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Abstract: Closed-form expressions have been obtained to characterize the non-dimensional velocity
and corresponding non-trivial shear stress in the context of two magnetohydrodynamic (MHD)
motions exhibited by incompressible generalized Burgers’ fluids. These motions occur over an
infinite plate, which subjects the fluid to oscillatory shear stresses. The obtained solutions represent
the first exact analytical solutions for MHD motions of such fluids under the condition of shear
stress prescribed along the boundary. The establishment of these solutions relies upon the utilization
of a perfect symmetry existing between the governing equations of fluid velocity and shear stress.
To validate the results, a comprehensive analysis has been undertaken using two distinct methods.
This validation process is further substantiated through graphical representation, demonstrating the
congruence between the obtained solutions. Additionally, the convergence of the initial solutions,
obtained through numerical techniques, towards their corresponding permanent counterparts has
been visually established. This graphical depiction not only substantiates the accuracy of the solutions
but also provides insights into the temporal evolution of the system toward its permanent state.
An insight to characterize the non-dimensional shear stresses in the context of two values of the
magnetic parameter is to identify that the permanent state is reached at an earlier time and the
absolute magnitude of fluid velocity is reduced in the presence of an applied magnetic field.

Keywords: generalized Burgers’ fluids; permanent solutions; shear stresses on the boundary

1. Introduction

The incompressible generalized Burgers’ fluids (IGBFs), whose constitutive equations
are given by the next relations [1]

T = − p̂I + S,
(

1 + λ1
δ

δt
+ λ2

δ2

δt2

)
S = µ

(
1 + λ3

δ

δt
+ λ4

δ2

δt2

)
A, (1)

represent the larger class of rate-type fluids. They contain, as special cases, the incom-
pressible Burgers’, Oldroyd-B, Maxwell, and Newtonian fluids for λ4 = 0, λ4 = λ2 = 0,
λ4 = λ3 = λ2 = 0 or λ4 = λ3 = λ2 = λ1 = 0, respectively. In the case of the motions to
be investigated here, the governing equations for incompressible second-grade fluids can
also be obtained as limiting cases of the present equations. In the constitutive Equation (1),
T is the Cauchy stress tensor, S is the extra stress tensor, A is the first Rivlin–Ericksen
tensor, − p̂I represents the indeterminate spherical stress, µ is the dynamic viscosity of the
fluid, λ1, λ2, λ3 and λ4 are dimensional material constants while δ/δt represents the
upper-convected time derivative.

Symmetry 2023, 15, 1683. https://doi.org/10.3390/sym15091683 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15091683
https://doi.org/10.3390/sym15091683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9056-0911
https://doi.org/10.3390/sym15091683
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15091683?type=check_update&version=1


Symmetry 2023, 15, 1683 2 of 14

First, the exact solutions for motions of IGBFs seem to be those of Fetecau et al. [1]
in rectangular domains. In the meantime, other exact solutions for isothermal motions
of the same fluids have been determined by Tong and Shan [2], Zheng et al. [3], Tong [4],
Jamil [5], Khan et al. [6], and Fetecau et al. [7]. The MHD motion of fluids finds diverse
uses in hydrology, horticulture, astrological exploration, aerodynamics, and the design of
engineering structures. The motion of electrically conducting fluids in the presence of a
magnetic field is accompanied by important effects with applications in physics, chemistry,
and engineering. Exact solutions for MHD motions of IGBFs through a rectangular duct
or over an infinite flat plate have been established by Sultan et al. [8], Khan et al. [9],
Abro et al. [10], Alqahtani and Khan [11], and Hussain et al. [12]. However, it Is noteworthy
to emphasize that the aforementioned papers address the examination of fluid motions in
which velocity profiles are prescribed along the boundary. It is pertinent to acknowledge
that numerous real-world practical scenarios entail the specification of shear stress along
the boundaries of the flow domain [13,14].

In a seminal work, Renardy [14] demonstrated the necessity of prescribing boundary
conditions for stresses at the inflow boundary in order to establish a rigorously well-
posed boundary value problem for the analysis of Maxwell fluid flow. Renardy further
extended this research to encompass the realm of viscoelastic fluid dynamics [15]. His
investigation elucidated that the Jeffrey model maintains well-posedness within a bounded
channel configuration, contingent upon the provision of the requisite components of
the extra-stress tensor along the entry boundary. Moreover, the conventional “no-slip”
boundary condition, while suitable for many scenarios, becomes inadequate when dealing
with the motion of polymeric liquids that inherently possess the capacity to undergo
boundary-sliding phenomena. Despite this, it is noteworthy that, to the extent of our
current understanding, comprehensive analytical solutions encompassing MHD motions of
IGBFs remain conspicuously absent within the existing body of literature. Conversely, in the
framework of classical Newtonian mechanics, forces emerge as causal agents, engendering
subsequent kinematic responses [16]. This contextual back-drop accentuates the significance
of prescribing the shear stress distribution along the boundary, an act akin to specifying the
exertion of shear forces requisite for inducing motion.

The fundamental objective of this study is to establish a pioneering framework en-
compassing exact, permanent solutions for MHD motions of IGBFs situated above an
unbounded plate that applies oscillatory shear stress to the fluid medium. This is achieved
by deft, employing a deep symmetry concerning the equations that govern fluid speed
and the force of shear. In the interest of validation, the solutions are presented in dual
manifestations, each form meticulously verified for equivalence through graphical anal-
yses. Notably, these analytical solutions possess the remarkable versatility to seamlessly
transition to the corresponding solutions to the fluids Burgers’, Oldroyd-B, Maxwell,
second grade, and viscous underpinning the same motions. The outcomes gleaned facili-
tate the determination of the need for time to establish the permanent state and to underline
the influence of the magnetic field on velocity. A discernible trend emerges, illustrating
that the absolute magnitude of fluid velocity diminishes as the permanent state is reached
at an accelerated pace with escalating values of the magnetic parameter, M. As a result, the
fluid moves slower in the presence of a magnetic field.

2. Setting the Problem and Governing Equations

Let us assume that an electrical conducting IGBF is at rest over an infinite horizontal
flat plate. At the moment t = 0+, the plate begins to apply an oscillatory shear stress
S cos(ωt) or S sin(ωt) to the fluid while an applied magnetic field of strength B acts vertical
to the plate. Here, the two constants S and ω are the amplitude and the frequency of the
oscillations, respectively. The fluid, whose magnetic Reynolds number is assumed to be
small enough, is finitely conducting. Henceforth, it is reasonable to disregard the induced
magnetic field and the associated Joule heating stemming from the external magnetic field.
It is a well-established fact that fluids exhibiting metallic properties and ionized liquids,
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in particular, tend to possess a magnetic Reynolds number of diminished magnitude,
as outlined in reference [17]. Moreover, in our analysis, we posit the absence of any
superfluous electric charge distribution, and we deliberate the omission of Hall effects
owing to the moderate levels characterizing the magnetic parameter.

Owing to the shear, the fluid is gradually moved. Since the plate is limitless, the
velocity vector u corresponding to such fluid motions is of the form [1,9]

u = u(x, t) = u(x, t)k, (2)

where k is the unit vector along the z-direction of a convenient Cartesian coordinate system
x, y, and z whose x-axis is vertical to the plate. We further posit that the extra-stress
tensor S (as well as the velocity vector) is exclusively dependent on variables x and t. The
condition of incompressibility is satisfied, and the momentum balance, under the absence
of a pressure gradient in the z-direction, is succinctly represented by the ensuing partial
differential equation [9,10]

ρ
∂u(x, t)

∂t
=

∂τ(x, t)
∂x

− σB2u(x, t); x > 0, t > 0. (3)

In the last relation ρ is the fluid density, τ(x, t) is the non-null shear stress, while σ is
the electrical conductivity. Introducing the velocity vector.

u(x, t) from Equation (2) in (1), one obtains the next relation(
1 + λ1

∂

∂t
+ λ2

∂2

∂t2

)
τ(x, t) = µ

(
1 + λ3

∂

∂t
+ λ4

∂2

∂t2

)
∂u(x, t)

∂x
; x > 0, t > 0, (4)

between the dimensional fluid velocity u(x, t) and the shear stress τ(x, t). In the following,
since we have to solve motion problems in which the shear stress is prescribed on the plate,
the next initial and boundary conditions

τ(x, 0) =
∂τ(x, t)

∂t

∣∣∣∣
t=0

=
∂2τ(x, t)

∂t2

∣∣∣∣
t=0

= 0; x ≥ 0, (5)

τ(0, t) = S cos(ωt) or τ(0, t) = S sin(ωt), lim
x→∞

τ(x, t) = 0; t > 0, (6)

will be used. The last condition from the relations (6) assures us that there exists no shear
in the free stream. We also assume that the fluid is quiescent at infinity. Consequently,

lim
x→∞

u(x, t) = 0; t > 0. (7)

The non-dimensional forms of the relations (3), (4), and (6), namely

∂u(x, t)
∂t

=
∂τ(x, t)

∂x
−Mu(x, t); x > 0, t > 0, (8)

(
1 + α

∂

∂t
+ β

∂2

∂t2

)
τ(x, t) =

(
1 + γ

∂

∂t
+ δ

∂2

∂t2

)
∂u(x, t)

∂x
; x > 0, t > 0, (9)

τ(0, t) = cos(ωt) or τ(0, t) = sin(ωt), lim
x→∞

τ(x, t) = 0; t > 0, (10)

were obtained using the following dimensionless variables, functions, and parameter

x∗ = x

√
S

µν
, t∗ =

S
µ

t, u∗ = u
√

ρ

S
, τ∗ =

τ

S
, ω∗ =

µ

S
ω (11)

and eliminating the star notation. In above relations ν = µ/ρ is the kinematic viscosity of
the fluid while the magnetic parameter M and the non-dimensional constants α, β, γ and δ
are defined by the next relations
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M =
ν

S
σB2, α =

S
µ

λ1, β =

(
S
µ

)2
λ2, γ =

S
µ

λ3, δ =

(
S
µ

)2
λ4. (12)

In the following, opposite to the usual line from the literature, we eliminate the fluid
velocity u(x, t) between Equations (8) and (9) and obtain the following partial differential
equation (

1 + α ∂
∂t + β ∂2

∂t2

)
∂τ(x,t)

∂t =
(

1 + γ ∂
∂t + δ ∂2

∂t2

)
∂2τ(x,t)

∂x2

−M
(

1 + α ∂
∂t + β ∂2

∂t2

)
τ(x, t); x > 0, t > 0,

(13)

for the dimensionless shear stress τ(x, t). It is worth pointing out the fact that by elimi-
nating the shear stress τ(x, t) between the same Equations (8) and (9), one obtains for the
dimensionless velocity field u(x, t) the governing equation(

1 + α ∂
∂t + β ∂2

∂t2

)
∂u(x,t)

∂t =
(

1 + γ ∂
∂t + δ ∂2

∂t2

)
∂2u(x,t)

∂x2

−M
(

1 + α ∂
∂t + β ∂2

∂t2

)
u(x, t); x > 0, t > 0,

(14)

which is identical to the form with Equation (13) for the shear stress.
The two motion problems, as well as Stokes’ problems for the same fluids, become

permanent or steady in time. Let us denote by uc (x, t), τc (x, t) and us (x, t), τs (x, t) the
dimensionless starting solutions corresponding to cosine or sine oscillations of shear stress
on the boundary. They can be written as sums of permanent (steady state) and transient
components, namely

uc(x, t) = ucp(x, t) + uct(x, t), τc(x, t) = τcp(x, t) + τct(x, t); x > 0, t > 0, (15)

us(x, t) = usp(x, t) + ust(x, t), τs(x, t) = τsp(x, t) + τst(x, t); x > 0, t > 0. (16)

The starting solutions describe the fluid motion some time after its initiation. After
that time, when the numerical values of the transient components uct(x, t), τct(x, t) or
ust(x, t), τst(x, t) are small enough and can be neglected, the fluid behavior can be charac-
terized by the permanent solutions ucp(x, t), τcp(x, t) or usp(x, t), τsp(x, t). This juncture
marks a pivotal phase for the attainment of the state of permanence or equilibrium. Within
the realm of practical application, this temporal juncture holds profound significance for
researchers engaged in experimental endeavors seeking to ascertain the precise moment
of transition of motion towards a state of equilibrium. To determine this critical temporal
threshold for a given motion, the enduring solutions prove sufficient. Thus, in the sub-
sequent section, we proffer analytic expressions exclusively pertaining to these enduring
solutions. To ensure their veracity, these solutions are presented in two congruent man-
ifestations. The requisite temporal interval for achieving the state of permanence can be
derived by juxtaposing them against the initial solutions. To be more precise, this temporal
threshold signifies the point at which the visual representations of the initial solutions
harmonize with the corresponding constituents of enduring permanence, as seen in the
diagrams.

3. Closed form Expressions for the Dimensionless Permanent Solutions

As we previously mentioned, different exact expressions will be provided for the
dimensionless permanent solutions, and their equivalence will be graphically proved.

3.1. Exact Expressions for the Shear Stresses τcp(x, t), τsp(x, t)

The dimensionless permanent shear stresses τcp(x, t) and τsp(x, t) corresponding to
the two motions in discussion have to satisfy the governing Equation (13) and the boundary
conditions (10). Lengthy but straightforward computations show that these shear stresses
can be presented in simple forms
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τcp(x, t) = e−mx cos(ωt− nx); x > 0, t ∈ R, (17)

τsp(x, t) = e−mx sin(ωt− nx); x > 0, t ∈ R. (18)

In the above relations, the non-dimensional constants m and n have the expressions

m =

√
ω

2

√√√√√ aω +
√
(aω)2 + b2

(γω)2 + (1− δω2)2 , n =

√
ω

2

√√√√√−aω +
√
(aω)2 + b2

(γω)2 + (1− δω2)2 , (19)

a =
γω2(1− βω2 + αM) + (1− δω2)[−αω2 + (1− βω2)M]

ω2 , (20)

b = (1− δω2)(1− βω2 + αM)− γ[−αω2 + (1− βω2)M]. (21)

The first exact solution under the form (17) has been provided by Rajagopal [18] for
the dimensional velocity of Stokes’ second problem corresponding to the second-grade
fluids.

In order to determine equivalent expressions for these permanent shear stresses, we
use the dimensionless complex shear stress

τp(x, t) = τcp(x, t) + iτsp(x, t); x > 0, t ∈ R, (22)

where i is the complex unit. This complex shear stress has to satisfy the partial differential
Equation (13) and the boundary conditions

τp(0, t) = eiωt, lim
x→∞

τp(x, t) = 0; t ∈ R. (23)

Because the governing Equation (13) is linear and the form of boundary conditions (23)
is considered, we are in search of a solution with the following structure

τp(x, t) = T(x)eiωt; x > 0, t ∈ R, (24)

where T(·) is an unknown function. Direct computations show that

τp(x, t) = eiωt−px; x > 0, t ∈ R, (25)

while
τcp(x, t) = Re

{
eiωt−px

}
; x > 0, t ∈ R, (26)

τsp(x, t) = Im
{

eiωt−px
}

; x > 0, t ∈ R. (27)

In the above relations, the dimensionless constant p is defined by the equality

p =

√
(1− βω2 + iωα)(iω + M)

1− δω2 + iωγ
(28)

and simple computations clearly show that τcp(x, t) and τsp(x, t) given by
Equations (26) and (27) satisfy the governing Equation (13) and the boundary conditions
(10).

The equivalence of their expressions given by Equations (17), (26) and (18), (27),
respectively, is proved by means of Figure 1.
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Figure 1. Diagrams of shear stresses τcp(x, t) and τsp(x, t) given by Equations (17), (26) and (18), (27),
respectively, for α = 0.8, β = 0.5, γ = 0.7, δ = 0.4, ω = π/6, M = 0.9 and t = 10.

3.2. Exact Expressions for the Velocity Fields ucp(x, t), usp(x, t)

Once the permanent shear stresses τcp(x, t) and τsp(x, t) are known, we can determine
the corresponding velocity fields ucp(x, t) and usp(x, t). They have to satisfy the governing
Equations (8) and (9) and the limiting condition (7). Bearing in mind the simple forms of
τcp(x, t) and τsp(x, t) from Equations (17) and (18), we are looking for ucp(x, t) an expression
of the form

ucp(x, t) = [c cos(ωt− ny) + d sin(ωt− ny)] e−mx; x > 0, t ∈ R. (29)

Lengthy but straightforward computations show that ucp(x, t) from Equality (29)
satisfies the governing Equation (9) if and only if

c =
(1− βω2)[ωγ n− (1− δω2)m]−ωα[ωγ m + (1− δω2)n]

(m2 + n2)[(ωγ)2 + (1− δω2)2]
(30)

d = −ωα[ωγ n− (1− δω2)m] + (1− βω2)[ωγ m + (1− δω2)n

(m2 + n2)[(ωγ)2 + (1− δω2)2]
(31)

and
ucp(x, t) = −

√
c2 + d2e−mx sin(ωt− nx + ϕ); x > 0, t ∈ R, (32)

where ϕ = arctg(c/d). Similar computations also show that

usp(x, t) =
√

c2 + d2e−mx cos(ωt− nx + ϕ); x > 0, t ∈ R. (33)

Equivalent expressions for ucp(x, t) and usp(x, t), namely

ucp(x, t) = −Re
{(

p
iω + M

)
eiωt−px

}
; x > 0, t ∈ R, (34)

usp(x, t) = −Im
{(

p
iω + M

)
eiωt−px

}
; x > 0, t ∈ R, (35)

have been obtained by introducing τcp(x, t) and τsp(x, t) from the relations (26) and
(27) in Equation (8). Simple computations show that ucp(x, t) and usp(x, t) given by
Equations (34) and (35) satisfy all governing Equations (8), (9) and (14). The equiva-
lence of the expressions of ucp(x, t) and usp(x, t) given by Equations (32), (34) and (33), (35),
respectively, has been proved by means of Figure 2. Furthermore, it’s readily noticeable
that the dimensionless permanent solutions, which correspond to identical movements of
IGBFs when magnetic influences are absent, can be directly derived by setting M = 0 in
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the overall solutions. These solutions, along with the previously mentioned ones, are new
contributions within the existing body of literature.
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4. Limiting Cases

As was already mentioned at the beginning of Section 2, similar solutions for incom-
pressible Newtonian, second grade, Maxwell, Oldroyd-B, and Burgers’ fluids performing
the same motions can be immediately obtained as limiting cases of the present solutions. In
order to avoid repetition, we shall show this thing for the second-grade fluids because their
constitutive equations cannot be obtained from those of IGBFs. However, for the present
motions, the governing equations corresponding to these fluids can be obtained as limiting
cases of present equations.

4.1. Case α = β = δ = 0 (Permanent Solutions for Second-Grade Fluids)

Making α = β = δ = 0 in Equations (17), (18), (26) and (27), one finds the following
equivalent expressions,

τSGcp(x, t) = e−m1x cos(ωt− n1x); x > 0, t ∈ R, (36)

τSGsp(x, t) = e−m1x sin(ωt− n1x); x > 0, t ∈ R (37)

Respectively,
τSGcp(x, t) = Re

{
eiωt−p1x

}
; x > 0, t ∈ R, (38)

τSGsp(x, t) = Im
{

eiωt−p1x
}

; x > 0, t ∈ R, (39)

for the dimensionless permanent shear stresses τSGcp(x, t) and τSGsp(x, t). They correspond
to unsteady MHD motions of the incompressible second-grade fluids over an infinite plate
that applies the oscillatory shear stresses S cos(ωt) or S sin(ωt) to the fluid. The expressions
of these solutions are identical to those obtained by Fetecau and Morosanu [19] in which
K = 0 (i.e., in the absence of porous effects). In the above relations, the new constants
m1, n1, and p1 are given by the relations

m1 =

√
ω

2

√√√√ a1ω +
√
(a1ω)2 + b2

1

1 + (γω)2 , n1 =

√
ω

2

√√√√−a1ω +
√
(a1ω)2 + b2

1

1 + (γω)2 , p1 =

√
iω + M
1 + iωγ

, (40)

in which
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a1 = γ +
M
ω2 and b1 = 1− γM.

Taking now α = β = δ = 0 in the Equations (32)–(35), one obtains the corresponding
permanent velocity fields

uSGcp(x, t) = −
√

c2
1 + d2

1e−m1x sin(ωt− n1x + ϕ1); x > 0, t ∈ R, (41)

uSGsp(x, t) =
√

c2
1 + d2

1e−m1x cos(ωt− n1x + ϕ1); x > 0, t ∈ R, (42)

uSGcp(x, t) = −Re
{(

p1

iω + M

)
eiωt−p1x

}
; x > 0, t ∈ R, (43)

uSGsp(x, t) = −Im
{(

p1

iω + M

)
eiωt−p1x

}
; x > 0, t ∈ R, (44)

in which

c1 =
ωγ n1 −m1

(m2
1 + n2

1)[(ωγ)2 + 1]
, d1 =

ωγ m1 + n1

(m2
1 + n2

1)[(ωγ)2 + 1]
, ϕ1 = arctg

(
ωγ n1 −m1
ωγ m1 + n1

)
. (45)

Simple computations show that the expressions of uSGcp(x, t), uSGsp(x, t) from
Equations (43) and (44) are identical to those obtained by Fetecau and Morosanu [19] in their
Equation (61). In exchange, the expressions of these entities from Equations (41) and (42)
have different forms from those from the above-mentioned reference. However, they
are equivalent by transitivity. Baranovskii [20,21] has recently obtained interesting re-
sults concerning the movement of incompressible second-grade fluids within rectangular
regions.

4.2. Case α = β = γ = δ = 0 (Permanent Solutions for Newtonian Fluids)

Taking α = β = γ = δ = 0 in Equations (17), (18), (32) and (33) or γ = 0 in Equations
(36), (37), (41) and (42), the similar solutions

τNcp(x, t) = e−qx cos(ωt− rx); x > 0, t ∈ R, (46)

τNsp(x, t) = e−qx sin(ωt− rx); x > 0, t ∈ R, (47)

uNcp(x, t) = − 1
4
√

M2 + ω2
e−qx sin(ωt− rx + ψ); x > 0, t ∈ R, (48)

uNsp(x, t) =
1

4
√

M2 + ω2
e−qx cos(ωt− rx + ψ); x > 0, t ∈ R, (49)

corresponding to the identical movements of incompressible Newtonian fluids are acquired.
Here, the constants q, r and ψ are given by the relations

q =

√
M +

√
M2 + ω2

2
, r =

√
−M +

√
M2 + ω2

2
, ψ = arctg

(
M +

√
M2 + ω2

ω

)
. (50)

The equivalent expressions of these entities have also simple forms, namely

τNcp(x, t) = Re
{

eiωt−x
√

iω+M
}

; x > 0, t ∈ R, (51)

τNsp(x, t) = Im
{

eiωt−x
√

iω+M
}

; x > 0, t ∈ R, (52)

uNcp(x, t) = −Re
{

1√
iω + M

eiωt−x
√

iω+M
}

; x > 0, t ∈ R, (53)
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uNsp(x, t) = −Im
{

1√
iω + M

eiωt−x
√

iω+M
}

; x > 0, t ∈ R. (54)

Finally, it is interesting to observe that in the absence of magnetic effects, the ex-
pressions of τNcp(x, t) and τNsp(x, t) from the Equations (46) and (47), respectively, are
identical to the dimensionless forms of the velocity fields obtained by Erdogan [22] in the
relations (12) and (17). This is possible since the shear stress in the present case and the fluid
velocity in Erdogan’s paper satisfy the same governing equations and boundary conditions.

4.3. The Case ω = 0 (the Plate Applies a Constant Shear Stress S to the Fluid)

Making ω = 0 in the relations (26) and (34) or (51) and (53) one finds the expressions
of dimensionless permanent shear stress and velocity fields

τCp(x) = e−x
√

M; x > 0, t ∈ R, (55)

uCp(x) = − 1√
M

e−x
√

M; x > 0, t ∈ R, (56)

corresponding to the unsteady motion of IGBFs over an infinite flat plate that applies a
constant shear stress S to the fluid. As it was to be expected, these expressions are the same
both for Newtonian and non-Newtonian fluids. This is not a surprise because, as it results
from the literature [23], the non-Newtonian effects disappear in time.

5. Some Numerical Results and Conclusions

The present study offers closed-form analytical expressions for dimensionless steady-
state velocities and non-null shear stress distributions that pertain to isothermal MHD
unsteady flows of IGBFs above an infinite flat plate subject to oscillatory shear stress con-
ditions. The obtained solutions also encompass scenarios where the motion arises from a
constant shear stress applied at the boundary, thus serving as a limiting case. Collectively,
these solutions stand as the inaugural exact derivations for MHD flow behaviors exhibited
by such fluids, particularly in scenarios where the shear stress is prescribed at the boundary.
Moreover, these formulations can readily be tailored to yield solutions for other fluid mod-
els, such as Burgers’, Oldroyd-B, Maxwell, second grade, and Newtonian, all engaging in
the same underlying motions. Notably, these derivations recover well-established solutions
pertaining to second-grade fluids as limiting instances. Furthermore, akin solutions de-
scribing the identical motions of IGBFs sans the influence of magnetic effects can similarly
be derived as limiting cases within the broader framework of these general solutions. These
findings, noteworthy for their novelty, contribute novel insights to the existing body of
scientific literature.

To validate the derived outcomes, we presented all solutions in two distinct formats,
with their equivalence being visually demonstrated. In addition, as was to be expected,
Figures 3 and 4 clearly show that the starting solutions τc(x, t) and τs(x, t) (numerical
solutions) converge to the corresponding permanent solutions τcp(x, t) and τsp(x, t), re-
spectively, for increasing values of the time t.

From these graphical illustrations, which have been generated for two different val-
ues of the magnetic parameter M, it can be inferred that the time required to attain the
permanent state diminishes as the magnetic parameter M increases. Consequently, the
presence of a magnetic field leads to an earlier achievement of the permanent state for these
unsteady motions of IGBFs. In addition, the required time to touch the permanent state for
motions due to sine oscillations is shorter than that for cosine oscillations of shear stress on
the boundary.
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Figure 4. Convergence of the starting shear stress τs(x, t) (numerical solution) to its permanent
component τsp(x, t) for α = 0.8, β = 0.5, γ = 0.7, δ = 0.4, ω = π/6, two values of M and
increasing values of the time t.

Now, in order to bring to light some characteristics of the fluid motion, Figures 5 and 6
have been included here. Figure 5, which presents the time variations of the permanent
velocities ucp(x, t) and usp(x, t) at the middle of the channel for increasing values of the
magnetic parameter M, shows that the oscillations’ amplitude decreases in the presence
of a magnetic field. Moreover, the oscillatory characteristic feature of the two movements,
along with the phase discrepancy between them, can be readily noticed.

Figure 6 shows the influence of the same parameter M on the dimensionless permanent
solutions τCp(x) and uCp(x) corresponding to the unsteady MHD motion of IGBFs induced
by the flat plate that applies a constant shear stress S to the fluid. It results in both the fluid
velocity absolute value and the shear stress decline for increasing values of the magnetic
parameter M. Consequently, the fluid moves slower in the presence of a magnetic field.
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Figure 5. The time variations of the midplane permanent velocities ucp(0.5, t) and usp(0.5, t) for
α = 0.8, β = 0.5, γ = 0.7, δ = 0.4, ω = π/6, x = 0.5 and three values of M.
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by Equations (55) and (56), respectively, for three values of M.

Finally, for comparison, the spatial profiles of the dimensionless starting shear stresses
τc(x, t) and τs(x, t) (numerical solutions) are depicted adjoining in Figure 7 for α = 0.8,
β = 0.5, γ = 0.7, δ = 0.4, ω = π/6 and M = 0.9. As before, the oscillatory behavior
and the phase difference between the two motions are easily observed and the initial and
boundary conditions are clearly satisfied. The three-dimensional pattern of the initial shear
stresses for both cases is also depicted using two-dimensional contour plots [24] in Figure 8.
This visualization is based on the same set of physical parameter values. Different colors
are used to indicate their trajectories. The red and purple colors are used to bring to light
the solutions’ maximum and minimum values, respectively. The oscillatory behavior of the
solutions is indicated by the alternation of two distinct sets of almost closed trajectories
throughout the time t. The increasing values of x lead to a decrease in the oscillation
amplitude.
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Figure 8. Contour profiles of the starting shear stresses τc(x, t) and τs(x, t) (numerical solutions) for
α = 0.8, β = 0.5, γ = 0.7, δ = 0.4, ω = π/6 and M = 0.9.

The main results obtained through this study are:

(1) Concise analytical expressions have been provided for the dimensionless permanent
solutions associated with unsteady MHD motions of IGBFs over an unbounded flat
plate that applies oscillatory or constant shear stresses upon the fluid;

(2) These expressions can be promptly tailored to yield comparable solutions for in-
compressible Burgers’, Oldroyd-B, Maxwell, second grade, and Newtonian fluids
performing the same motions, and their correctness has been graphically proved;

(3) The acquired outcomes have been employed in investigating the magnetic effects on
both the steady state and fluid velocity. It was found that the permanent state is more
quickly obtained, and the fluid velocity is diminished in the presence of a magnetic
field;

(4) It is pertinent to highlight that the governing Equation (14), which characterizes shear
stress, exhibiting an analogous structure to Equation (13) delineating velocity, assumes
pivotal significance in obtaining new exact solutions for MHD motions of IGBFs.



Symmetry 2023, 15, 1683 13 of 14

Author Contributions: Conceptualization, C.F. and C.M.; methodology, C.F. and C.M.; software, C.F.
and S.A.; validation, C.F., C.M. and S.A.; writing—review and editing, C.F., C.M. and S.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to extend their sincere appreciation to the reviewers for their
meticulous evaluation, valuable insights, and constructive recommendations pertaining to the initial
version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

T Cauchy stress tensor
A First Rivlin–Ericksen tensor
I Identity tensor
p̂ Hydrostatic pressure
B Magnitude of the applied magnetic field
x, y, z Cartesian coordinates
u(x, t) Fluid velocity
M Magnetic parameter
λ1, λ2, λ3, λ4 Dimensional material constants
α, β, γ, δ Non-dimensional material constants
µ Dynamic viscosity
ρ Fluid density
ν Kinematic viscosity
τ(x, t) Shear stress
ω Frequency of oscillations
σ Electrical conductivity
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