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Abstract: To reveal the stable bearing capacity of a new semi-rigid dome structure, the tensile–
beam cable dome (TBCD), a detailed numerical simulation and analysis of a 60 m model TBCD
is conducted. Then, the effects of factors such as the prestress level, original imperfection size,
original imperfection distribution, and addition of hoop tension rods on the stability of the TBCD
model are investigated. The results show that the unstable loads of the TBCD are arranged from
small to large in the following order: doubly nonlinearity with an original imperfection, geometry
nonlinearity with an original imperfection, geometry nonlinearity without an original imperfection,
and eigen buckling. In this case, the effects of geometry nonlinearity, material nonlinearity, and
original imperfections must be comprehensively analyzed. The unstable mode of the TBCD depends
on the loading form. Torsional buckling of the overall structure occurs under the symmetric load of
‘Full live + full dead’, while local out-of-plane buckling appears with the asymmetric load of ‘Half
live + full dead’. With 2–3 times the loading integrations, the innermost tension beams change from
stretch bending to pressurized bending, which causes the overall TBCD to become unstable. A small
prestress level clearly decreases the stability of the TBCD, while a relatively large prestress level has
little effect. When the original imperfection is greater than 1/400 of the span, the stability of the
TBCD is problematic. Comprehensively considering the impact of multiple defects is needed when
analyzing the buckling of the TBCD. Adding hoop tension beams between the top ends of rods can
effectively improve the integrity and stability of the TBCD.

Keywords: tensile–beam cable dome (TBCD); stability analysis; original imperfection; geometry
nonlinearity; material nonlinearity; parametric analysis

1. Introduction

Membrane films [1] are thin, flexible, lightweight panels with partial light transmission.
However, the domestic climate and environmental pollution limit the use and popularity
of membrane films and their application in cable-strut structures [2].

Rigid steel plates and glass sheets have been widely used in large-scale steel roof
structures [3] with secondary cables. Because flexible cables have only axial stiffness and
no bending stiffness, these cables must be set on the tops of the pressurized rods without
setting on the cables. Otherwise, the structure will be very complex, and a relatively larger
prestress level [4] should be built in advance to provide sufficient elastic support to bear
the self-weight of the roof and to reduce the deflection of components.

Recently, a new semi-rigid dome structure, the tensile–beam cable dome (TBCD) [5],
was proposed by changing the upper cables of the cable dome to steel tubes, hinged at all
ends and midpoints. Tension beams and adjacent components are connected by articulated
nodes, which meet the mechanical demand for folding and unfolding and can realize the
nonbracket expansion construction. Furthermore, due to the addition of upper tension
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beams, the TBCD has sufficient flexural rigidity to reduce excessive local deformation,
and it can be welded or bolted to connect purlins and other roof auxiliary members.
Therefore, the TBCD can be used to support heavy roofing systems. Zuo [6] conducted
research on the mechanical properties and static simulations of Levy-type TBCDs and
proposed several feasible setting modes for the connecting joints of ridge beams. Pan [7]
designed an experimental model of a Geiger-type TBCD with a diameter of 6 m, verified
the feasibility of the nonbracket construction method for the TBCD, and investigated the
mechanical properties of TBCD under static loading conditions. Ding [8] established refined
finite element models for TBCDs and then compared the static responses and vibration
characteristics of TBCDs, suspended domes, and conventional cable domes. However, the
above studies mainly focused on the force transmission and static response of the TBCD
but not the stability performance of the TBCD.

Stability capacity refers to the ability of a structure to hold its form or undergo deforma-
tion in a loading state [9,10]. By utilizing the meshless generalized finite difference method
(GFDM), Wang et al. [11] proposed a system for 3D composite elastic materials. Kabir and
Aghdam [12] proposed a fine Bézier-based multistep method. Bert and Malik [13] introduce
the latest research progress in analyzing laminated composite material structures using the
differential quadrature method. In addition, Chen et al. [14] presented a correction project
to reduce the difference between predicted and numerical results through finite element
analysis (FEA). In fact, compared with a traditional cable dome, the upper rigid tension
beam grid of a TBCD will impart significantly greater local stiffness. The pre-axial forces
built in the tension beams will dramatically reform the stability to elastic deformation,
thereby improving the stability of the overall structure.

Based on the above considerations, a stability analysis of a TBCD is performed in
this study. First, the basic assumptions and procedures of the finite element model are
given, and then an eigen buckling analysis is conducted under two load cases. After that, a
series of nonlinear stability analyses are performed considering the original imperfection
and doubly nonlinearity. Then, the load magnification factor and nonlinear buckling
mode of the structure under the specified load cases are obtained. Finally, the effects of
several parameters, such as prestress level, original imperfection size, original imperfection
distribution, and addition of circumferential members, on the stability performance of the
TBCD are discussed.

2. TBCD Structure

By changing the upper cables of the cable dome to steel tubes, hinged at all ends and
midpoints, a semi-rigid dome structure, the tensile–beam cable dome (TBCD). A TBCD is
composed of tension beams, ring cables, an inner pulling ring, an outer pressurized ring,
oblique cables, and several hinges arranged in the middle of tension beams (Figure 1) for
convenient non-scaffolding erection.
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3. Building of Numerical Model
3.1. Basic Assumptions

a. The tension beam and the inner pulling ring can bear axial forces and bending moments.
b. The cable is an ideal flexible body regardless of the bending stiffness [15].
c. The connections between the cable and rod, the cable and tension beam, and the rod

and tension beam are ideal spherical hinges.

3.2. Iterative Force Analysis and Component Optimization Process

According to the above assumptions, an APDL program for iterative force analysis
and model optimization is compiled. The calculation process is shown in Figure 2.
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3.3. Philosophy of Numerical Models

When establishing the finite element model, sectional specifications of structural cables,
tension beams, and rods must be improved to bear the dead load.
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(1) According to the “Standard for design of steel structures” (GB 50017-2017) [16], the
vertical displacement of the top of the rod must not be greater than L/250 (L is the
structural span) in the serviceability limit state.

(2) Under the ultimate limit state, the maximum axial stretch force of the cable does not
exceed 40% of the breaking force (i.e., 80% of the design strength), and the equivalent
stress of the steel beams does not exceed 80% of the design value of its yield strength
(i.e., 80% of the design strength).

(3) According to the relevant provisions of the “Standard for design of steel structures”
(GB 50017-2017) [16], the calculated length factor of the rods and welded steel pipes is
1.0, and the maximum compression forces of these components do not exceed their
buckling loads, as listed in Equation (1).

N
ϕA f

≤ 1.0 (1)

where N, ϕ, A and f represent the axial force, stability factor, cross-sectional area, and
yield strength of the member, respectively.

(4) In reality, connection nodes with large dead weights are generally set between cables
and rods or beams and cables to guarantee the integrity of the structure. According to
Dong et al. [17], the dead weight of all the connecting nodes is equal to 30% of all the
other components. This load is averagely distributed on both nodes of the rods.

3.4. Build the Numerical Model

The large-scale general analysis software ANSYS15.0 is utilized to build a numerical
model. The stay cables adopt a three-dimensional two-node cable element with only
tension, no compression, and no bending (LINK10). The rods are simulated by LINK8. The
tension beams are in a state of stretch and bending, and the BEAM188 is thus used for the
simulation of tension beams.

The finite element model is 60 m in span, 3 in the number of rings, 12 in the number
of radial tension beams, and 6 m in sag height. The plan and section views of the model
are shown in Figures 3 and 4, respectively. The material properties and axial forces of the
components are displayed in Table 1.
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Table 1. Component specifications and axial forces in the self-weight equilibrium state. 
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Table 1. Component specifications and axial forces in the self-weight equilibrium state.

Component Name Section/mm Axial Force/N
Elastic Modulus

before
Yield/MPa

Yield
Strength/MPa

Elastic Modulus
after Yield/MPa

Ultimate
Strength/MPa

Outer tension beam Φ390 × 20 894.6 2.06 × 105 345 6180 490
Middle tension beam Φ325 × 18 501.5 2.06 × 105 345 6180 490
Inner tension beam Φ273 × 16 315.7 2.06 × 105 345 6180 490
Outer oblique cable Φ55 792.5 1.6 × 105 835 - -

Middle oblique cable Φ40 388.3 1.6 × 105 835 - -
Inner oblique cable Φ25 184.4 1.6 × 105 835 - -

Outer ring cable Φ70 1400 1.6 × 105 835 - -
Inner ring cable Φ50 699.7 1.6 × 105 835 - -

Outer rod Φ100 × 10 −315.3 2.06 × 105 345 6180 490
Middle rod Φ80 × 10 −141.8 2.06 × 105 345 6180 490

Inner pulling ring Φ285 × 20 - 2.06 × 105 345 6180 490

4. Stability Analysis

The following standard values for loads are considered:

(1) Dead load: The self-weight of the upper roof (including the weight of inspection channels,
lighting fixtures, etc.) and the uniformly distributed load on the roof are 0.8 kN/m2.

(2) Live load: The uniformly distributed load on the roof is 0.5 kN/m2.

The buckling analysis process is listed as

1. Eigen buckling analysis. The linear buckling modes and eigenvalues are acquired.
2. Geometry nonlinearity analysis without an original imperfection. Based on the ge-

ometry nonlinearity theory, taking into account the effect of large deformation, the
Newton-Raphson method is utilized to conduct the nonlinear buckling analysis.

3. Geometry nonlinearity analysis + original imperfection. The first-order linear buckling
modes are regarded to be the forming pattern of original imperfections [18]. The
largest value of the original imperfection is 1/300 of the span of the overall structure
(i.e., 200 mm) [19].

4. Geometry nonlinearity analysis + material nonlinearity analysis + original imperfec-
tions. Simultaneously introducing the yield strength of components, the geometry
nonlinearity, and the original imperfections to the analysis.

Two live load arrangements are considered, namely, full-span live load and half-span
live load, and the corresponding buckling modes are obtained according to the live load
arrangements. In this case, two types of loading cases are available: (1) Load Case I: Full-
span dead load + full-span live load, and (2) Load Case II: full-span dead load + half-span
live load (see Table 2).
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Table 2. Load case table.

Name Load Case I Load Case II

Case Full live + full dead Half live + full dead

Live load dispersion
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Table 4. Eigenvalues and buckling modes (Load Case II).

Order Eigenvalue Buckling Mode Order Eigenvalue Buckling Mode
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5.2. Nonlinear Buckling Analysis

The nonlinear buckling analysis contains three cases: geometry nonlinear analysis, geom-
etry nonlinear analysis + initial imperfection, and doubly nonlinear (geometry and material
nonlinear) analysis + initial imperfection. Nonlinear analyses should follow these principles:

1. Considering the large deformation and stress stiffening effect, the Newton-Raphson
method is utilized for cyclic iterative calculation.

2. The original imperfection is based on the consistent defect mode; the first-order mode
of Load Case I is taken as the defect mode, and the largest size is 1/300 of the span.

3. When considering the nonlinear effect of the material, the constitutive relationship of the
tension beams, rods, and inner ring employs a double-broken line style. The values are
displayed in Table 5. Table 6 lists the load magnification factors and nonlinear buckling modes.

Table 5. Material parameters of components.

Member Name Elastic Modulus
before Yield/MPa Yield Strength/MPa Elastic Modulus after

Yield/MPa
Ultimate

Strength/MPa

Tension beams, rods
and inner ring 2.06 × 105 345 6180 490

Table 6. Load magnification factors and nonlinear buckling modes.

Load Case

Load Magnification Factor
Buckling ModeOnly Geometry

Nonlinearity
Geometry Nonlinearity +

Original Imperfection
Doubly Nonlinearity +
Original Imperfection

Case I 5.8 5.3 3.0

Symmetry 2023, 15, 1690 8 of 19 
 

 

5.2. Nonlinear Buckling Analysis 
The nonlinear buckling analysis contains three cases: geometry nonlinear analysis, 

geometry nonlinear analysis + initial imperfection, and doubly nonlinear (geometry and 
material nonlinear) analysis + initial imperfection. Nonlinear analyses should follow these 
principles: 
1. Considering the large deformation and stress stiffening effect, the Newton‒Raphson 

method is utilized for cyclic iterative calculation. 
2. The original imperfection is based on the consistent defect mode; the first-order mode 

of Load Case I is taken as the defect mode, and the largest size is 1/300 of the span. 
3. When considering the nonlinear effect of the material, the constitutive relationship of 

the tension beams, rods, and inner ring employs a double-broken line style. The val-
ues are displayed in Table 5. Table 6 lists the load magnification factors and nonlinear 
buckling modes. 

Table 5. Material parameters of components. 

Member Name Elastic Modulus be-
fore Yield/MPa Yield Strength/MPa Elastic Modulus after 

Yield/MPa 
Ultimate 

Strength/MPa 
Tension beams, rods 

and inner ring 
2.06 × 105 345 6180 490 

Table 6. Load magnification factors and nonlinear buckling modes. 

Load Case 
Load Magnification Factor 

Buckling Mode Only Geometry 
Nonlinearity 

Geometry Nonlinearity + 
Original Imperfection 

Doubly Nonlinearity + 
Original Imperfection 

Case I 5.8 5.3 3.0 

 

Case II 6.9 6.1 3.3 

 

The corresponding oblique cable force‒load curve, ring cable force‒load curve, and 
maximum vertical displacement of the roof–load curve are shown in Figures 5 and 6. 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1500

2000
2500
3000

3500
4000
4500
5000

5500
6000
6500

7000
7500
8000

8500

Fo
rc

e 
of

 o
ut

er
 ri

ng
 c

ab
le

 /k
N

Load magnification factor

 Geometry nonlinearity
 Initial imperfection + geometry nonlinearity
 Initial imperfection + doubly nonlinearity

 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fo
rc

e 
of

 in
ne

r r
in

g 
ca

bl
e 

/k
N

Load magnification factor

 Geometry nonlinearity
 Initial imperfection + geometry nonlinearity
 Initial imperfection + doubly nonlinearity

 
(a) (b) 

Case II 6.9 6.1 3.3

Symmetry 2023, 15, 1690 8 of 19 
 

 

5.2. Nonlinear Buckling Analysis 
The nonlinear buckling analysis contains three cases: geometry nonlinear analysis, 

geometry nonlinear analysis + initial imperfection, and doubly nonlinear (geometry and 
material nonlinear) analysis + initial imperfection. Nonlinear analyses should follow these 
principles: 
1. Considering the large deformation and stress stiffening effect, the Newton‒Raphson 

method is utilized for cyclic iterative calculation. 
2. The original imperfection is based on the consistent defect mode; the first-order mode 

of Load Case I is taken as the defect mode, and the largest size is 1/300 of the span. 
3. When considering the nonlinear effect of the material, the constitutive relationship of 

the tension beams, rods, and inner ring employs a double-broken line style. The val-
ues are displayed in Table 5. Table 6 lists the load magnification factors and nonlinear 
buckling modes. 

Table 5. Material parameters of components. 

Member Name Elastic Modulus be-
fore Yield/MPa Yield Strength/MPa Elastic Modulus after 

Yield/MPa 
Ultimate 

Strength/MPa 
Tension beams, rods 

and inner ring 
2.06 × 105 345 6180 490 

Table 6. Load magnification factors and nonlinear buckling modes. 

Load Case 
Load Magnification Factor 

Buckling Mode Only Geometry 
Nonlinearity 

Geometry Nonlinearity + 
Original Imperfection 

Doubly Nonlinearity + 
Original Imperfection 

Case I 5.8 5.3 3.0 

 

Case II 6.9 6.1 3.3 

 

The corresponding oblique cable force‒load curve, ring cable force‒load curve, and 
maximum vertical displacement of the roof–load curve are shown in Figures 5 and 6. 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1500

2000
2500
3000

3500
4000
4500
5000

5500
6000
6500

7000
7500
8000

8500

Fo
rc

e 
of

 o
ut

er
 ri

ng
 c

ab
le

 /k
N

Load magnification factor

 Geometry nonlinearity
 Initial imperfection + geometry nonlinearity
 Initial imperfection + doubly nonlinearity

 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fo
rc

e 
of

 in
ne

r r
in

g 
ca

bl
e 

/k
N

Load magnification factor

 Geometry nonlinearity
 Initial imperfection + geometry nonlinearity
 Initial imperfection + doubly nonlinearity

 
(a) (b) 



Symmetry 2023, 15, 1690 8 of 18

The corresponding oblique cable force-load curve, ring cable force-load curve, and
maximum vertical displacement of the roof–load curve are shown in Figures 5 and 6.
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Figure 5. Group diagram of the nonlinear analysis results of the TBCD for Load Case I. (a) Curves 
of load magnification factor vs. outer ring cable; (b) Curves of load magnification factor vs. inner 
ring cable; (c) Curves of load magnification factor vs. outer oblique cable; (d) Curves of load magni-
fication factor vs. middle oblique cable; (e) Curves of load magnification factor vs. inner oblique 
cable; (f) Curves of load magnification factor vs. maximum vertical deformation; (g) Curves of load 
magnification factor vs. axial force of tension beam. 

Figure 5. Group diagram of the nonlinear analysis results of the TBCD for Load Case I. (a) Curves of
load magnification factor vs. outer ring cable; (b) Curves of load magnification factor vs. inner ring
cable; (c) Curves of load magnification factor vs. outer oblique cable; (d) Curves of load magnification
factor vs. middle oblique cable; (e) Curves of load magnification factor vs. inner oblique cable;
(f) Curves of load magnification factor vs. maximum vertical deformation; (g) Curves of load
magnification factor vs. axial force of tension beam.
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Figure 6. Group diagram of the nonlinear analysis results of the TBCD (Load Case II). (a) Curves of
load magnification factor vs. outer ring cable; (b) Curves of load magnification factor vs. inner ring
cable; (c) Curves of load magnification factor vs. outer oblique cable; (d) Curves of load magnification
factor vs. middle oblique cable; (e) Curves of load magnification factor vs. inner oblique cable;
(f) Curves of load magnification factor vs. force of tension beam in live-load loaded region; (g) Curves
of load magnification factor vs. axial of tension beam in live-load unloaded region; (h) Curves of load
magnification factor vs. maximum vertical deformation.



Symmetry 2023, 15, 1690 10 of 18

The conclusions are listed as follows.

(1) The unstable loads of the TBCD are arranged from small to large in the following
order: double nonlinear considering original imperfections, geometry nonlinearity
with original imperfections, geometry nonlinearity without original imperfections,
and eigen buckling. In this case, it is necessary to fully analyze the impacts of geome-
try nonlinearity, material nonlinearity, and original imperfections when performing
buckling analysis of TBCD.

(2) The live load arrangement has a great effect on nonlinear stability. Under the symmet-
ric load of ‘Full live + full dead’, the stress pattern of the innermost tension beams
transforms from stretch bending to pressurized bending, leading to the torsional buck-
ling of TBCD. Under the case of asymmetric ‘Half live + full dead’, the bearing mode
of components in the live-load region transforms from stretch bending to pressurized
bending, leading to buckling of TBCD. The load magnification factors of half-span
live arrangement are less than those of full-span distributed condition.

(3) The original imperfection decreases the ultimate capacity. When the original imperfec-
tion increases from 0 to 1/300 of the structural span, the load magnification factors of
the TBCD decline from 5.8 and 6.9 to 5.3 and 6.1, respectively, for these two load cases,
which are reductions of 8.62% and 11.59%. This behavior indicates that the TBCD is
sensitive to the original imperfection.

(4) Due to the yielding of partial steel members, the stability-bearing ability of the TBCD
undergoes a significant decrease after material nonlinearity is considered. The load
magnification factors of the TBCD decrease from 5.3 and 6.1 to 3.0 and 3.3, respectively,
for these two load cases, which are reductions of 43.39% and 45.90%. In this case, it is
necessary to consider material nonlinearity when performing a stability analysis of
the TBCD.

(5) When applying 2~3 times the roof loads, the loading slopes of the oblique cable force,
ring cable force, and maximum vertical displacement of the TBCD vary significantly,
the bearing mode of the inner tension beams transforms from stretch bending to
pressurized bending, and the equilibrium configuration of the entire structure changes
considerably. In this process, the equilibrium configuration of TBCD undergoes great
changes. The structure varies from the original unstable static equilibrium state to an
unstable dynamic equilibrium state and finally reaches the stable static equilibrium state.

(6) When adding doubly nonlinearities and original imperfections to the analysis process,
the minimal load magnification factor of the TBCD appears in the symmetric load of
‘Full live + full dead’ with a specific value of 3.0. The stability capacity of the TBCD
fulfills the demand of this regulation [19].

6. Parametric Analysis

To further investigate the stability performance of the TBCD, a series of parametric
analyses are conducted considering the double nonlinearity and original imperfections. The
parameters include the prestress level, the size of the original imperfection, the distribution
of the original imperfection, and the addition of hoop tension beams.

6.1. Effect of Prestress Level

The prestress distribution of the finite element model is maintained, and the prestress
level is varied as 0.8 times, 0.85 times, 0.9 times, 0.95 times, 1.0 times, 1.05 times, 1.1 times,
1.15 times, and 1.2 times the original prestress level in Table 1. The analyzed outcomes are
demonstrated in Table 7.
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Table 7. Load magnification factors and buckling mode of TBCD under different prestress levels.

Prestress Levels Load Case I Load Case II
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When the prestress level is reduced to 0.8 times and 0.85 times the original prestress 
level, the load magnification factors of the two load cases are significantly reduced, while 
when the prestress level is increased to 1.15 times and 1.2 times, the load magnification 
factors of the two models undergo an insignificant increase. Furthermore, the variation in 
the prestress level does not change the buckling mode of the TBCD. In this case, the pre-
stress level is one of the important factors determining the stable bearing capacity of the 
TBCD. If it is too small, it will obviously reduce the stability, but if it is too large, it will 
not contribute much to the improvement of the stability performance. 

6.2. Effect of Original Imperfection Size 
The largest value of the original imperfection is selected as 1/2000, 1/1200, 1/1000, 

1/800, 1/600, 1/400, 1/300, 1/200, and 1/100, and the load magnification factor is shown in 
Figure 7. 
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Figure 7. Load magnification factors of the TBCD under different original imperfection sizes. 

The TBCD is not susceptible to the original imperfection with a small value. If the 
maximum original imperfection ranges from 1/2000 to 1/600 of the span, then the load 
magnification factors of the TBCD under the two cases are almost unchanged with the 
variation in the original imperfection size. However, when the original imperfection size 
changes in the range from 1/400 to 1/100 of the span, the stability decreases sharply with 
increasing defect size. 
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magnification factors of the TBCD under the two cases are almost unchanged with the 
variation in the original imperfection size. However, when the original imperfection size 
changes in the range from 1/400 to 1/100 of the span, the stability decreases sharply with 
increasing defect size. 
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When the prestress level is reduced to 0.8 times and 0.85 times the original prestress
level, the load magnification factors of the two load cases are significantly reduced, while
when the prestress level is increased to 1.15 times and 1.2 times, the load magnification
factors of the two models undergo an insignificant increase. Furthermore, the variation
in the prestress level does not change the buckling mode of the TBCD. In this case, the
prestress level is one of the important factors determining the stable bearing capacity of the
TBCD. If it is too small, it will obviously reduce the stability, but if it is too large, it will not
contribute much to the improvement of the stability performance.
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6.2. Effect of Original Imperfection Size

The largest value of the original imperfection is selected as 1/2000, 1/1200, 1/1000,
1/800, 1/600, 1/400, 1/300, 1/200, and 1/100, and the load magnification factor is shown
in Figure 7.
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The TBCD is not susceptible to the original imperfection with a small value. If the
maximum original imperfection ranges from 1/2000 to 1/600 of the span, then the load
magnification factors of the TBCD under the two cases are almost unchanged with the
variation in the original imperfection size. However, when the original imperfection size
changes in the range from 1/400 to 1/100 of the span, the stability decreases sharply with
increasing defect size.

6.3. Effect of Original Imperfection Distribution

The first four buckling modes of the TBCD under Load Case I are used as the original
imperfection distribution, 1/300 of the span is set as the maximum defect value, and a
doubly nonlinear buckling analysis is performed.

Table 8 shows that the distribution of the original imperfection has a certain effect on
the structural stability of the TBCD. Different types of defect distributions result in different
buckling modes and load magnification factors. The load magnification factor obtained by
the third defect distribution is the smallest. Therefore, using the first-order buckling mode of
the eigen buckling analysis as the defect distribution does not necessarily provide the smallest
load magnification factor, and it is necessary to comprehensively consider multiple defects.

Table 8. Load magnification factors and buckling modes of TBCD under different original imperfec-
tion distributions.

Original Imperfection
Buckling Mode Load Magnification Factor

Order Defect Distribution

1
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Original Imperfection
Buckling Mode Load Magnification Factor

Order Defect Distribution
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6.4. Effect of Adding Annular Members

Hoop tension beams hinged at both ends are set on the top of the outer and middle rods.
This member shares the same sectional specifications as the radial tension beams. A linear
eigen buckling analysis is executed, and the first four buckling outcomes are obtained. The
load magnification factors and buckling modes under the case of symmetric ‘Full live + full
dead’ are shown in Table 9, and the buckling coefficient and buckling mode under the case of
asymmetric ‘Half live + full dead’ are shown in Table 10. After that, the geometry nonlinear
stability analysis without defects, the geometry nonlinear analysis with original imperfections
(taking the first-order buckling mode as the defect distribution mode, the largest value set as
1/300 of the span), and the load magnification factors are shown in Table 11.

From Tables 9 and 10, the following is shown:

(1) Under the case of symmetric ‘Full live + full dead’, the first-order buckling mode
of the TBCD maintains overall torsional deformation after adding hoop members,
while the high-order buckling mode is the local deformation of the tension beams.
The first-order eigenvalues of the TBCD with/without hoop tension beams are 8.19
and 13.2, respectively; thus, the stability of the TBCD improves after the hoop tension
beams are added.
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(2) Under the case of asymmetric ‘Half live + full dead’, the first-order buckling mode of
the TBCD transforms from original local torsional deformation to overall torsional
deformation after adding hoop members, indicating that the addition of hoop tension
beams limits the out-of-plane buckling of radial tension beams and improves the
integrity of the TBCD. The first-order eigenvalues of the TBCD with and without hoop
tension beams are 9.21 and 12.1, respectively. Thus, adding hoop members can also
improve the stability of the TBCD.

Table 11 shows that hoop tension beams can be added between the top ends of the
rods to improve the integrity and stability of the TBCD. Specifically, after adding hoop
tension beams, the minimum load magnification factors rise from 3.0 and 3.3 s to 4.2 and
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Table 10. Eigenvalues and buckling modes under a half-span live load.

Order Load Magnification
Factor TBCD Load Magnification

Factor
TBCD with Hoop Tension

Beam

1 9.21
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Model Type Load Case

Load Magnification Factor

Only Geometry
Nonlinearity

Geometry Nonlinearity +
Original Imperfection

Doubly Nonlinearity +
Original Imperfection

TBCD without hoop
tension beams

Case I 5.8 5.3 3.0
Case II 6.9 6.1 3.3

TBCD with hoop
tension beams

Case I 7.5 7.4 4.2
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7. Conclusions

In this study, a linear eigen buckling analysis, a nonlinear buckling analysis, and a para-
metric analysis of stability are performed for TBCDs. The following conclusions are drawn:

(1) The unstable loads of the TBCD are arranged from small to large in the following
order: doubly nonlinearity with an original imperfection, geometry nonlinearity with
an original imperfection, geometry nonlinearity without an original imperfection, and
eigen buckling. In this case, the effects of geometry nonlinearity, material nonlinearity,
and original imperfections must be comprehensively analyzed.
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(2) The buckling mode of the TBCD depends on the loading forms, and buckling behavior
first occurs in the heavily loaded area. Under the symmetric load of ‘Full live + full
dead’, the innermost tension beams of the TBCD transforms from stretch bending to
pressurized bending, resulting in torsional buckling of the overall structure. However,
under the case of asymmetric ‘Half live + full dead’, the tension beams in the live load
region transform from stretch bending to pressurized bending, and partial buckling
happens.

(3) The prestress level is an important factor that affects the stability performance of the
TBCD. A small prestress level obviously decreases the stability capacity of the TBCD,
while if the prestress level is too large, then the prestress level does not contribute
much to the stability performance.

(4) The TBCD is not sensitive to an original imperfection with a small value, but when
the original imperfection is greater than 1/400 of the span, the stability of the TBCD
becomes problematic.

(5) Using the first-order buckling mode of the eigen buckling analysis as the defect
distribution does not necessarily obtain the minimum load magnification factor, and
it is necessary to comprehensively consider multiple defects.

(6) Adding hoop tension beams between the top ends of rods can effectively improve the
integrity and stability of the TBCD.
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