; {n}) â†n1
1 â†n2

2 . . . |0〉. (8)

Here, the sum runs over all possible lattice occupations. The corresponding governing
dynamic Equation (2) for the state vector |Φ〉 takes the Schrödinger-like form

d
dt
|Φ(t)〉 = −Ĥ|Φ(t)〉, (9)
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where the pseudo-Hamiltonian Ĥ (also called the Liouvillean, or Liouville operator [11,41])
appears; its precise form depends on the considered reaction scheme. We can formally
integrate Equation (9) with the following result: |Φ(t)〉 = exp

(
−Ĥt

)
|Φ(0)〉. To finalize

problem formulation, it is necessary to specify the initial state |Φ(0)〉. With the initial
probability distribution P(0; {n}), the initial state follows directly from the definition (8).
For practical reasons [31], the most convenient choice is the Poisson distribution describing
the system in an external number density field.

In addition, interacting A particles perform unbiased random walks between lattice
sites. Here, we a brief derivation of the corresponding term ĤD of the Hamiltonian H. First,
let us start with an elementary two-site system in which n1 particles are located at site 1
and n2 particles at site 2, with the unidirectional hopping process 1→ 2 at the rate D0/a2.
For such a process, it is straightforward to see that the master Equation (2) reads

dP(n1, n2)

dt
=

D0

a2 (n1 + 1)P(n1 + 1, n2 − 1)− D0

a2 n1P(n1, n2) , (10)

where the combinatorial factors n1 + 1 and n1 stem from the assumed jump independence
of A particles. By multiplying Equation (10) by the expression a†n1

1 a†n2
2 and performing

sum ∑{n1,n2} over all permissible occupation numbers, we obtain

d|Φ〉
dt

=
D0

â2 (â†
2 â1 − â†

1 â1)|Φ〉. (11)

We can easily generalize this expression to the bidirectional case 1↔ 2:

d|Φ〉
dt

= −D0

a2 (â†
2 − â†

1)(â2 − â1)|Φ〉. (12)

From this, we can infer that the corresponding term responsible for diffusion in the Hamil-
tonian takes the form

ĤD =
D0

a2 (â†
2 − â†

1)(â2 − â1). (13)

As has been already pointed out, the DP model is based on three reactions (1). Let us
start with the binary annihilation process 2A −→ A at a given site and obtain the desired
term ĤR of the reaction Hamiltonian. Because any pair of particles might undergo mutual
annihilation, we immediately obtain

dP(n)
dt

= K21(n + 1)nP(n + 1)− K21n(n− 1)P(n), (14)

where, similar to the diffusion term, the combinatorial factors are taken into consideration.
We now recast (14) employing the relations (3) and (5) into the following form:

d|φ〉
dt

= K21(â† − â†2)â2|φ〉 , (15)

from which the reaction part of the Hamiltonian is as follows:

ĤR1 = −K21(â† â2 − â†2 â2) . (16)

In a similar vein, we can work out the terms for the remaining two reactions (1), with the
final result being

ĤR = −K21(â† â2 − â†2 â2)− K12(â†2 â− â† â)− K10(â− â† â). (17)
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Results (13) and (17) are easily generalized for the entire lattice system. The total
Hamiltonian for the system that accounts for diffusion and percolation processes on the
entire lattice is

ĤD + ĤR =
D0

a2 ∑
<ij>

(â†
i − â†

j )(âi − âj)

−∑
i

[
K21(â†

i â2
i − â†2

i â2
i ) + K12(â†2

i âi − â†
i âi) + K10(âi − â†

i âi)
]
, (18)

where the former sum runs over all neighboring lattice sites. Such non-Hermitean Hamilto-
nians are typical for out-of-equilibrium systems [11,20,24]. Non-hermiticity additionally
implies that the reaction rates in the master Equation (2) cannot satisfy the condition of
detailed balance. Therefore, the equilibrium state in the system cannot be characterized by
the usual Gibbs distribution. There are additional differences between the Doi formalism
and usual quantum mechanical expressions for calculating physical observables. It can be
easily observed that it is not possible to express observables as bilinear products 〈Φ|A|Φ〉
in the Doi approach; based on the definition of the state vector (8), we would end up with
expressions that are quadratic in probability P(t; {n}).

Let us now derive the ensemble mean value of an observable A within the Doi
formalism. Here, we further assume that A depends solely on particle numbers, i.e., A =
A({n}), which is quite natural from the physics point of view. Typical examples of such
quantities for chemically interacting systems include the average number of particles
(concentration) n←→ ∑i â†

i âi and the pair correlation function C(i, j)←→ â†
i âi â†

j âj between
sites i and j.

The ensemble mean value of a quantity A is defined by the following formula:

〈A(t)〉 = ∑
{n}

A({n})P(t; {n}). (19)

For practical purposes, it is helpful to have a state 〈P| at our disposal, for which the
following identity holds:

〈A(t)〉 = ∑
{n}

P(t; {n})〈P|Â({â† â})â†n1
1 â†n2

2 . . . |0〉 = 〈P|Â|Φ(t)〉. (20)

Replacing the formal solution of Equation (9) yields an alternative form of the right-hand
side of Equation (20):

〈A(t)〉 = 〈P|Â exp(−Ĥt)|Φ(0)〉. (21)

In the mean value, the operator expression Â = Â({â† â}) corresponds to the standard func-
tion A({n}) substituting ni → â†

i âi at each lattice point i, which is enabled by Equation (6).
From direct comparison of the relations (19) and (20), we anticipate that the projection state
〈P| ought to fulfill the following relation:

〈P|Â({â† â})â†n1
1 â†n2

2 . . . |0〉 = A({n})〈P|â†n1
1 â†n2

2 . . . |0〉 = A({n}) . (22)

This, in return, leads to two requirements

〈P|â†
i = 〈P| 〈P|0〉 = 1, (23)

that should hold for the projection state P and the operator â†, respectively, and be satisfied
at each site i. Using the commutation relations (3), we further deduce that the projection
state of the following form

〈P| = 〈0| exp
(

∑
i

âi

)
(24)
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serves the desired purpose. Note that if the operator Â is written in the normal-ordered
form [42] then it can be constructed solely in terms of the operators ai utilizing only the
aforementioned properties (23) of the state 〈P|, i.e.,

〈P|Â({â† â}) = 〈P|N
[

ÂN({â†, â})
]
= 〈P|ÂN({1, â}) . (25)

We define the normal form ÂN of the operator Â in a standard manner using the relation
Â = N

[
ÂN({â†, â})

]
, in which N stands for the normal product (i.e., all creation operators

are placed to the left of all annihilation operators). The â-dependent operator ÂN({1, â})
equivalent to the average number of particles n is then âi, whereas the correlation function
C(i, j) corresponds to the operator expression âi âj + δij âj. Furthermore, it is convenient to
commute the exponential term e∑i âi to the right in the relation (20). To this end, we use
the formula

eâi â†
i = (â†

i + 1)eâi , (26)

which can be obtained from the commutation relations (4). Using (26), we recast Equation
(21) into the form

〈A(t)〉 =
〈

0
∣∣∣ÂN({1, â})e−Ĥ({â†+1,â}te∑i âi

∣∣∣Φ(0)
〉

, (27)

where we have shifted the creation operator â†
i → â†

i + 1 (Doi shift) in the expression for the
operator Â (followed by a replacement â†

i → 0) and similarly in the original Hamiltonian
Ĥ({a†, a}).

In many irreversible reaction processes [31], the Poisson distribution represents the
most suitable choice for the initial state. Accordingly, at a given site i, the probability of
having ni particles is

p(ni) = e−n0
nni

0
ni!

. (28)

Here, a parameter n0 corresponds to the average number of particles; using the definition
of the state vector (8), we obtain

|Φ(0)〉 = ∑
{n1}

e−n0
nn1

0
n1!

â†n1
1 ∑
{n2}

e−n0
nn2

0
n2!

â†n2
2 . . . |0〉 = ∏

i
e−n0en0 â†

i |0〉. (29)

Observe that when the shift â† → â† + 1 is performed, the exponential part e−n0 is effec-
tively removed. The mean particle number of the Poisson distribution can be different for
different sites; in this case, the effective initial Poisson state vector e∑i âi |Φ(0)〉 = ∏i en0i â†

i |0〉
describes the system in an external density field n0i. This allows us to describe initial local-
ized seeds of given particle numbers by taking the derivatives with respect to components
n0i and putting n0i = 0 thereafter, in the same manner that response functions are calculated
in statistical mechanics. This is necessary for the description of epidemic processes as well
as for the percolation problem, in which the localized seed at the origin denotes the onset
of a spreading process.

A most striking feature of the percolation model is the appearance of a phase transition
between the absorbing phase and the active phase, which exhibits emergent universal be-
havior. To analyze such a transition quantitatively, it is advantageous to obtain a continuous
limit of the model, which allows us to employ powerful renormalization group methods.
We summarize the major points of such derivation here, and the topic has been covered
thoroughly elsewhere [11,31,39,43].
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The crucial step includes a calculation of matrix elements for the time evolution
operator exp(−Ĥt). To this end, we use the well-known Trotter formula [43]. Accordingly,
the exponential factor e−Ĥt can be rewritten through a limiting procedure:

exp(−Ĥt) = lim
∆t→0

(
1− Ĥ∆t

)t/∆t. (30)

We take N∆t = t, where N is the number of time slices. At the end of our derivation, we
let N → ∞. At each time instant, we insert a whole set of coherent states, which is in fact
tantamount to a representation of operators â†

i , âi by complex numbers ψ. Corresponding
coherent states can be introduced [43] in the following fashion:

|ψ〉 = exp
(
−1

2
|ψ|2 + ψâ†

)
|0〉. (31)

It can be shown that such states form an eigenstate basis of the annihilation operator,
i.e., they satisfy

â|ψ〉 = ψ|ψ〉, 〈ψ|â† = ψ∗〈ψ| , (32)

where the star denotes the corresponding complex-conjugate quantity. Further, a distin-
guished feature of coherent states is that they are not orthogonal and form an over-complete
set of states. The overlap between different states is actually provided by the formula

〈ψ1|ψ2〉 = exp
(
−1

2
|ψ1|2 −

1
2
|ψ2|2 + ψ∗1 ψ2

)
. (33)

For a single site, the identity resolution has the following expression:

1 = ∑
n

1
n!
|n〉〈n| = ∑

m,n

1
n!
|n〉〈m|δmn =

∫ dψ∗dψ

π
|ψ〉〈ψ|, (34)

where the orthogonality relation

δmn =
1

πm!

∫
dψ∗

∫
dψ exp(−|ψ|2)ψ∗mψn (35)

has been employed, e−|ψ|
2

is the weight function, and we have adopted the measure in the
form dψ∗dψ = Reψ Imψ. Generalization of the relation (34) to the entire lattice system is
straightforward:

1 =
∫

∏
i

dψ∗(i,j)dψ(i,j)

π

∣∣∣∣{ψ}j

〉〈
{ψ}j

∣∣∣∣, (36)

where {ψ}j = (ψ(1,j), ψ(2,j), . . .) is the set of all eigenvalues corresponding to the anni-
hilation operators âi at each lattice point at the given instant of time j∆t (j = 0, . . . , N).
Inserting the relation (36) in each appropriate time instant into the Trotter Formula (30), we
arrive at

exp(−Ĥt) =
1
N lim

∆t→0

∫
[dψ∗][dψ]

∣∣∣∣{ψ}N

〉
×

N

∏
j=1

〈
{ψ}j

∣∣∣∣exp(−Ĥ({â† + 1, â})∆t)
∣∣∣∣{ψ}j−1

〉〈
{ψ}0

∣∣∣∣. (37)

Here, N stands for the normalization constant. We can abbreviate the functional measure
as follows:

[dψ∗][dψ] ≡∏
i,j

dψ∗(i,j)dψ(i,j). (38)
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Here in after, we assume that Hamiltonian is normal-ordered (this is explicitly the case for
the pseudo-Hamiltonian (18) in the DP process). Using relations (32), we obtain〈
{ψ}j

∣∣∣∣exp(−H({a† + 1, a})∆t)
∣∣∣∣{ψ}j−1

〉
=

〈
{ψ}j

∣∣∣∣{ψ}j−1

〉
exp(−H({ψ∗}j + 1, {ψ}j−1)∆t), (39)

in which the indicated transformation H({ψ∗}j + 1, {ψ}j−1) corresponds to the replace-
ment of operators by their corresponding eigenvalues âi → ψi, â†

i → ψ∗i . The remaining
expression in Equation (39) is a condensed form of the following expression:〈

{ψ}j

∣∣∣∣{ψ}j−1

〉
= ∏

i

〈
ψ(i,j)

∣∣∣∣ψ(i,j−1)

〉
(40)

and we can rewrite it with the help of the overlap relation (33) as follows:〈
ψ(i,j)

∣∣∣∣ψ(i,j−1)

〉
= exp

(
−ψ∗(i,j)[ψ(i,j) − ψ(i,j−1)]

)
exp

(
−1

2
|ψ(i,j−1)|2 +

1
2
|ψ(i,j)|2

)
. (41)

For the first order in ∆t, we can express the scalar product in Equation (37) in the following
way:

∏
j

〈
ψ(i,j)

∣∣∣∣ψ(i,j−1)

〉
= exp

(
−∑

j
ψ∗(i,j)

dψ(i,j)

dt
∆t + O(∆t)

)
exp

(
−1

2
|ψ(i,0)|2 +

1
2
|ψ(i,N)|2

)
. (42)

Then, in the continuum time limit (∆t → 0) we obtain the evolution operator in the
functional integral representation

exp(−Ĥt) =
∫

[dψ][dψ∗]
N

∣∣∣∣{ψ}N

〉
× exp

(
1
2
|ψi(t)|2 −

1
2
|ψi(0)|2 −

∫ t

0
dt[ψ∗i ∂tψi + H({ψ∗ + 1, ψ})]

)〈
{ψ}0

∣∣∣∣. (43)

According to expression (27) for the average value of a quantity A, for expectation values
such as the mean particle number n we must act on the operator (43) from the left by the
vacuum state 〈0| and from the right by the effective initial state | exp[∑i âi]Φ(0)〉. For the
initial state provided by the Poisson distribution (29), the relation〈

{ψ}0

∣∣∣∣exp[∑
i

âi]Φ(0)
〉

∏
i

exp
(
−1

2
|ψi(0)|2

)
= exp

(
∑

i

[
n0ψ∗i (0)− |ψi(0)2|

])
(44)

is satisfied, where we have used relations (26), (31), and (32). On the other hand, we have

〈
0
∣∣∣∣{ψ}N

〉
∏

i
exp

(
1
2
|ψi(t)|2

)
=

〈
0
∣∣∣∣exp

{
∑

i

[
−1

2
|ψi(t)|2 + ψi(t)â†

i

]}∣∣∣∣0〉
×∏

i
exp

(
1
2
|ψi(t)|2

)
=

〈
0
∣∣∣∣∏

i
exp(ψi(t)â†

i )

∣∣∣∣0〉= 1. (45)

By combining relations (43)–(45) and inserting them into expression (21) for the expectation
value of quantity A, we obtain the final result in the form of a functional integral:

〈A(t)〉 = N−1
∫
[dψ][dψ∗]AN({1, ψ}) exp[S({ψ∗, ψ})] , (46)
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where the functional AN({1, ψ}) is determined from the normal form ÂN({1, â}) of the
operator Â by replacing the operators âi with their corresponding eigenvalues ψi, and the
field-theoretic functional S takes a similar form to that employed previously (see e.g., [11]):

S({ψ∗, ψ}) = ∑
i

(
n0ψ∗i (0)− |ψi(0)|2 −

∫ t

0
dt[ψ∗i ∂tψi + H({ψ∗ + 1}, {ψ})]

)
. (47)

The condition
N =

∫
[dψ][dψ∗] exp[S({ψ∗, ψ})] (48)

fixes the normalization constantN . The initial term−|ψi(0)|2 in (47) is a consequence of the
inherent ambiguity of the interpolation definition of the functional integral [42,44]. “Cor-
rectly defining the path integral is equivalent to constructing a renormalized perturbation
theory” [44]; thus, we briefly recall the construction of perturbation theory in the present ap-
proach. Together with the function AN and the initial probability density, the Hamiltonian
may be extracted from the functional integral using the functional derivatives:

exp
[∫ t

0
dtH({ψ∗ + 1}, {ψ})

]
= exp

[∫ t

0
dtH

({
δ

δA
+ 1
}

,
{

δ

δA∗

})]
× exp

[∫ t

0
dt(Aψ∗ + A∗ψ)

]∣∣∣∣
A=A∗=0

. (49)

We are left with the Gaussian integral

G0(A, A∗) =
∫
[dψ∗][dψ] exp

[
−|ψ(0)|2 +

∫ t

0
dt(−ψ∗∂tψ + Aψ∗ + A∗ψ)

]
(50)

where, for economy of notation, the spatial subscript has been omitted. We now calcu-
late the interpolation approximation for this integral (in which the subscript refers to
consecutive time instants):

G0(A, A∗) ≈
∫
[dψ∗][dψ] exp

[
−|ψ0|2 −

N

∑
j=1

(
ψ∗j ψj − ψ∗j ψj−1

)
+

N

∑
j=0

(
Ajψ

∗
j + A∗j ψj

)
∆t

]

= exp

[
N

∑
j=0

A∗j ∆t
j

∑
l=0

Al∆t

]
−−−→
∆t→0

exp
∫ t

0
du
∫ t

0
du′ A∗(u)θ(u− u′)A(u′) . (51)

Perturbation theory is based on given propagators and interaction functionals; therefore,
the continuum limit should be taken upon calculation of the Gaussian integral, as in (51).
Because the step function θ(t− t′) is the fundamental result of the differential equation
∂t f = 0, by reversing the order of the steps we arrive at the Gaussian functional integral in
the form

G0(A, A∗) = exp
∫ t

0
du
∫ t

0
du′ A∗(u)θ(u− u′)A(u′)

=
∫
[dψ∗][dψ] exp

∫ t

0
dt(−ψ∗∂tψ + Aψ∗ + A∗ψ) . (52)

The formal space of integration can then be defined to allow necessary operations with
Gaussian integrals [42,44]. Therefore, in perturbation theory, the field-theoretic action
functional S reads

S({ψ∗, ψ}) = ∑
i

(
n0ψ∗i (0)−

∫ t

0
dt[ψ∗i ∂tψi + H({ψ∗ + 1}, {ψ})]

)
. (53)

We choose the corresponding retarded propagator vanishing at coinciding time arguments.
In the standard language of quantum field theories, this is equivalent to simply augmenting
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the definition of the time-ordered product at coinciding time arguments as the normal-
ordered product [42].

The continuum spatial limit can then be obtained in a standard way using the replace-
ment:

∑
i
→
∫

ddx
ad , ψi → ψ(t, x)ad, ψ∗i (t)→ ψ†(t, x), n0 → n0ad, (54)

which yields the field-theoretic action S for the directed percolation universality class

S = −
∫ t

0
dt
∫

ddx
[

ψ†∂tψ− D0ψ†∇2ψ + K21ψ†(1 + ψ†)ψ2 − K12ψ†(1 + ψ†)ψ

− K10ψ†ψ

]
+ n0

∫
ddxψ†(0, x), (55)

which coincides with the lattice Hamiltonian (18). The derived action functional (55) can
be employed in the evaluation of important physical quantities such as the average (27),
which can be particularly represented in the following way:

〈A(t)〉 =
∫
Dψ†

∫
Dψ AN{1, ψ(t)}eS . (56)

3. Langevin Equation and Fokker–Planck Equation

A number of equations governing the time evolution of biological, chemical, physical,
and social systems can be modeled by mean-field-like equations for averages of variables.
However, they intrinsically correspond to random systems to a certain extent. In order
to properly take fluctuations around the averages into account, a direct way is to insert
a source of randomness straight into the mean-field equation. In this way, the quantities
obtained as solutions from the mean-field equations become stochastic processes depending
on spatial coordinates, i.e., stochastic fields.

The prototypical example of such an approach is the Langevin equation for a random
walk. It serves to describe the location r of a test particle subject to random impulses, which
can be accounted for by the noise term η in the following way:

dr
dt

= η.

Here, it is assumed that the random noise η is of zero mean and decorrelated in time (white
noise), i.e., its correlator takes the form

〈ηi(t)ηj(t′)〉 = Dδijδ(t− t′) .

In general, this typical physical formulation is mathematically inconsistent, as for the
multiplicative noise (i.e., when the noise variable is multiplied by some function of the
random location) it leads to inevitable ambiguities [45].

Let us deal with the mean distance between two positions on the trajectory of the
random walk, an indication of the characteristic that the Brownian trajectory, although con-
tinuous, is nowhere differentiable [46]. The increments of the Brownian trajectory

W(t)−W(t0) =
∫ t

t0

dt η(t)

produce a well-known random process, the so-called Wiener process, the conditional
probability density of which is governed by Gaussian-like dependence:

p(W, t|W0, t0) =
1

[4π(t− t0)]d/2 e−(W−W0)
2/2(t−t0)
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where d is the dimension of space. In particular, the Wiener process is crucial for a rigorously
consistent formulation of the Langevin equation via the stochastic differential equation
(SDE).

According to Landau theory, close to the critical point, the dynamic behavior of the
order parameter ϕ near equilibrium is governed by a kinetic equation (the time-dependent
Ginzburg–Landau (TDGL) equation) with the following form:

∂ϕ

∂t
= −Γ

(
−∇2 ϕ + aϕ +

λ

6
ϕ3
)

. (57)

In linear response theory, the dynamics of fluctuations close to equilibrium [47] are generally
defined using kinetic equations analogous to (57) with an additional random force variable
added to the right-hand side.

In general, typical models of critical dynamics are formulated by means of nonlinear
Langevin equations:

∂ϕ

∂t
= −Γ

δH
δϕ

+ f := V(ϕ) + f , (58)

where H is the so-called effective equilibrium Hamiltonian. Gaussian distribution is
postulated for a random source field f and the corellator 〈 f f 〉 is determined using the
corresponding relation to the static equilibrium (fluctuation–dissipation theorem) [11,25].
An appropriate Gaussian distribution is required; for example, the dynamic model A with
the non-conserved order parameter [10] is provided by the SDE, which simply follows
from Equation (57) by the addition of a white-noise field to the right-hand side.

In reaction–diffusion systems, the most straightforward kinetic formulation of the
dynamics of the average numbers of particles is based on the rate equation approach, which
consists of postulating a deterministic differential equation for average numbers of particles
in a homogeneous system; hence, it does not take into account effects such as boundary
conditions, spatial inhomogeneities and randomness in the individual reaction events.
Spatial dependence can be accounted for by a diffusion term, which then leads to models
of diffusion-limited reactions (DLR) [11,19].

As an elementary example, let us consider the coagulation reaction A + A → A.
The corresponding diffusion-limited rate equation for the concentration ϕ = ϕ(t, x) of the
reacting compound A is

∂ϕ

∂t
= D∇2 ϕ− kϕ2 ,

where k is the appropriate rate constant and D is a diffusion parameter.
The most direct way to take into account the diverse effects of randomness is to include

a random source and sink term in the rate equation:

∂ϕ

∂t
= D∇2 ϕ− kϕ2 + f . (59)

This is nothing else than a nonlinear Langevin equation for the stochastic field ϕ. Physically,
in the case of concentration we require the field ϕ to attain only non-negative values.

There is an essential distinction between the critical dynamics and the reaction–
diffusion systems. In the former, deviations of the fluctuating order parameter from
the (usually zero) mean can physically assign an arbitrary sign (or direction). In partic-
ular, deviations from the equilibrium value are always permissible. On the other hand,
reaction–diffusion systems often exhibit a distinguished absorbing (inactive) state that does
not permit order parameter fluctuations. Thus, should the system fall into the inactive state,
it will remain there permanently. Above all, if the empty state is an inactive state of the
reaction model, the random noise term should be introduced multiplied by a coefficient
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vanishing in the limit ϕ→ 0 to ensure that the model cannot return from the inactive state
purely by means of noise fluctuations. Then, arguably the simplest choice corresponds to

∂ϕ

∂t
= D∇2 ϕ− kϕ2 + f ϕ (60)

as an alternative to Equation (59). This corresponds to an SDE with multiplicative noise.
Further, let us discuss the Langevin equation with multiplicative noise of the general

form
∂ϕ

∂t
= V(ϕ) + f b(ϕ) := −Kϕ + U(ϕ) + f b(ϕ) , (61)

where f is assumed to be a Gaussian noise variable with zero mean and the pair correla-
tion function

〈 f (t′, x′) f (t, x)〉 = D(x′ − x) = δ(t′ − t)D(x′ − x) , (62)

where the condensed notation x = (t, x) has been employed. In Equation (61), the expres-
sion b(ϕ) stands for a functional of the stochastic field ϕ. In what follows, we are interested
in applying perturbation theory, for which it is useful to split b into a linear part K and
nonlinear part U(ϕ). Functionals b and U are both time-local, i.e., they depend only on the
instant of the SDE.

As has been already been pointed out, the Langevin equation with white-in-time noise
f is mathematically inconsistent. It is possible to approach this issue differently by starting
with the set of correlation functions that consist of a suitable delta sequence in time, i.e.,

〈 f (t′, x′) f (t, x)〉 = D(t′, x′; t, x) −−→
t→t′

δ(t′ − t)D(x′, x), (63)

and moving to the white noise limit at a later phase. Mathematically, however, such
treatment leads to the solution of the SDE (61) in the Stratonovich interpretation [46].
From a physics point of view, this is a common method to deal with the case of white noise.
On the other hand, the Stratonovich formulation brings about a relatively complex technical
treatment; therefore, the SDE is usually interpreted according to the Itô prescription [26,46].

Recall that the main reason for introducing the SDE with white noise is to evade
explicitly solving the aforementioned limit (63). Accordingly, instead of applying the
mathematically precarious (though physically quite admissible) Langevin equation, the
stochastic problem provided by Equation (61) and the correlator (62) can be equivalently
formulated in terms of the Fokker–Planck equation (FPE). This is an equation for both
the conditional probability density p(ϕ, t|ϕ0, t0) and the probability density p(ϕ, t) of the
stochastic variable ϕ. Recall that the Fokker–Planck equation and the master equation are
particular examples of the universal (forward) Kolmogorov equation; therefore, the two
cases discussed here are intimately connected. A smooth approach to prove this connection
utilizes the method of Itô calculus; an appropriate proof can be found in the literature [46].
As a result, only the analogy between the quantities specifying the stochastic problem in
both formulations is provided here. The main advantage of the FPE is that the equation
itself is a completely well-defined partial differential (or functional differential for field
variables) equation. The inherent ambiguity of the Langevin problem reveals itself in that
the FPE takes different forms for different interpretations of the underlying SDE.

For simplicity, let us consider zero-dimensional field theory. The FPE for the condi-
tional probability density p(ϕ, t|ϕ0, t0) in the case of the Itô interpretation takes the form

∂

∂t
p(ϕ, t|ϕ0, t0) = −

∂

∂ϕ
{[−Kϕ + U(ϕ)]p(ϕ, t|ϕ0, t0)}

+
1
2

∂2

∂ϕ2 [b(ϕ)Db(ϕ)p(ϕ, t|ϕ0, t0)] . (64)
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On the other hand, if the SDE (61) is formulated in the Stratonovich sense, the FPE takes
the form

∂

∂t
p(ϕ, t|ϕ0, t0) = −

∂

∂ϕ
{[−Kϕ + U(ϕ)]p(ϕ, t|ϕ0, t0)}

+
1
2

∂

∂ϕ

{
b(ϕ)

∂

∂ϕ
[Db(ϕ)p(ϕ, t|ϕ0, t0)]

}
. (65)

The conditional probability density p(ϕ, t|ϕ0, t0) is the basic solution of the FPE (64) or (65),
respectively, with the initial condition taking the following form:

p(ϕ, t0|ϕ0, t0) = δ(ϕ− ϕ0) .

Contractions are not entirely visible when the random variable contains several components;
for example, the Fokker–Planck equation in the Itô interpretation becomes

∂

∂t
p(ϕ, t|ϕ0, t0) = −

∂

∂ϕi

{[
−Kij ϕj + Ui(ϕ)

]
p(ϕ, t|ϕ0, t0)

}
(66)

+
1
2

∂2

∂ϕi∂ϕj

[
bik(ϕ)Dklbjl(ϕ)p(ϕ, t|ϕ0, t0)

]
(67)

for a multi-component stochastic field ϕi.
The FPE can be viewed as the Schrödinger equation with imaginary time. Therefore,

the Fokker–Planck solution together with the calculation of expectation values can be
expressed in a manner similar to quantum field theory [48]. The construction with FPE as a
starting point leads to the celebrated Martin–Siggia–Rose solution of the SDE [49] while at
the same time avoiding the inherent lack of clarity in the SDE thanks to correction based on
the selection of the FPE.

For completeness, we now discuss the FPE (64) corresponding to the Itô interpretation
of the Langevin Equation (61). In close analogy with Dirac’s notation in quantum mechanics,
we introduce the state vector | pt 〉 according to the following representation of the PDF:

p(ϕ, t) = 〈 ϕ | pt 〉 ,

which is the solution of the FPE (64) with the initial condition p(ϕ, 0) = p0(ϕ). Further,
in order to construct the evolution operator for the state vector, we establish coordinate
and momentum operators, similarly to the case in quantum mechanics, using the following
relations:

π̂ f (ϕ) = − ∂

∂ϕ
f (ϕ) , ϕ̂ f (ϕ) = ϕ f (ϕ) , [ϕ̂, π̂] = 1 .

Note that the latter relation follows directly from the first two defining relations for π̂ and
ϕ̂. In these variables, the FPE for the PDF yields the evolution equation for the state vector
in the form

∂

∂t
| pt 〉 = −Ĥ| pt 〉 ,

where the “Hamilton”-operator for the FPE corresponding to the Itô formulation of the
SDE, in accordance with (64), takes the form

Ĥ = π̂K ϕ̂− π̂U(ϕ̂)− 1
2

π̂2b(ϕ̂)Db(ϕ̂) . (68)

Note that, in contrast to quantum mechanics, there is no issue with ordering uncertainty in
the definition of the Hamilton operator. In this formulation, we may express the conditional
PDF as the matrix element

p(ϕ, t|ϕ0, t0) =
〈

ϕ
∣∣∣ e−Ĥ(t−t0)

∣∣∣ ϕ0

〉
, (69)
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and the functional-integral construction can be derived in an identical way to that in
quantum mechanics [44].

4. Functional Representation of General Reaction–Diffusion Scheme

In this section, we analyze the annihilation reaction A + A→ ∅ (A being a particle,
agent, etc., depending on a given model [11]) in a more general layout than usually
presented [31]. To this end, we include random sinks and sources of the interacting
particles to sustain a stationary state. In the majority of papers, this is performed by means
of an additive shot noise in the Langevin equation of the given stochastic problem. Because
the investigation here starts from the master equation approach, it is not quite justified for
our purposes. To the best of our knowledge, however, we are not aware of any unique way
to introduce random sources into the master equation corresponding to the random noise
term of the mean-field (Langevin) description. We employ the simplest permissible choice,
described in detail in the literature [26], which is tantamount to adding reactions A→ X
and Y → A to the entire scheme. Here, Y and X denote the particle baths of the source
and the sink, respectively. In a homogeneous system, these reactions give rise to a master
equation of the following form:

dP(t, n)
dt

= µ+V[P(t, n− 1)− P(t, n)] + µ−[(n + 1)P(t, n + 1)− nP(t, n)] . . . (70)

where P(t, n) is the probability at time t of finding n reacting particles in the medium.
The ellipsis stands for terms accounting for other processes, such as the annihilation
reaction, diffusion, and advection processes. Further, the parameter µ− (µ+) denotes the
reaction constant of the annihilation (creation) process. We choose the transition rate to
be proportional to the number of particles n, which can be interpreted as a consequence
of independent reactions A → X. Moreover, this option retains the same empty state
as an inactive state. The parameter V in Equation (70) is (at least for current purposes)
the volume of the homogeneous system, and plays an important role in the transition to
the continuum limit of the inhomogeneous system. Furthermore, note that the master
Equation (70) leads to the kinetic rate equation

d〈n〉
dt

= µ+V − µ−〈n〉+ . . . , (71)

where 〈n〉 denotes the average number of particles.
Let us recall here that the crucial conception of the Doi formalism [37,40] is to recast

the family of master equations for probability distributions in a single equation for a
state vector which contains all relevant physical information. The kinetic equation itself
is formulated by means of the Liouville operator acting in the appropriate Fock space
and produced by the group of master equations. Even though the main steps of this
technique have been comprehensively discussed previously [11,50], the insertion of random
sink and source terms in the master equation displays unique properties which should
be elaborated thoroughly. To this end, let us briefly recall the fundamental quantities
and equations of the Doi formalism. To keep the discussion concise, let us examine the
probabilities P(t, n) of finding n particles on a given lattice site at time t. Then, the spatial
dependency can be defined by marking the particle number by the positions of the lattice
and introducing products and sums over the lattice sites. The needed Fock space was
introduced previously in Section 2, specifically in Equations (3)–(8). The family of master
equations for a death–birth reaction can be recast in a single equation with no explicit
dependence on the occupation number:

d|Φ 〉
dt

= −Ĥ(â†, â)|Φ 〉 . (72)
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Equation (70) leads to the expressions below in the corresponding “Hamiltonian”

Ĥg(â†, â) = µ+V
(

I − â†
)
+ µ−

(
â† − I

)
â , (73)

where I denotes the identity operator. The dynamic action S1 corresponding to (72) and
(73) reads

S1(ψ
∗, ψ) =

∞∫
0

dt ψ∗(t)[−∂tψ(t) + µ+V − µ−ψ(t)] + . . . . (74)

Only the expressions corresponding to the random source process and general time-
derivative expression are explicitly mentioned here, while the ellipsis denotes those terms
stemming from initial conditions and other included reaction processes.

Suppose next that the transition rates µ± are arbitrary functions independent in time,
with a probability distribution specified through the moments 〈µn

±〉 = E± ,n. In order
to maintain translation invariance with respect to the time variable, we further consider
stationary stochastic processes defined on the entire time axis. Hereinafter, all time integrals
in the functionals, and consequently in the Feynman diagrams arising in the perturbation
theory, are taken over the whole time axis. Let us now generalize the overall analysis to the
spatially inhomogeneous system. To this end, we replace a lattice subscript with the spatial
argument, i.e., ψ(t) → ψi(t). In this way, the volume V turns into the volume element
associated with each lattice site. To keep the notation simple, the time integral is replaced
by the sum

∫ ∞
−∞dt → ∑α ∆t and we make a natural assumption that the transition rates

at each time instant and lattice site µ±,α,i are independent random variables. As a direct
consequence, the average over the distribution of random sources reduces to the calculation
of the following expectation value

∏
α,i

〈
exp

(
µ+ ,α,iVψ∗α,i∆t− µ− ,α,iψ

∗
α,iψα,i∆t

)〉
. (75)

For each specific time instant and lattice site (noting that we assume the moments of µ±
to be equivalent for all α and i and omit the labels for brevity), this leads to the standard
cumulant expansion:〈

eµb∆t
〉

= 1 + b∆tE1 +
1
2

E2(b∆t)2 +
1
6

E3(b∆t)3 + · · ·

= exp
(

b∆tE1 +
E2 − E2

1
2

(b∆t)2 +
E3 − 3E1E2 + E3

1
6

(b∆t)3 + · · ·
)

. (76)

Here, b denotes either Vψ∗ or −ψ∗ψ. Thus, for example, the average over the moment µ+

takes the form

∏
α,i

〈
exp

(
µ+ ,α,iVψ∗α,i∆t

)〉
= exp

(
∑
α

∑
i

[
∆tE+1Vψ∗α,i +

1
2

(
E+2 − E2

+1

)
(Vψ∗α,i∆t)2

])

× exp
(

∑
α

∑
i

[
E+3 − 3E+1E+2 + E3

+1
6

(Vψ∗α,i∆t)3 + · · ·
])

. (77)

In the continuum limit, we replace the expression ψ∗α,i with the stochastic field variable
ψ†(t, x), while in the limit V → 0 the ratio ψα,i/V leads to the variable ψ(t, x), respectively.
The sum over α, together with a small time increment ∆t, brings about the time integral and
the sum over lattice index i, while including the volume element V produces the spatial
integral ∑i V →

∫
dx. Then, for the first expression in the exponential in Equation (77)

we obtain

∑
α

∑
i

∆tE+1Vψ∗α,i → E+1

∫
dt
∫

dx ψ†(t, x) . (78)
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However, the continuum limit for cumulants of the second order and higher is not as
self-evident. We consider the simplest permissible distribution for µ±, with the proviso
that only the variance term has a finite limit when V → 0 and ∆t→ 0. On the other hand,
the contributions of higher-order cumulants disappear; for example we have(

E+2 − E2
+1

)
V∆t→ σ+ , V → 0 , ∆t→ 0 , (79)(

E+3 − 3E+1E+2 + E3
+1

)
(V∆t)2 → 0 , V → 0 , ∆t→ 0 . (80)

Thus, the contribution of the average over µ+ to the action functional takes the form

S+ =
∫

dt
∫

dx
{

E+1ψ†(t, x) +
1
2

σ+
[
ψ†(t, x)

]2
}

. (81)

For the average over µ−, an analogous argument yields

S− =
∫

dt
∫

dx
{
−E−1ψ†(t, x)ψ(t, x) +

1
2

σ−
[
ψ†(t, x)ψ(t, x)

]2
}

. (82)

These contributions to the action functional can, of course, be produced by appropriately
chosen normal distributions of moments µ±.

The presented method of introducing random sources and sinks has the rather un-
pleasant property that it does not conserve the total number of particles in the system.
To compare with the analysis of this problem using the Langevin approach, the random
sources and sinks should be introduced in such a way that the particle number is preserved.
The simplest way to approach this problem is to add an expression proportional to the
particle number to the random source, i.e., to use the “reaction constant” of the form
µ+V + µ1+n instead of just µ+V in the master equation. Then, the source terms on the
right-hand side of Equation (70) take the form

dP(t, n)
dt

= µ+V[P(t, n− 1)− P(t, n)]

+ µ1+[(n− 1)P(t, n− 1)− nP(t, n)] . . . (83)

It can be observed that the new term in the master equation represents the branching
process [26].

The added expression leads to the following contribution to the Hamilton operator:

Ĥg2(â†, â) = −µ1+

(
â† − I

)
â† â . (84)

By carrying out the steps described previously, we obtain the contribution to the dynamic
action in the following form:

S1+ =
∫

dt
∫

dx
{

E1+1ψ†
(

ψ† + 1
)

ψ +
1
2

σ1+ψ†2(
ψ† + 1

)2
ψ2
}

. (85)

Now it is straightforward to see that if we eliminate the plain source (i.e., let
E+1 = σ+ = 0) and choose E1+1 = E−1, the empty state remains an absorbing one and the
mass-like term ∝ ψ†ψ vanishes in the effective functional; we end up with the effective
functional of the random sources and sinks:

Sgc =
∫

dt
∫

dx
{

E1+1ψ†2
ψ +

1
2

σ−
(

ψ†ψ
)2

+
1
2

σ1+ψ†2(
1 + ψ†

)2
ψ2
}

, (86)

which preserves the average number of particles.
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The influence of the higher-order parts is considerably distinct in the two cases
tractable by a dimensional analysis using the RG method. The term containing the deriva-
tive ∂t in the dynamic functional

S = −
∫

dt
∫

dx ψ†(t, x)∂tψ(t, x) + . . . (87)

has to be dimensionless in order to provide interesting dynamics. Consequently, the total
scaling dimension of the operator ψ†(t, x)ψ(t, x) equals the dimension of space, and as
such is positive.

First, in the case where the scaling dimension of the field ψ† equals zero, i.e., dψ† = 0,
the dimension of the field ψ is positive (i.e., dψ = d) and the operator monomials in
the second and third terms in the functional (86) attain the identical scaling dimension.
Because they carry the quadratic term ψ2, their scaling dimension is larger than that of the
cubic term ψ†2

ψ. As a result, the second and third terms in the action (86) are infrared-
irrelevant and can be neglected in the ensuing asymptotic analysis.

Second, if both fields have positive scaling dimensions, then we have at minimum
one additional field factor in the operator monomials in the second and third terms in (86)
compared to the first term, making them irrelevant. Therefore, the corresponding infrared
relevant effective functional of the random sinks and sources is reduced to the monomial

S ′gc =
∫

dt
∫

dx E1+1ψ†2
ψ , dψ† = 0 ∨ dψ† > 0 , dψ > 0 . (88)

Third, if the field ψ has a vanishing scaling dimension, then the response field ψ† has a
positive scaling dimension and the monomials with additional powers of response field ψ†

are necessarily infrared-irrelevant. Thus, the initial point for the following renormalization
analysis is the sink and source functional

S ′′gc =
∫

dt
∫

dx
{

E1+1ψ†2
ψ +

1
2
(σ− + σ1+)

(
ψ†ψ

)2
}

, dψ = 0 . (89)

Let us next apply canonical dimension analysis on the functional of the binary annihi-
lation process A + A→ ∅ with diffusion-limited spreading

S1 = −
∫

dt
∫

dx
{

ψ†∂tψ− D0ψ†∇2ψ + λ0D0

[
2ψ† + (ψ†)2

]
ψ2
}
+n0

∫
dx ψ†(0, x). (90)

In the first case with dψ† = 0, the terms with the quadratic factor ψ2 in the action (90)
have the same canonical dimensions. However, the monomial responsible for the sink–
source term (88) is linear with respect to ψ, with a positive canonical dimension, unlike the
nonlinear ψ terms of the action (90). Thus, the infrared-relevant interaction part for more
than two dimensions is provided by (88), and the corresponding action functional reads

SIR1 = −
∫

dt
∫

dx
{

ψ†∂tψ− D0ψ†∇2ψ− E1+1ψ†2
ψ
}
+ n0

∫
dx ψ†(0, x) . (91)

It is easy to show that this dynamic action does not generate Feynman diagrams with closed
loops of the density propagator. In turn, this means that fluctuation effects are effectively
suppressed. On the other hand, the canonical dimension of the interaction part is negative,
and can counterbalance the positive dimensions of the irrelevant interaction monomials.
Consequently, the other monomials of the interaction part are actually dangerous irrelevant
operators [51]. In this case, it is not possible to draw decisive conclusions about the
IR-relevant action functional based on investigation of the canonical dimensions.

In the second case with positive dimensions dψ and dψ† , the quartic term in the
functional (90) becomes IR-irrelevant. The remaining third-order terms alone do not
generate loop diagrams. As a result, the effects of density fluctuations are generated only
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when both fields attain the same canonical dimension dψ = dψ† = d/2. In this situation,
the IR-relevant action functional reads

SIR2 = −
∫

dt
∫

dx
{

ψ†∂tψ− D0ψ†∇2ψ + 2λ0D0ψ+ψ2 − E1+1ψ†2
ψ

}
+n0

∫
dx ψ†(0, x). (92)

In the functional, the canonical dimension of two interaction terms equals (d/2)− 2 and
disappears at the upper critical dimension dc = 4, at which remaining interaction mono-
mials have positive dimensions and as such are clearly irrelevant. The functional (92)
corresponds to the dynamic action of Reggeon field theory, known in the literature as the
Gribov process [52]. Recently [53], the influence of random stirring for this model were
studied using the Obukhov–Kraichnan compressible velocity field. For the incompressible
Kraichnan model, even two-loop results are available [54].

In the third possible case with dψ = 0, the quartic monomial in the functional (90)
becomes irrelevant because the field ψ† attains a positive dimension. In addition, both
monomials of the sink–source functional (89) are irrelevant, and we obtain the infrared
relevant effective functional

SIR3 = −
∫

dt
∫

dx
{

ψ†∂tψ− D0ψ†∇2ψ + 2λ0D0ψ†ψ2
}
+n0

∫
dx ψ†(0, x) . (93)

Reasoning analogous to that employed for action (91) demonstrates that the dimensional
analysis with this choice of field dimensions does not guarantee an unambiguous resolution
of the relevance of the interaction terms. Recall that the canonical dimensions of auxiliary
quantities and the asymptotic behavior of Feynman diagrams are independent of the
choice of the values of the field dimensions. Hence, the functional (92) with the explicit
classification of irrelevant and relevant interaction parts characterizes the critical scaling
behavior amenable to the renormalization analysis.

In short, if the sink and sources are selected in such a way that they preserve the
average number of particles in the model, the anomalous scaling behavior in the model
corresponds to that of Reggeon field theory.

A distinct case occurs if the primitive source term is included in the considerations.
Then, it is possible that the model evolves towards an active phase in which the average
number of particles is finite, instead of towards the absorbing (inactive) phase. In this
case, the initial point of RG analysis is the effective functional which includes all of the
aforementioned terms, i.e.,

S =
∫

dt
∫

dx

{
−ψ†∂tψ + D0ψ†∇2ψ− λ0D0

[
2ψ† +

(
ψ†
)2
]

ψ2 + E+1ψ†

+
1
2

σ+
(

ψ†
)2

+ E1+1ψ†
(

ψ† + 1
)

ψ +
1
2

σ1+ψ†2(
ψ† + 1

)2
ψ2 − E−1ψ†ψ (94)

+
1
2

σ−
(

ψ†ψ
)2
}
+n0

∫
dx ψ†(0, x) .

The stationarity equation corresponding to this functional for the field ψ is

∂tψ− D0∇2ψ = −2λ0D0ψ2 + E+1 + E1+1ψ− E−1ψ . (95)

Note that, as usual, we take ψ† = 0 as the stationary value for the response field ψ†.
On the other hand, the dynamic functional expanded around the stationary value becomes
rather involved. To keep the model analysis manageable, let us proceed with a special
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case corresponding to the choice of E1+1 = E−1. Then, the re-expansion of the action
functional yields

S =
∫

dt
∫

dx
{
−ψ†∂tψ + D0ψ†∇2ψ−

√
8
√

E+1λ0D0ψ†ψ

+

(
−E+1

2
+

E−1
√

E+1 λ0D0√
2λ0D0

+
E+1σ1+

4λ0D0
+

E+1σ−
4λ0D0

+
σ+
2

)
ψ†2

+
E+1σ1+ψ†3

2λ0D0
+

E+1σ1+ψ†4

4λ0D0
+

√
2
√

E+1 λ0D0 σ1+ ψ†3
ψ

λ0D0

+

(
E−1 −

√
2
√

E+1 λ0D0 +

√
E+1 λ0D0 σ1+√

2 λ0D0
+

√
E+1 λ0D0 σ−√

2 λ0D0

)
ψ†2

ψ

+

√
E+1 λ0D0 σ1+ ψ†4

ψ√
2 λ0D0

− 2 λ0D0 ψ†ψ2 +
(
−λ0D0 +

σ1+

2
+

σ−
2

)
ψ†2

ψ2

+ σ1+ ψ†3
ψ2 +

σ1+ ψ†4
ψ2

2

}
+ n0

∫
dx ψ†(0, x) . (96)

Criticality corresponds to the limit E+1 → 0. The variance σ+ vanishes as well, as it is the
expectation value of a non-negative random quantity µ+. In the critical region, we solely
retain the leading E+1 and σ+, neglecting them in those terms where they are subleading.
This renders the final form of functional somewhat simpler:

S =
∫

dt
∫

dx
{
−ψ†∂tψ + D0ψ†∇2ψ−

√
8E+1λ0D0ψ†ψ +

(
E−1
√

E+1√
2λ0D0

+
σ+
2

)
ψ†2

+
E+1 σ1+ ψ†3

2 λ0D0
+

E+1 σ1+ ψ†4

4 λ0D0
+ E−1 ψ†2

ψ +

√
2E+1 λ0D0 σ1+ ψ†3

ψ

λ0D0

+

√
E+1 λ0D0 σ1+ ψ†4

ψ√
2 λ0D0

− 2 λ0D0 ψ†ψ2 +
(
−λ0D0 +

σ1+

2
+

σ−
2

)
ψ†2

ψ2

+ σ1+ ψ†3
ψ2 +

σ1+ ψ†4
ψ2

2

}
+ n0

∫
dx ψ†(0, x) . (97)

Analysis of the scaling dimensions then leads to the following possibilities. In the interac-
tion terms without the critical parameters E+1 and σ+, the earlier argumentation is valid;
however, in parts endowed with powers of these parameters as coefficients, their positive
scaling dimensions have to be reflected. The quadratic part of the dynamic functional
(97) indicates that the canonical dimension of the parameter E+1 is equal to four. Actually,
the canonical dimension of σ+ still needs to be regarded a free parameter of the model.

If we proceed in the same way as pointed out previously, we obtain the following
dynamic functional for the infrared scaling limit. For the first case with a vanishing
dimension of the response field ψ†, the third and fourth powers of ψ† and independent of
ψ or the first power in ψ can be neglected (because of the terms proportional to

√
E+1 or

E+1) when comparing to the monomials ∝ ψ†2 in the functional (97). Nonlinear monomials
of the field ψ are irrelevant versus the linear monomials because of the positive dimension
of field ψ. In this case, the dynamic functional becomes

S =
∫

dt
∫

dx
{
−ψ†∂tψ + D0ψ†∇2ψ− 2

√
2
√

E+1 λ0D0 ψ†ψ

+

(√
E+1 E−1√
2λ0D0

+
σ+
2

)
ψ†2

+ E−1 ψ†2
ψ
}
+ n0

∫
dx ψ†(0, x) . (98)

Again, the interaction part that remains after the dimensional analysis does not gener-
ate loop diagrams, even though the field ψ displays nontrivial correlations; however,
the canonical dimension of this expression attains negative value, which makes irrele-
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vant terms dangerous and prevents any decisive statements about the relevance of the
interaction terms.

In the second case with both fields attaining positive dimensions, i.e., dψ† > 0 and
dψ > 0, higher powers than the leading corrections to the quadratic functional of both
fields are irrelevant. This reasoning yields the effective functional

S =
∫

dt
∫

dx
{
−ψ†∂tψ + D0ψ†∇2ψ− 2

√
2
√

E+1 λ0D0 ψ†ψ

+

(√
E+1 E−1√
2λ0D0

+
σ+
2

)
ψ†2

+ E−1 ψ†2
ψ− 2 λ0D0 ψ†ψ2

}
+ n0

∫
dx ψ†(0, x) . (99)

Unlike the situation discussed previously, here the cubic monomial −2 λ0D0 ψ†ψ2 creates
loops itself because of the appearance of the correlation function of the field ψ. Hence, pairs
of action functionals with nontrivial fluctuation contributions are permissible, which we
now briefly discuss.

• The first effective action, for which the following inequality dψ† > dψ is satisfied.
In order to preserve the correlation function of the field ψ for the loop diagrams,
the variance σ+ has to possess a dimension lower than that of the parameter

√
E+1.

This leads to the dynamic functional

S =
∫

dt
∫

dx
{
−ψ†∂tψ + D0ψ†∇2ψ−

√
8E+1 λ0D0 ψ†ψ

+
σ+
2

ψ†2 − 2 λ0D0 ψ†ψ2
}
+ n0

∫
dx ψ†(0, x) (100)

with the critical dimension depending on the canonical dimension of the parameter
σ+ similar to a description of tricritical scaling behavior [55]. However, the model
is logarithmic at six dimensions, as in addition to the coefficient of the ∝ ψ†2 the
functional corresponds to the dynamic ϕ3 model. The upper critical dimension can
be specified by the scaling behavior of the parameter σ+ in the critical limit σ+ → 0,
E+1 → 0.

• The second effective action, for which the fields have the same dimension,
i.e., dψ† = dψ = d/2. Both third-order monomials are infrared-relevant, and the
dynamic functional basically becomes (99). In this situation, the canonical dimension
of the parameter σ+ is greater than the dimension of

√
E+1. We omit σ+ for simplicity.

Therefore, the dynamic functional takes the form

S =
∫

dt
∫

dx
{
−ψ†∂tψ + D0ψ†∇2ψ−

√
8E+1 λ0D0 ψ†ψ

+

√
E+1 E−1√
2λ0D0

ψ†2
+ E−1 ψ†2

ψ− 2 λ0D0 ψ†ψ2
}
+ n0

∫
dx ψ†(0, x) . (101)

Recall that this is the effective functional characterizing the Reggeon field theory
(Gribov process) with a random source independent of the particle density. Assuming
that the rate of change of the density owing to the random sink is proportional to
the power of density is rather natural; on the other hand, assuming that the rate of
change of the density as the random source is proportional to some power of density
is not natural. Consequently, the effective functional (101) probably predicts a critical
behavior of the Reggeon field theory (Gribov process) different from that analyzed in
the literature.

• The third effective functional, for which the dimensions of fields satisfy conditions
dψ† > dψ = 0, is the same as the first discussed functional (100).

The investigation of scaling dimensions reveals that we can in fact drop most of the
limitations on the probability distribution of the transition rates of types (79) and (80). In fact,
even if the higher-order cumulants are finite, the canonical dimensions of corresponding
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terms in the effective functional grow with the order of the cumulant, with the exception of
the situation in which the transition rate does not depend on the particle density.

The dimensional analysis of the relevance of the interaction monomials described
above seems to be rather formal. Above all, the arbitrariness of the canonical dimensions
of the fields is a rather annoying property. For this reason, it is illuminating to repeat the
investigation using the more traditional power counting method. Let us start with the
case corresponding to the particle number-conserving sinks and sources. The effective
functional is provided by Equation (94) at the criticality, i.e., with σ+ = E+1 = 0 and
E−1 = E1+1,

S =
∫

dt
∫

dx
{
−ψ†∂tψ + D0ψ†∇2ψ− λ0D0

[
2ψ† +

(
ψ†
)2
]

ψ2

+ E1+1ψ†2
ψ +

1
2

σ1+ψ†2(
1 + ψ†

)2
ψ2 +

1
2

σ−
(

ψ†ψ
)2
}
+ n0

∫
dx ψ†(0, x) . (102)

The divergence index [25,32] of a 1PI Feynman diagram reads

δ = (2 + d)L− 2I , (103)

where d is the spatial dimension, L corresponds to the number of loops, and I represents the
number of internal lines. The standard conditions yield relations between the parameters
L and I, the external field arguments Eψ and Eψ† , and the number of internal vertices Vij.
Here, the first index i represents the number of fields ψ and the second index j stands for
the number of response fields ψ† in the effective functional (102):

L = 1 + I − (V12 + V21 + V22 + V23 + V24) ,

I = V12 + 2V21 + 2V22 + 2V23 + 2V24 − Eψ , (104)

I = 2V12 + V21 + 2V22 + 3V23 + 4V24 − Eψ† .

From these equations we obtain, in particular,

Eψ − Eψ† = −V12 + V21 −V23 − 2V24 . (105)

By simple algebraic manipulations, we further arrive at

δ = 2 + d + (d− 4)V21 + (d− 2)V22 + dV23 + (d + 2)V24 − (d− 2)Eψ − 2Eψ† . (106)

Multiplying the previous relation (105) by an unspecific parameter a and putting this
together with Formula (106), we obtain the following relation for the divergence index:

δ = 2 + d− aV12 + (d + a− 4)V21 + (d− 2)V22 + (d− a)V23

+ (d− 2a + 2)V24 − (d + a− 2)Eψ − (2− a)Eψ† . (107)

Here, we can immediately observe that the value of the coefficient a is actually equivalent
to prescribing the values of the canonical dimensions of the fields. Because the index δ
does not depend on the parameter a, it might be concluded that the choice of the canonical
dimension of the fields does not have any effect on the IR or UV behavior of a 1PI Feynman
diagram. We do not have any mass term in the model, and as a result the index δ with at
least one negative coefficient of a vertex number indicates a possible infrared divergence,
whereas a positive δ represents the standard superficial UV divergence.

For the following analysis, we use the notation vnmψnψ†m for a general interaction
term and specify any particular interaction term simply by using the coefficient factor vnm.
It follows from the relation (106) that interactions v23 and v24 always contribute positively to
δ irrespective of the space dimension; hence, they are certainly infrared-irrelevant. From the
perspective of the dimensional value, the interaction v21 generates infrared divergences
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below four dimensions, while the interaction v22 is irrelevant above two dimensions.
Because there is no available method to deal with them directly, we must turn to the
usual relation between the ultraviolet and infrared divergences in logarithmic theory [25]
and extrapolate its results below the critical dimension using ε expansion. Hence, if the
interaction v21 is present, the best that can be done is to perform a renormalization analysis
around the critical dimension dc = 4, in which the interaction v22 is irrelevant as well; in
this case, we are left with the Reggeon field theory (Gribov process). From the viewpoint
of the preceding investigation of the canonical dimension, Formula (106) corresponds to
the dynamic functional (92) at the logarithmic dimension d = 4 with the field dimensions
dψ = d− 2, dψ† = 2 and dimensionless coupling constant of the vertex v12.

However, using the auxiliary relation (105) we can remove any one vertex number
except V22, which then induces corrections in the coefficients of the other vertex numbers
(apart from V22) and an alternative classification of the relevance of a given interaction,
although the index of any Feynman diagram is not affected by the change, e.g., choice
a = 4− d in (107) to remove interaction V21 leads to

δ = d+ 2+(d− 4)V12 +(d− 2)V22 +(2d− 4)V23 +(3d− 6)V24− 2Eψ− (d− 2)Eψ† . (108)

Here, v22, v23, and v24 are all irrelevant at spatial dimensions satisfying d > 2, while
v12 is relevant at d < 4. Therefore, if V12 > 0, the sole critical regime accessible to
renormalization analysis is that of the Reggeon field theory (Gribov process). From the
previous examination, it is evident that removing a vertex number Vij from the formula
for the index δ is equivalent to setting the canonical dimension of this vertex to zero and
correspondingly fixing the canonical dimensions of the fields. The goal of power counting
is to eliminate those Feynman diagrams of a perturbation calculation of a Green function
with a canonical dimension (i.e., the divergence index) greater than that of the leading-order
term. The index δ does not depend on the selection of the canonical dimension of the fields.
Indeed, the sole tunable parameter it might depend on is the space dimension. If the
canonical dimension of a vertex is zero, this essentially entails that we are seeking the
critical behavior of the model at a space dimension in which we do not have any constraints
whatsoever on the number of these vertices in the marginal and relevant diagrams.

Because our main interest is to analyze the influence of random sinks and sources
on the binary annihilation process, we shall preserve the v21 interaction in the effective
infrared model in any case; accordingly, we set the canonical dimension of this vertex to
zero for the purposes of the physical model. This means that dψ = 2 and dψ† = d− 2, while
that the critical regime of the model corresponds to the behavior of the Reggeon field theory
(Gribov process), which is obviously part of the universality class distinct from the pure
annihilation process [11].

From the viewpoint of the classification of terms in power counting, the two dynamic
functionals (91) and (93) in the earlier investigation of scaling-dimensions correspond to
the removal of the terms Eψ† and Eψ, respectively, from the formula for the UV index δ,
where we obtain

δ = d + 2− 2V12 + (d− 2)(V21 + V22 + V23 + V24)− dEψ (109)

= d + 2− 2V21 + (d− 2)(V12 + V22) + (2d− 2)V23 + (3d− 2)V24 − dEψ† . (110)

From the former relation (109) we can infer that all other interactions except v12 are irrele-
vant above two spatial dimensions, yielding the dynamic functional (91). However, these
are all dangerous irrelevant operators [51], as the negative dimension of the interaction
v12 can cause the dimension of a Feynman diagram with irrelevant operators to be nega-
tive. Because all dangerous operators have the same dimension, they cannot be organized
according by their degree of “dangerousness”. Formula (110) gives rise to an analogous
situation with respect to interactions other than v21, which possess a negative dimension
there. Nonetheless, the dimensions of irrelevant operators here are different, and this can
provide a basis for classification of certain operators as more dangerous than others.



Symmetry 2023, 15, 1696 24 of 40

We remark that all of the derived Formulas (106)–(110) for the divergence index are
identical, and demonstrate only particular choices of the ambiguous field dimensions. We
observe that in a multi-charge case it is somewhat problematic to obtain a self-consistent
conclusion about the importance of various interactions based only on the investigation of
scaling dimensions of fields and the operators corresponding to the interactions. In par-
ticular, it seems rather misleading to set any of the field dimensions equal to zero at the
beginning. Assuming that both field dimensions are non-zero renders them equal to each
other, leading to

δ = 2 + d +

(
d
2
− 2
)
(V12 + V21) + (d− 2)V22 +

(
3d
2
− 2
)

V23

+ (2d− 2)V24 −
d
2

Eψ −
d
2

Eψ† . (111)

In this formula, each coefficient of vertex numbers is a function of the space dimension d.
We can immediately conclude that the critical scaling behavior amenable to renormalization
group analysis is that of the Reggeon field theory (Gribov process) [13,22].

Next, let us consider the functional (96) for the active state. In this case, the index
δ does not reveal the whole truth due to the presence of the mass-like parameter E+1;
nevertheless, it demonstrates the contribution of the wave vector and frequency integral.
While additional types of interactions are generated, the set of constraints limiting their
numbers remains the same. Because the mass parameter is not involved in the power
counting of ultraviolet divergences in any other way now that new interactions have
appeared, it is advantageous to analyze the UV and IR behavior independently. Therefore,
power counting is performed in the same way as earlier. Labeling new interactions with a
tilde symbol, it is straightforward to obtain

L = 1 + I −
(
Ṽ02 + Ṽ03 + Ṽ04 + V12 + Ṽ13 + Ṽ14 + V21 + V22 + V23 + V24

)
, (112)

I = V12 + Ṽ13 + Ṽ14 + 2V21 + 2V22 + 2V23 + 2V24 − Eψ , (113)

I = 2Ṽ02 + 3Ṽ03 + 4Ṽ04 + 2V12 + 3Ṽ13 + 4Ṽ14 + V21 + 2V22 + 3V23 + 4V24 − Eψ† . (114)

We can immediately derive the relation

Eψ − Eψ† = −2Ṽ02 − 3Ṽ03 − 4Ṽ04 −V12 − 2Ṽ13 − 3Ṽ14 + V21 −V23 − 2V24 . (115)

Substituting relations (112) and (113) in the Formula (103) directly follows

δ = (d + 2)(1− Ṽ02 − Ṽ03 − Ṽ04)− 2(V12 + V13 + V14)

+ (d− 2)(V21 + V22 + V23 + V24)− d Eψ . (116)

Adding the relation (115) multiplied by the parameter a to Formula (116) yields

δ = d + 2 + (2a− d− 2)Ṽ02 + (3a− d− 2)Ṽ03 + (4a− d− 2)Ṽ04

+ (a− 2)V12 + (2a− 2)Ṽ13 + (3a− 2)Ṽ14 + (d− a− 2)V21

+ (d− 2)V22 + (d + a− 2)V23 + (d + 2a− 2)V24 − a Eψ − (d− a) Eψ† . (117)

Here, through a proper selection of the value of the coefficient a we can try to find a
formulation suitable for the classification of the interaction vertices. Further, the interaction
vertex with the negative dimension ψ†ψ† might be absorbed in the pair correlation function
of the field ψ contained in the perturbative components of the graphical representation.
When calculating the ultraviolet index, the field dimensions are completely determined by
the requirement that the coupling constant of the term ∝ ψ†ψ† be a dimensionless quantity.
There is no ambiguity in the formula for the UV index, and by marking the number of
correlation functions in a 1PI diagram Ĩ we obtain
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L = 1 + I + Ĩ −
(
Ṽ03 + Ṽ04 + V12 + Ṽ13 + Ṽ14 + V21 + V22 + V23 + V24

)
,

I + 2 Ĩ = V12 + Ṽ13 + Ṽ14 + 2V21 + 2V22 + 2V23 + 2V24 − Eψ , (118)

I = 3Ṽ03 + 4Ṽ04 + 2V12 + 3Ṽ13 + 4Ṽ14 + V21 + 2V22 + 3V23 + 4V24 − Eψ† .

The formula for the divergence index δ follows directly from these relations:

δ = (2 + d)L− 4 Ĩ − 2I = d + 2 +
(

d
2
+ 1
)
(Ṽ03 − Eψ†) + (d + 2)Ṽ04

+

(
d
2
− 1
)
(V12 − Eψ) + dṼ13 +

(
3d
2

+ 1
)

Ṽ14 +

(
d
2
− 3
)

V21

+ (d− 2)V22 +

(
3d
2
− 1
)

V23 + 2dV24 . (119)

The identical relation follows from Equation (117) when the parameter a is selected in
a such way that the coefficient in front of Ṽ02 vanishes. From the relation (119), we can
infer that when the vertex v21 is marginal, everything else is irrelevant and the model
corresponding to the field-theoretic functional (100) is recovered.

However, this is not the complete story, as in the case of infrared behavior we are
mainly interested in the limit of the vanishing mass parameter. Because the coupling
constants of new interactions depend on the parameter E+1, they necessarily affect the
limit of small E+1. The dependence of a Feynman diagram on the mass parameter E+1 in
the critical region (ki → 0, ωi → 0, E+1 → 0, ωi = O(

√
E+1), k2

i = O(
√

E+1)) can be easily
predicted using a suitable scaling of the variables in the loop integrals if these integrals
possess negative dimensions. In such a case, the upper limits of a renormalized diagram
in terms of integral might be sent to infinity. The outcome of the scaling of integration
variables is a power of the parameter E+1 multiplied by some function of the reduced
frequencies and wave vectors ωi/

√
E+1, kiE

−1/4
+1 . The wave number integrals defining

this function are IR- and UV-finite for all values of the reduced frequencies and wave
vectors; thus, they possess a finite limit when these vanish. Therefore, any infrared singular
behavior is signaled by a negative total power of the mass parameter E+1, which takes into
consideration both the scaling of integration variables (this provides the index δ) and the
additional powers of E+1 at the vertex factors of the Feynman diagram. As a result, we can
employ the following infrared divergence index brought about by the effective functional
(96) (here, the parameter σ+ is assumed to be subleading for simplicity):

δIR = δ + 2Ṽ02 + 4Ṽ03 + 4Ṽ04 + 2Ṽ13 + 2Ṽ14 = (d + 2)(1 + Ṽ04)

+

(
d
2
+ 2
)

Ṽ03 +

(
d
2
− 2
)
(V12 + V21) + dṼ13 +

3d
2

Ṽ14

+ (d− 2)V22 +

(
3d
2
− 2
)

V23 + (2d− 2)V24 −
d
2
(Eψ − Eψ†) . (120)

to guide the classification of the vertex terms. The same form can be derived from the
generic expression (117) by choosing the parameter a in such a way that the coefficient
connected with the term Ṽ02 in index δIR vanishes. To keep the infrared behavior tractable,
all coefficients of the vertex numbers in (120) have to be non-negative. The lowest spatial
dimension fulfilling this criterion is the upper critical dimension of the dynamic functional.
From relation (120), it is easy to see that dc = 4 for action (96) and that the dynamic
functional is indeed provided by Equation (101).
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5. Field-Theoretic Analysis of General Quantum Field Model

A typical stochastic model can be formulated in terms of the SDE

∂t ϕ(x) = U(ϕ(x)) + f (x),
〈

f (x) f (x′)
〉
= D(x, x′), (121)

where ϕ = ϕ(x) is a fluctuating field, the term U = U(ϕ(x)) is a prescribed t-local
functional (although explicit x dependence in U is permissible [25], and we do consider
such models in this paper) which contains relevant physical information about the stud-
ied system, f = f (x) is a random force with a Gaussian distribution with zero mean,
and D = D(x, x′) is a pair correlation function reflecting the underlying physics. It can be
shown [11,25,56–58] that the statistical properties of the solution of the stochastic problem
(121) are identical to those of the field-theoretic model described by the following (effective)
action functional:

S =
1
2

∫
dx
∫

dx′ ϕ′(x)D(x, x′)ϕ′(x′) +
∫

dx ϕ′(x)[−∂t ϕ(x) + U(ϕ(x))]

+
∫

dx
[

Aϕ(x)ϕ(x) + Aϕ′(x)ϕ′(x)
]
, (122)

where ϕ′ = ϕ′(x) is the Martin-Siggia-Rose response field [49] and Aϕ, Aϕ′ are source
terms [11,25].

A crucial parameter in the RG approach is played by the upper critical dimension dc.
Above dc, the mean-field theory, which neglects fluctuations of the order parameter, yields
accurate values for the universal quantities [25,32]. Below dc, strong fluctuations of the
order parameter significantly affect the behavior of the critical system. Thus, the mean-field
approach is not appropriate for this regime, and more sophisticated methods are needed.
Exactly at the critical dimension dc, the RG procedure leads to mean-field expressions
amended with logarithmic corrections [25,32].

In statistical physics, we aim for multiplicative renormalization, which makes sense
of otherwise divergent quantities while yielding additional information on large-scale
behavior [25]. First, the original action S [Φ] together with its parameters e0 are declared
to be unrenormalized quantities; parameters e0 (the whole set of parameters) are the bare
parameters, and are assumed to be some functions of the new renormalized parameters
e, while a new renormalized action is considered to be the functional SR[Φ] = S [ΦZΦ]
with certain renormalization constants of fields ZΦ. In unrenormalized full n-point Green
functions Gn = 〈Φ . . . Φ〉, the averaging procedure 〈. . . 〉 is carried out with the weight
functional expS [Φ], while in renormalized functions, GnR i used with weight expSR[Φ],
respectively. From the multiplicative relationship between the action functionals S [Φ]
and SR[Φ], we infer a relation between the corresponding Green functions GnR = Z−n

Φ Gn,
where by definition Gn = Gn(e0, ε . . . ) (the ellipsis denotes other relevant arguments
such as wave numbers or coordinates) and by convention the quantities GnR and ZΦ are
expressed using the renormalized parameters e. It is assumed that the correspondence
e0 ↔ e in perturbation theory is bijective, i.e., one-to-one. Second, the typical problem
to be dealt with is the presence of various ultraviolet (UV) divergences in perturbative
expansions. In practice, it is customary to use dimensional regularization with the minimal
subtraction (MS) scheme [25,32]. In dimensional regularization, the space dimension d
becomes a complex parameter and deviation from the upper critical dimension ε serves as
a formally small parameter of the theory. It is possible to regularize UV divergent graphs
with this method, and MS represents a useful method for calculation of various universal
quantities [25,32]. For instance, we have dc = 4 for the DP process, whereas dc = 2 for
binary annihilation process A + A → ∅. The crucial quantitative predictions of the RG
methods for universal quantities such as critical exponents are asymptotic series. In practice,
a resummation procedure is needed to obtain reliable numerical estimations [32].

Finally, we have to employ the renormalization procedure itself, which consists of
the reorganization of perturbative expressions such that the limit ε → 0 is well-defined



Symmetry 2023, 15, 1696 27 of 40

and finite [25,32]. The actual UV divergences are hidden in various renormalization con-
stants [11,25,32]. With this choice, all UV-divergences (poles in parameter ε) are absorbed
in the parameters e0(e, ε) and RG constants Zn

Φ(e, ε). On the other hand, UV divergences
are absent in connected renormalized Green functions WnR(e, ε). Note that the condition of
elimination of divergences does not precisely fix the functions e0(e, ε) and RG constants
ZΦ(e, ε). A considerable arbitrariness remains, which allows us to introduce an additional
dimensional parameter, namely, the renormalization mass (scale setting parameter) µ in
these functions (and via them into functions WnR):

WnR(e, µ, ε, . . . ) = Z−n
Φ (e, µ, ε)Wn(e0(e, µ, ε), ε, . . . ) . (123)

A change in the renormalization mass µ at fixed bare parameters e0 causes a change of e, ZΦ
and WR for unchanged Wn(e0, ε, . . . ). We label D̃µ for the differential operator µ∂µ at fixed
bare parameters e0 and operate on both sides of the equation ZΦWnR = Wn with it. Thus,
we obtain the fundamental RG equation[

µ∂µ + ∑
e
D̃µe∂e + Nγϕ

]
WnR(e, µ, ε, . . . ) = 0, (124)

where γϕ ≡ D̃µ ln Zϕ and the operator D̃µ is expressed in the parameters µ and e. The coef-
ficients D̃µe and anomalous dimension γϕ are called the RG functions, and are expressed
in terms of different renormalization constants Z. Charges (coupling constants) g are those
quantities e of the model on which the renormalization constants Z = Z(g) might in princi-
ple depend. The logarithmic derivatives of charges in (124) are beta functions: βg = D̃µg.
All the RG functions are UV-finite [25], i.e., they do not possess poles in ε. This is a direct
consequence of the functions WnR being UV-finite in Equation (124). The crucial importance
of Equation (124) lies in the fact that it can be mathematically analyzed, for instance, using
the method of characteristics. Its solutions can exhibit scaling behavior that can be directly
related to various experimentally measurable universal quantities.

Further simplification is possible, and consists of an introduction of functional Γ(α)
for one-particle irreducible (1PI) Green functions [25,32]. These are graphs that remain
connected even when a single internal line is cut [32,42]. It can be easily demonstrated [25]
that the functional for 1PI diagrams is related to the functional W of connected Feynman
graphs by suitable Legendre transformation:

Γ(α) = W(A)− αA, α(x) =
δW(A)

δA(x)
. (125)

The arguments for the functional Γ are a pair of fields α = {αψ, αψ̃}, while A = A(α) is
determined by the second relation in Equation (125). To obtain a given 1PI Green function
Γ(n,m), we only need to make appropriate derivatives with respect to source fields α:

Γ(n,m) ≡
δn+m

δαn
ψδαm

ψ̃

Γ(α)
∣∣∣∣
α=0

. (126)

By virtue of causality, all 1PI Green functions of the form Γ(0,m) identically vanish.
To simplify the notation, it is convenient to rename variables α according to the

following rule α → ϕ and obtain a crucial equation [25,32], which relates the bare action
functional S and generating functional Γ:

Γ(ϕ) = S(ϕ) + Γloop(ϕ). (127)

The initial step of the perturbation procedure in any field-theoretic model consists of a
suitable representation of Green functions in terms of Feynman graphs, the relevance
of which is governed by the charges of the model. Feynman diagrams are a convenient
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graphical tool for the classification of different algebraic structures that are constructed
from elementary perturbation structures (propagators and interaction vertices).

6. Directed Percolation

There are two well-established ways for a field-theoretic construction of the DP process.
One of them is based on microscopic considerations and may be regarded as more funda-
mental, whereas the other follows from phenomenological reasoning. For our purposes
here, the knowledge of the most important aspects of the ensuing model is sufficient, as its
construction has been covered in detail in the past [13,22,24] and crucial details have been
elaborated in Section 2. Thus, we consider the DP model in the epidemical terminology [13];
its guiding principles can be stated as follows:

1. The only slow variable of the theory is the density of sick individuals ψ(t, x).
2. Time evolution can be characterized by means of a Markov process.
3. The individual (e.g., person, animal, plant) is infected, and the corresponding rate is a

function of the local density of sick individuals ψ. After a certain time amount of time,
sick individuals spontaneously recover.

4. The state with no sick individuals (ψ = 0) is considered absorbing and cannot be left.
Effectively, the spread of percolation terminates.

5. The disease proliferates by means of a diffusion process.
6. The effect of fast degrees of freedom can be captured by a proper choice of the

stochastic variable that reflects the absorbing condition.

The basic governing quantity for the DP process is the density of active objects
ψ = ψ(x) [11,24]. Universal behavior (critical properties) in the vicinity of the phase transi-
tion is then completely described by the following stochastic differential equation:

∂tψ = D0∇2ψ + D0τ0ψ− D0u0

2
ψ2 +

√
ψζ, (128)

where ζ = ζ(x) is the source of fluctuation (noise term), ∂t = ∂/∂t is the time derivative,
∇2 = ∑d

i=1 ∂/∂x2
i is the Laplace operator in d spatial dimensions, D0 is the diffusion

parameter, u0 plays the role of small coupling constant, and τ0 represents the deviation
from the criticality. For instance, in directed bond (site) percolation on the lattice [24], the
parameter τ = p− pc corresponds to the deviation of the probability of open bonds p from
its critical value pc. In critical static theory, the temperature variable plays an analogous role
in the standard ϕ4-model [13,32]. As has already been mentioned, in actual calculations
we employ dimensional regularization; therefore, in all relevant expressions we explicitly
write d as a general spatial dimension.

From a mathematical point of view, SDE (128) with multiplicative noise is ambiguous
and should be augmented with proper interpretation. The usual choice is the Itô represen-
tation [46,57]. The noise term ζ(x) is assumed to be a Gaussian random field with zero
mean 〈ζ〉 = 0 and a pair correlation function of the following form:

〈ζ(x)ζ(x′)〉 = u0D0δ(x− x′), (129)

where δ(x) = δ(t)δ(d)(x) is the (d + 1)-dimensional Dirac delta function. The parenthe-
sis 〈· · · 〉 represents an averaging procedure over all possible realizations of the given
stochastic process (Gaussian noise distribution). The multiplicative property of the noise
variable in the governing equation (Equation (128)) is a direct consequence of the presence
of a unique absorbing state in which all fluctuations must stop when this state is reached.

In the application of the RG method, it is advantageous to rewrite the Langevin formu-
lation (128)–(129) in terms of functional integrals. The subsequent Janssen–De Dominicis
action functional of the DP process [11,13,22,25] takes the following form:

SDP = ψ̃(−∂t + D0∇2 − D0τ0)ψ +
D0u0

2
(ψ̃2ψ− ψ̃ψ2), (130)
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where ψ̃ = ψ̃(x) is an auxiliary response field and integrals over time and space variables
are implicitly assumed (compare with the general expression in Equation (122)).

As has been pointed out in the introduction, non-equilibrium systems might exhibit
scale-free behavior. Then, power-law dependencies are expected in scaling functions with
exponents that depend only on gross features of the system, e.g., space dimension and
symmetry properties [24,25]. There are certain differences between dynamic (as DP and
BAP) and static models. In contrast to the equilibrium system, there is an important exten-
sion of scaling analysis. Dynamical models are described by two independent correlation
lengths; in addition to the related spatial correlations, there is an additional length scale
ξ‖ describing temporal correlations. Typically, in statistical physics the models are not
isotropic in the sense of models in relativistically invariant theories. On the contrary, they
exhibit so-called strong anisotropic scaling, with the time variable playing a distinguished
role [11,15].

Typically, we expect system correlation lengths in the vicinity of the critical point to
diverge satisfying some power-law dependence ξ⊥ ∼ |τ0|−ν⊥ , ξ‖ ∼ |τ0|−ν‖ , where τ0 is
as defined in Equation (128). The exponents ν⊥ and ν‖ usually acquire different values.
For a given universality class of the dynamic model, it is reasonable to define the dynamic
exponent z as a fraction z = ν‖/ν⊥. Then, in the critical region, the correlation lengths in
the time and space direction are simply related as ξ‖ ∼ ξz

⊥. From this, we can infer that
the time and space scales are related by a similar relation t ∼ |x|z. In physics, two specific
values are commonly encountered: z = 1, corresponding to Lorentz-covariant theory, and
z = 2, corresponding to diffusive spreading. Subdiffusive propagation is characterized
by values of the exponent z > 2 and superdiffusive propagation by values 1 < z < 2.
As with any other static critical exponent, z is a universal parameter characterizing a given
universality class.

One additional exponent is needed for complete knowledge of the scaling behavior of
the DP process at criticality. Usually, this is the exponent β that quantitatively characterizes
the scaling of the order parameter ρ, i.e., the density of particles in the active phase of
a macroscopic system in the critical region. The asymptotic form of this relation reads
ρ ∼ (pc − p)β ∝ (−τ0)

β. It is possible to directly apply scaling analysis [24], with the
resulting critical exponents being β = 1, ν⊥ = 1

2 , ν‖ = 1. These values correspond to
the mean-field theory, which is valid above the upper critical dimension dc = 4 [13].

The natural task is to calculate these exponents in physically relevant space dimensions.
In this context, various methods have been used in the past. In particular, analytical
results for the critical exponents of the DP process are currently known up to the two-loop
approximation [11,13]. In general, perturbative computations are feasible only for a few
first terms in loop expansion, as the complexity of the calculation increases dramatically
with each loop order. Practically all non-equilibrium models are analyzed to the two-
loop order. Therefore, one of the practical aims we are pursuing is to develop numerical
and algorithmic techniques to obtain reliable higher-loop corrections. Recently, we were
able to improve existing results up to the three-loop order [35,59,60]. The final results
can be found elsewhere [36], together with all relevant technical details. The third-order
perturbation theory presents a non-trivial task. It can be argued that its difficulty is an order
of magnitude larger than the difficulty of the previous order. First of all, the number of
Feynman graphs is much greater, and there are technical issues related to proper extraction
of the divergent parts and numerical evaluation of the remaining parts of these Feynman
diagrams. For illustration purposes, let us consider the renormalized two-point response
function

Wψψ̃ = 〈ψ(x)ψ̃(0)〉. (131)

This quantity satisfies the RG equation, which takes the form of the first-order partial
differential equation(

µ∂µ + βg∂g − τγτ∂τ − DγD∂D − γψ − γψ̃

)
Wψψ̃ = 0, (132)
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where βg is the beta function corresponding to the charge g = u2 and γQ, Q ∈ {τ, D, ψ, ψ̃}
are anomalous dimensions of parameters and fields.

RG functions can be determined by perturbation theory, though such a procedure is
usually accompanied by technical difficulties. The critical region function (132) takes the
asymptotic form

Wψψ̃(t, x, τ) = t−2∆ψ/∆ω f
(

x
t1/∆ω

,
τ

t−∆τ/∆ω

)
. (133)

We stress that the critical exponents ν⊥, ν‖, and z defined previously can be expressed
through the critical dimensions ∆ω, ∆τ , and their ratios, as follows: ν⊥ = 1/∆τ , ν‖ =
∆ω/∆τ and z = ∆ω.

In the case of the DP process on a lattice [24], the response function is the primary
building block for a definition of the number of active sites N(t, τ) propagating from the
original seed

N(t, τ) =
∫

ddx Wψψ′(t, x, τ) ∼ tθ F
(

τt∆τ/∆ω

)
. (134)

Note here that this quantity is central for seed simulations [24]. The latter relation in
Equation (134) stands for the corresponding asymptotic behavior controlled by the critical
exponent θ and valid at criticality. The critical exponent θ can be expressed using the critical
dimensions of the field ψ and frequency ω through the following formula:

θ ≡ d− 2∆ψ

∆ω
. (135)

Another dynamic quantity is the mean square radius R2(t) of propagating particles from
the origin at time t = 0, which can be introduced by the following formula

R2(t, τ) =

∫
ddx x2Wψψ′(t, x, τ)∫
ddx Wψψ′(t, x, τ)

∼ t2/z, (136)

where z = ∆ω and the latter expression holds in the vicinity of critical point, which
corresponds to the limit τ → 0.

We additionally present the results of our three-loop calculations [34,35,60] up to ε3

precision:

z = 2− ε

12
− 0.02920905(2)ε2 + 0.029206(4)ε3, (137)

ν‖ = 1 +
ε

12
+ 0.02238280(2)ε2 − 0.008168(3)ε3, (138)

ν⊥ =
1
2
+

ε

16
+ 0.021097830(11)ε2 − 0.009594(2)ε3, (139)

θ =
ε

12
+ 0.037509726(12)ε2 − 0.032978(3)ε3, (140)

where we have explicitly provided the standard error stemming from the numerical calcu-
lations. Note that it is expressed in terms of the least significant digit(s). Details of these
calculations will be published elsewhere shortly [36]; here, we only note that in the two-loop
approximation our calculations coincide with the known results obtained in [13,22].

7. Isotropic Percolation

The construction of effective action for IP follows analogous steps to the DP process
described in the previous Section 6. The major difference lies in the necessity of introducing
additional slow variables and related dynamic considerations. The governing principles
are now as follows [13,28,29]:
1. The relevant dynamic variables of the model are fields n(t, x) and m(t, x), which corre-

spond to the density of active sites and the density of the residual debris, respectively.
The actual relation between fields n and m reads m(t, x) ∝

∫ t
−∞ dt′ n(t′, x).



Symmetry 2023, 15, 1696 31 of 40

2. The dynamics of the model can be represented by means of a Markov process.
3. In the susceptible medium, the activity is localized and the needed reaction rate

depends on n and m, respectively. After a certain period of time, the active site
becomes inactive debris.

4. The system without active sites, i.e., states for which the condition n = 0 is satisfied
with an arbitrary configuration of m, are called absorbing. The active population is
effectively extinct for these states, and the percolation process terminates.

5. The disease proliferates between neighboring sites through a diffusion process.
6. Neglected microscopic degrees of freedom can be effectively modeled through stochas-

tic variable, which reflects the existence of absorbing states.

Using this heuristic reasoning and immediately taking into account the RG properties
of the ensuing model, we can formulate a stochastic model for IP [13,29]. The role of
the governing dynamic variable is played by the coarse-grained field ψ = ψ(t, x), which
corresponds to the density of active sites. Alternatively, the field ψ might be understood
as an order parameter of the model. Positive values of ψ corresponds to an active state;
in contrast, in the absorbing state we have ψ = 0 everywhere.

The dynamic equation for ψ takes the form

∂tψ = D0∇2ψ− D0τ0ψ− D0u0ψφ +
√

ψζ, (141)

where ζ = ζ(t, x) denotes the source of fluctuation (noise term), ∂t = ∂/∂t is the time
derivative,∇2 is the Laplace operator in d spatial dimensions, D0 is the diffusion parameter,
u0 plays the role of the small coupling constant, and τ0 represents a deviation from the
critical value for the injected probability and plays an analogous role to the case of a DP
process or ϕ4− model [13,32]. Here, it is convenient to write the interaction term in the
action (141) as a product D0u0, as u0 plays the role of the charge in perturbation theory.
In the RG calculation, it is necessary to distinguish between unrenormalized parameters
(with the subscript “0”) and renormalized quantities (without the subscript “0”), as we do
here. The debris field φ is related to the field ψ by the time integral

φ(t, x) = D0

t∫
−∞

dt′ ψ(t′, x). (142)

We again consider the Gaussian noise variable ζ with zero mean 〈ζ〉 = 0 and a pair
correlation function selected in the form〈

ζ(t′, x′)ζ(t, x)
〉
= u0D0δ(t′ − t)δ(x′ − x), (143)

where the brackets stand for averaging over stochastic realizations. The form of the noise
term in Equation (141) is evidently consistent with the existence of absorbing states; thus,
the SDE (141) corresponds to a model with multiplicative noise.

In order to take advantage of the RG method, let us recast the stochastic problem
(141)–(143) into the corresponding field-theoretic formulation using the approach described
in Section 5. The ensuing Janssen–De Dominicis action functional [56,57] takes the form

S = ψ̃
(
−∂t + D0∇2 − D0τ0

)
ψ +

u0D0

2

(
ψ̃2ψ− 2ψ̃ψφ

)
, (144)

where ψ̃ = ψ̃(t, x) corresponds to a response field. For brevity, the integrations in the
action (144) over all temporal and spatial coordinates are implicitly assumed, e.g., the first
term on the right-hand side coincides with ψ̃∂tψ =

∫
dt
∫

ddx ψ̃(t, x)∂tψ(t, x). We remark
here that the response functional (144) uniquely contains only information on universal
quantities, e.g., critical exponents, and not on model-dependent parameters such as the
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precise value of τc. Furthermore, the action (144) possesses a useful asymptotic property,
namely, invariance with respect to the time-reversal symmetry (dual transformation)

ψ̃(t, x)←→ −φ(−t, x), (145)

which is useful in actual perturbative calculations.
The model (144) is amenable to RG analysis; for our purposes, we aim to determine uni-

versal quantities in the form of asymptotic series in a formally small expansion parameter ε
defined by the relation

d = 6− 2ε, (146)

where dc = 6 is an upper critical dimension of the model.
From a practical point of view, it is sufficient to investigate only those 1PI Feynman

diagrams Γ(nψ̃ ,nψ) [25,32]. Moreover, dynamic models [11,25], in contrast to static models,
require two diverse scales: a frequency scale dω [Q] and a momentum scale dk[Q] for
arbitrary quantity Q in the action (response functional). The dimensions of quantity Q are
determined using the standard normalization conditions

dk[k] = −dk[x] = 1, dk[ω] = dk[t] = 0,

dω [k] = dω [x] = 0, dω [ω] = −dω [t] = 1 (147)

together with a requirement for the response functional to be a dimensionless quantity.
Using the information about dω [Q] and dk[Q], the total canonical dimension d[Q] can be
expressed as

d[Q] = dk[Q] + 2dω [Q], (148)

the exact form of which is received by comparing the IR of the most important terms
(∂t ∝ ∇2) in the response functional (144). The total canonical dimension d[Q] for the
dynamical models represents the same quantities as the momentum dimension in static
systems. The dimensions of all bare parameters and fields for the isotropic action are listed
in Table 1. Dimensional analysis shows that the IP action is logarithmic (when the charge
u0 becomes dimensionless) at ε = 0, and manifests as pole terms with respect to ε.

Table 1. Canonical dimensions of the bare parameters and fields for the IP response functional (144).

Q k, ∂x ω, ∂t ψ̃, φ ψ D0 τ0 u0

dk[Q] 1 0 d−2
2

d+2
2 −2 2 6−d

2

dω [Q] 0 1 0 0 1 0 0

d[Q] 1 2 d−2
2

d+2
2 0 2 6−d

2

The action (144) is amenable to standard perturbative analysis, which yields expansion
in Feynman diagrams. The fundamental perturbative components are a propagator and
two interaction vertices. For practical calculations, it is convenient to consider a propagator
〈ψψ̃〉0 in time–momentum representation, in which it takes the following form:

〈ψψ̃〉0 = θ(t− t′) exp
[
−D0(p2 + τ0)(t− t′)

]
. (149)

The rules for Feynman graphs are supplemented by momentum conservation at each
interaction vertex and integration over all time coordinates in a diagram. Note that another
acceptable way of defining perturbation elements is possible [30].
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The Dyson equation for the self-energy Green function in the frequency–momentum
representation has the general form

Γ(1,1) = iωZ1 + D(p2Z2 + τZ3)− loop diagrams. (150)

Furthermore, the perturbation representation for the vertex function Γ(2,1) takes the general
form

Γ(2,1) = DuµεZ4 + loop diagrams. (151)

Thus, as a direct consequence of the time-reversal symmetry (145), only two 1PI Green
functions Γ(1,1) and Γ(2,1) have to be considered in order to correctly renormalize the model.

Without mentioning unnecessary technical details, for which we refer the interested
readers to the literature [11,13,29], we note here only that the crucial RG property of the
action functional (144) is fulfilled, i.e., the model is multiplicatively renormalizable. The per-
turbation theory is most conveniently analyzed by means of dimensional regularization
augmented with the famous ε-expansion [25,32]. As usual, the response functional is inves-
tigated near the critical point, where the mass-like parameter τ0 attains its critical value.

Direct inspection of the Feynman diagrams reveals that the coupling constant of the
perturbation theory is u2

0 rather than u0. Consequently, it is appropriate to introduce an
expansion parameter g0 = u2

0 within which to carry out the perturbative analysis.
The renormalized action corresponding to the bare action (144) takes the follow-

ing form:

SR = ψ̃R(−Z1∂t + Z2D∇2 − Z3Dτ)ψR +
Duµε

2
[Z4ψ̃2

R
ψR − 2Z5ψ̃R ψR φR ]. (152)

On the other hand, the response functional can be obtained by multiplicative renormaliza-
tion of all parameters and fields:

ψ = ψR Zψ, ψ̃ = ψ̃R Zψ̃, D0 = DZD,

u0 = uµεZu, τ0 = τZτ + τc, (153)

amended with analogous relations between RG constants for terms appearing in the
action (152):

Z1 = ZψZψ̃, Z2 = ZDZψZψ̃

Z3 = ZτZDZψZψ̃, Z4 = ZDZuZψZ2
ψ̃, Z5 = Z2

DZuZ2
ψZψ̃. (154)

By straightforward algebraic operations, we can readily invert these relations and obtain
RG constants for the fields and parameters in terms of RG constants Z1 − Z5

Zψ = Z1Z−1/2
2 , Zψ̃ = Z1/2

2 ,

ZD = Z2Z−1
1 , Zτ = Z3Z−1

2 , Zu = Z4Z−3/2
2 . (155)

Time-reversal symmetry (145) implies that the RG constants Z4 and Z5 are in fact equal.
From the general theory of critical phenomena, we know that a set of independent criti-
cal exponents are associated with each universality class that completely determine the
universal macroscopic behavior of the model. For the IP model, we have to determine
three independent exponents. To obtain these, we can begin with the dynamic response
functional (144) and follow the usual steps of perturbative RG analysis [25]. However, it
can be shown that this is actually not the case [13], as two exponents can be calculated
from a less complex action that corresponds to the quasi-static limit [31]. In this way,
the time-dependence of the fields is eliminated and perturbative analysis is considerably
simpler. In fact, IP in this limit can be related to the widely recognized Potts model [61].
The main result of this remark is that the renormalization functions βu, γψ and γτ can be
obtained by easier means. We note here that results in this regard are already known up to
four-loop order [62].
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As mentioned at the beginning of this section, to completely accomplish the three-loop
calculation of critical exponents it is necessary to use the action (144). Our main task
is to find the divergent parts of the 1PI Green function Γψψ̃(ω, p) that are proportional
to the external frequency ω. To this end, we need to determine the partial derivative
∂Γ(1,1)(ω, p)/∂(iω), which would allow us to calculate the dynamic exponent z, which
cannot be determined by means of the aforementioned quasi-static limit. This exponent
describes the difference between scaling in the spatial and temporal directions [11,13,24].

In this part, we present results from one- and two-loop approximations. For future
reference, we note that these graphs are conveniently described using the Nickel index for
later algorithmic manipulation [63,64]. It is possible to precisely determine the internal
structure of each Feynman diagram using Nickel notation, which plays a fundamental role
in symbolic operations. The Nickel notation for relevant two-loop Feynman diagrams is
provided in Table 2.

Table 2. Representation of two-loop Feynman graphs for self-energy employing a formalism based
on Nickel indices. In the first column, the number in brackets corresponds to the Feynman diagram
from Equations (157)–(162).

Diagram Nickel Index Symmetry Coefficient

(157) e12|e3|33| : 0ψ̃_ψψ̃_φψ̃|0ψ_ψ̃ψ|φψ̃_ψψ̃| 1

(158) e12|e3|33| : 0ψ̃_φψ̃_ψψ̃|0ψ_ψ̃ψ|φψ̃_ψψ̃| 1

(159) e12|23|3|e| : 0ψ̃_φψ̃_ψψ̃|ψ̃φ_ψψ̃|ψψ̃|0ψ| 1

(160) e12|23|3|e| : 0ψ̃_φψ̃_ψψ̃|ψ̃ψ_ψψ̃|φψ̃|0ψ| 1

(161) e12|23|3|e| : 0ψ̃_φψ̃_ψψ̃|ψψ̃_φψ̃|ψψ̃|0ψ| 1

(162) e12|23|3|e| : 0ψ̃_φψ̃_ψψ̃|φψ̃_ψψ̃|ψψ̃|0ψ| 1

The standard evaluation of a single divergent one-loop diagram [29] yields the follow-
ing contribution:

∑
1-loop

= = −3
4

Γ(1 + ε)

2ε

u2
0

(4π)3−ε
τ−ε

0 , (156)

where Γ(x) is Euler’s gamma function. Note that the mass term τ0 has been used as an
infrared regulator.

Obtaining the two-loop approximation is more demanding; in this section, there is
no particular reason to provide all of thedetailed technical information. Thus, we focus
only on the calculation of the RG constant and present the contributions of the Feynman
diagrams to Z1. These read:

=
Γ(1 + 2ε)

(4π)6−2ε

u4
0τ−2ε

0
64ε

[
−13

6ε
− 17

4
− ln 2

3
+

3
2

ln 3
]

, (157)

=
Γ(1 + 2ε)

(4π)6−2ε

u4
0τ−2ε

0
32ε

[
11
6ε
− 57

12
+

ln 2
3

+
3
2

ln 3
]

, (158)

=
Γ(1 + 2ε)

(4π)6−2ε

u4
0τ−2ε

0
64ε

[
15
2ε
− 55

12
− 11

3
ln 2− 3

2
ln 3
]

, (159)

=
Γ(1 + 2ε)

(4π)6−2ε

u4
0τ−2ε

0
32ε

[
9
2ε

+
27
4

+ ln 2 +
3
2

ln 3
]

, (160)
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=
Γ(1 + 2ε)

(4π)6−2ε

u4
0τ−2ε

0
4ε

[
3
8ε

+
5

16
− ln 2 +

3
8

ln 3
]

, (161)

=
Γ(1 + 2ε)

(4π)6−2ε

u4
0τ−2ε

0
64ε

[
3
2ε
− 5

12
+

37
3

ln 2− 15
2

ln 3
]

. (162)

The total two-loop contribution reads

∑
2-loop

=
Γ(1 + 2ε)

(4π)6−2ε

u4
0τ−2ε

0
64ε

[
51
2ε

+
107
12
− 5 ln 2 +

9
2

ln 3
]

. (163)

To further simplify the analysis, it is advantageous to introduce a new charge g0 in the
following way:

g0 = u2
0

Γ(1 + ε)

(4π)3−ε
. (164)

Using the approximate relation, where Γ(1 + 2ε) = Γ2(1 + ε) + O(ε2), we finally arrive at
the desired results:

∑
1-loop

= −3g0τ−ε
0

8ε
, ∑

2-loop
=

g2
0τ−2ε

0
64ε

[
51
2ε

+
107
12
− 5 ln 2 +

9
2

ln 3
]

. (165)

To the two-loop precision 1PI function Γ(1,1) can be formally written as

Γ(1,1) = iω
(

1 + g0τ−ε
0 Γ(1) + g2

0τ−2ε
0 Γ(2)

)
. (166)

The exact form of the RG constant Z1 follows from standard algebraic operations [25]:

ΓR
1,1 = iω

[
Z1 + g

(
µ2

τ

)ε

Γ(1)Z1ZgZ−ε
τ + g2

(
µ2

τ

)2ε

Γ(2)Z1Z2
gZ−2ε

τ

]
(167)

= iω

[
Z1 + g

(
µ2

τ

)ε

Γ(1)Z1ZgZ−ε
τ + g2

(
µ2

τ

)2ε

Γ(2)

]
(168)

= iω

[
Z1 −

3
4

1
2ε

g
(

µ2

τ

)ε(
1 + g

(
17
8ε
− 5

12

))
+ g2

(
µ2

τ

)2ε

Γ(2)

]
, (169)

where the renormalized coupling g enters via g0 = gµ2εZg and we require that the RG con-
stant cancel all pole terms up to the two-loop order. From this requirement, we eventually
obtain the final form of the RG constant Z1:

Z1 = 1 +
3
4

g
2ε

+
1
64

g2

2ε

[
51
ε
− 227

6
+ 10 ln 2− 9 ln 3

]
, (170)

which is consistent with [13].
From the point of view of renormalization, the unacceptable divergent contribution

ln(τ)
ε

(171)

is eliminated in the final expression, which provides a necessary condition for the correct
use of the renormalization procedure [25]. Note that terms such as (171) might appear
in every order of the perturbation theory. Thus, the final cancellation of such terms (171)
provides a nontrivial check of the employed calculation techniques.

For the IP model, evaluations of the dynamic exponent z have been carried out to
two-loop precision. Our aim is to develop a calculation scheme that would allow us to
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obtain a higher three-loop approximation. To this end, we employ a recently obtained
algorithmic method [65–67]. The method itself consists of the following steps:
1. Construction of all needed three-loop 1PI diagrams, with all permissible connections

among internal vertices complying with the Feynman rules (Figure 1), with two
external legs for Γψψ̃ and three legs for Γψψ̃ψ̃.

2. Symbolic generation of the integrand using the procedure in Python 2.7 (GraphState
and Graphine packages).

3. Calculation of the corresponding part of the Feynman diagrams using the Vegas
algorithm.

ψ̃

ψ̃

ψ
= D0u0

ψ̃ ψ

φ
= −D0u0

ψ ψ̃
= 〈ψψ̃〉0

φ ψ̃

t′′ t′ t
= D0θ(t

′′ − t′)〈ψ(t′)ψ̃(t)〉0

Figure 1. Graphical depiction of the fundamental perturbative elements for the IP response func-
tional (144).

Compared to directed percolation [34,35] (discussed in Section 6), it is notable that
the isotropic percolation model represents a much more demanding task, and would
probably present a more difficult problem from a technical point of view as well. In this
regard, we have performed the initial steps of the three-loop calculation of the IP model.
In particular, existing algorithms for the DP were successfully generalized, and all Feynman
diagrams required for a complete three-loop approximation were listed in systematic
fashion. The number of three-loop diagrams can be found in Table 3, and their topological
graphical representation is shown in Figure 2 for the 1PI Green function Γ(1,1) and in
Figure 3 for the 1PI Green function Γ(2,1). For the sake of brevity, we do not explicitly
write out all permissible diagrams, and restrict ourselves to different topology structures.
The total number of independent possibilities for different configurations of internal vertices
is indicated in the bracket after each topological structure. In other words, it represents the
number of possible diagrams for a given topological structure.

(×32) (×10) (×1)

(×4) (×4) (×16)

(×16) (×2) (×8)

Figure 2. Three-loop Feynman diagrams for the two-point 1PI Green function Γ(1,1). The number in
brackets represents the total number of diagrams for a given topology.
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(×12) (×6) (×24) (×60)

(×6) (×44) (×96) (×48)

(×192) (×144) (×24) (×24)

(×96) (×31) (×48)

Figure 3. Three-loop diagrams for the 1PI Green function Γ(2,1). The number in brackets corresponds
to the total number of diagrams for a given topology.

Table 3. The number of three-loop 1PI graphs for the IP model.

IP 1-Loop 2-Loop 3-Loop

〈ψ̃ψ〉 1 6 93

〈ψ̃ψ̃ψ〉 1 36 957

8. Conclusions

In this paper, we have studied the universal properties of two different percolation
processes within the field-theoretic approach and performed the main steps of the UV
renormalization analysis. We present the results for critical exponents of the directed
percolation universality class up to the third-loop approximation. For both models, we
employed the MS scheme, in which a small expansion parameter is represented by ε, which
controls the deviation from the upper-critical space dimension dc = 4 (DP) or dc = 6 for
isotropic processes. The obtained results agree very well with the two-loop calculations
obtained previously in [13,22]. For the realistic dimension d = 3(ε = 1), the resummation
technique using Padé approximants was performed. The achieved results are in excellent
agreement with the Monte Carlo prediction [36]. We believe that this paper represents a
step towards the enhancement of multi-loop calculations in the area of nonequilibrium
physics. We hope that it will help with future investigations of other more difficult models.
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Abbreviations
The following abbreviations are used in this manuscript:

BAP binary annihilation process
DLR diffusion-limited reaction
DP directed percolation
FPE Fokker–Planck equation
IP isotropic percolation
IR infrared
MS minimal subtraction
OPE operator product expansion
PDF probability density function
RG renormalization group
SDE stochastic differential equation
TDGL time-dependent Ginzburg–Landau
UV ultraviolet
1PI one-particle irreducible
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