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Abstract: We present a quaternion representation of quantum mechanics that allows its ontological
interpretation. The correspondence between classical and quaternion quantum equations permits
one to consider the universe (vacuum) as an ideal elastic solid. Elementary particles would have to
be standing or soliton-like waves. Tension induced by the compression and twisting of the elastic
medium would increase energy density, and as a result, generate gravity forcing and affect the wave
speed. Consequently, gravity could be described by an index of refraction.
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1. Introduction

Quaternion quantum mechanics, QQM, is ontic in the sense that it answers the central
questions of the interpretation of quantum mechanics; it is directly related to being (the
Cauchy elastic continuum), as well as to the basic categories of being and their relations [1].

Quantum mechanics: where we are. From its beginning, “spooky action” irritated
Einstein. Present explanations assume that the collapse of the wave function has no
observable consequences and is philosophically permissible. However, the unsolved
problem is what happens with the mass and energy of a particle when its wave function
collapses. The instantaneous jump is not expected in general relativity, and the “string
theory” does not help either.

Schrödinger did not like the “probability” interpretation of the wave function and
always considered the wave to be a real wave:

“Let me say at the outset, that in this discourse, I am opposing not a few special statements
of quantum physics held today (1950), I am opposing as it were the whole of it, I am
opposing its basic views that have been shaped 25 years ago, when Max Born put forward
his probability interpretation, which was accepted by almost everybody.” [2]

David Bohm and Basil Hiley developed an interpretation of complex quantum me-
chanics (complex quantum mechanics may be more precisely called operator quantum
mechanics), CQM, which gives a clear and intuitive interpretation of its meaning with
no need to assume a fundamental role for the human observer [3,4]. This deterministic
interpretation is commonly considered as basically equivalent to the Copenhagen orthodox
understanding. The importance of the Bohm approach, i.e., the fact that it consistently
solves the measurement problem and allows the classical description of macroscopic objects,
is frequently ignored. Unfortunately, the predictive equivalence of the two theories was
recently wiped out [5].

John Bell [6], despite his great impact on our understanding of CQM by his verification
that nonlocal features characterize natural processes, also expressed dissatisfaction with
the conceptual status of CQM [7]:
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“Either the wavefunction, as given by the Schrödinger equation, is not everything, or it
is not right.”

There are widely known remarks by Richard Feynman in 1964 [8]:

“It is safe to say that no one understands quantum mechanics”

and Murray Gell-Mann in his lecture at the 1976 Nobel Conference [9]:

“Niels Bohr brainwashed the whole generation of theorists into thinking that the job (of
finding an interpretation of quantum mechanics) was done 50 years ago”.

There are several concepts that contradict the “probability” interpretation of CQM and
are relevant to our QQM. It is known that certain nonlinear Schrödinger (NLS) equations, in
one or more space dimensions, possess space-localized solutions ψ = ψ(t, x), e.g., solitons
in the one-dimensional case. From numerous attempts, we have selected a few considering
such settings. Bodurov has shown that space-localized solutions happen for a large class
of complex nonlinear wave equations and NLS equations [10,11]. Białynicki-Birula and
Mycielski have found that NLS equations admit closed-form space-localized solutions
(gaussons) [12]. They have also shown that “...in every electromagnetic field, sufficiently small
gaussons move like classical particles”. Weng’s results reveal that the quaternion space is
appropriate to describe the gravitational features [13]. The Three Wave Hypothesis by
Horodecki, which is based on de Broglie’s particle–wave duality, and the assumption of
covariant æther [14,15] are also consistent with QQM. Close demonstrated a description of
rotational waves in an elastic solid as the spin equivalent [16–18].

Regardless of recent progress, it is still safe to say that there has been insignificant
advances in understanding of CQM.

Quaternion quantum mechanics today. The first suggestion of quaternion quantum
mechanics came from Birkhoff and von Neumann [19]. Already in 1936, they mentioned
that quaternion quantum mechanics has greater logical consistency than classical (complex,
operator) quantum mechanics.

Yang [20] shows that it is not necessary to go beyond the three-number systems, real
numbers R, complex numbers C, and quaternions Q for the representation of quantum
mechanics. It should be noted that this is consistent with the Hurwitz theorem in which real
numbers, complex numbers, quaternions, and octonions O , are the only normed division
algebras over real numbers. In simple words, e.g., only R, C, Q and O can be used in the
models where energy, is conserved. Finkelstein et al. [21] showed that quaternion calculus
exists, and it is always possible to represent pure states of a system of quantum mechanics
by rays in a vector space over the quaternions, but not over real and complex numbers.
Recently, the global effects in quaternionic quantum field theory [22] were applied to
analyze the experimental status of quaternionic quantum mechanics [23].

Adler studied downgraded quaternion Lagrangian [24] and quaternionic group rep-
resentations [25,26]. His idea of the trace dynamics relies on using a variational principle
based on a Lagrangian method, constructed as a trace of noncommuting operator variables,
making systematic use of cyclic permutation under the trace operation. Nottale used the
bi-quaternion concept in suggesting an answer to the question of the origin of complex
numbers and Clifford algebra in quantum mechanics [27]. Recently, Gantner demonstrated
the equivalence of complex and quaternionic quantum mechanics [28].

To summarize, QQM has many new features that make it a much richer theory. It
is caused generally by the noncommutativity of quaternion-valued wave functions. Our
quaternion Klein–Gordon [29] and Schrödinger equations [1] carry much more physical
information than their complex equivalents and make QQM a much richer theory. In this
work, we combine the model of the Cauchy elastic continuum with the Planck–Kleinert
crystal hypothesis and derive the first and extended second-order differential equations
of QQM.

The Planck–Kleinert crystal. Elastic waves play a remarkable function in physics.
Thomas Young explained the polarization of light as analogue to shear waves, Navier devel-
oped his equations by adding dissipative terms to the Cauchy equation of motion, Maxwell
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constructed equations of electromagnetism by modelling a lattice of elastic cells, etc. [30]. The
Cauchy model of elastic solids was already published [31] when Maxwell considered the
crystal hypothesis. In A Dynamical Theory of the Electromagnetic Field [32], Maxwell explicitly
remarked on the æther:

“On our theory, it (energy). . . may be described according to a very probable hypothesis,
as the motion and the strain of one and the same medium (elastic æther)”

and

“... what if these molecules, indestructible as they are, turn out to be not substances
themselves, but mere affections of some other substance?” [33],

less known, if not entirely forgotten, is the remark on gravity:

“. . .assumption, therefore, that gravitation arises from the action of the surrounding
medium leads to the conclusion that every part of this medium possesses, when undis-
turbed, an enormous intrinsic energy. As I am unable to understand in what way a
medium can possess such properties, I cannot go any further in this direction in searching
for the cause of gravitation.”

Maxwell’s idea of solid æther showing “enormous intrinsic energy” was unimaginable
in the 19th century.

We consider æther as the Planck–Kleinert crystal, P-KC [1]. The macro-properties of
such a crystal are approximated by the Cauchy model of an elastic solid continuum in the
quaternion representation.

The original arguments to implement classical mechanics equations in the field of
wave mechanics in crystalline, granular æther were given by Kleinert [34,35]. Soon after, it
was shown that quantum gravity effects, when applied to a non-relativistic particle in a
one-dimensional box, imply the quantization of length [36]. This result was interpreted
as an indication of the fundamental discreteness of space itself. Similarly, corrections to
the Klein–Gordon and Dirac equations gave rise to area and volume quantizations, again
indicative of the fundamentally grainy nature of space. Such an approach modifies all
quantum mechanical Hamiltonians [37] and suggests that space itself is discrete, i.e., that
all measurable lengths are quantized in units of a fundamental Planck length.

The building blocks of the Planck–Kleinert crystal are Planck particles, mP, that obey
the laws of mass, momentum, and energy conservation. Each particle exerts short-range
force at the Planck length, lP. The Kleinert concept linked with the Cauchy model of the
elastic continuum was analyzed with the arbitrary assumption of the complex potential
field [38].

Recently, the Cauchy theory was rigorously combined with the Helmholtz decom-
position and Planck–Kleinert crystal hypothesis. The quaternion representation of the
deformation, σ, in the Cauchy displacement field, u, produced the system of second-order
wave (Klein–Gordon and Poisson) [39] and Schrödinger equations [39].

Dirac equation. Dirac’s equation, on the one hand, is a first-order linear differential
equation, and on the other hand, the iterated application of the equation yields the Klein–
Gordon wave equation and consequently, the invariance under Lorentz transformation.
Because of its success in explaining both the electron spin and the fine structure of atomic
energy levels, the utmost importance of Dirac’s discovery was evident. Several trials
were made to avoid the operator method used by Dirac and to bring his equation into
a form that could be interpreted in terms of normal vector analytical concepts. Cornel
Lanczos made important progress and derived the first-order differential equation using
quaternion algebra.

Lanczos was with Einstein in Berlin, working with the great man to whom, in 1919,
he dedicated his dissertation: a quaternionic field theory of classical electrodynamics [40].
Only a year after Dirac had discovered his relativistic wave equation for the electron,
Lanczos published a series of papers on Dirac’s equation [41,42]. He showed how to derive
Dirac’s equation from a more fundamental system. He predicted that spin 1

2 particles
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should come in pairs, as well as the correct form of the wave equation of massive spin
1 particles that would be rediscovered by Proca in 1936. He foresaw the possibility of a
nonlinear theory and the origin of mass exactly of the kind that would be developed almost
thirty years later. In 1933 in his new derivation [43], there is a doubling in the number of
solutions, from which four in Dirac’s theory (two for spin and two for particle/antiparticle)
increases to eight, a feature that we can today interpret as isospin. The isospin partner of
the proton—the neutron—was discovered in 1932. Nobody ever thought of using Lanczos’s
doubling to explain the existence of isospin particles. His article, over eighty years later,
still contains a number of ideas that remain at the forefront of fundamental theory.

Sadly, the quaternions were non-popular and Lanczos articles were ignored by the
vast majority of his contemporaries. Lanczos himself abandoned quaternions and never
returned to quaternionic field theory for the rest of his life. He briefly referred to his
quaternion articles of 1929 only twice [44]. Over eighty years later, his papers contain ideas
that remain at the frontline of fundamental theory. The whole series of Lanczos’s articles is
a remarkable discussion of the fundamental problems of matter, fields, and the origin of
mass, most of which is still pertinent today. The first problem of physical interpretation
is due to the fact that Lanczos’s equation is much more general than Dirac’s. The trouble
with Lanczos’s fundamental system (from which Dirac’s equation can be derived as a
special case) is that it allows for spin 1

2 solutions (such as the electron), as well as for spin
0, 1 and 3

2 . Lanczos, like anybody at the time, was completely unaware of the abundance
of the elementary particles. It seems that Lanczos was also not aware of the idea that
covariance with respect to spatial reversal also had to be included in order to have full
relativistic invariance.

Recently, Silvis applied the quaternion formalism to the Dirac equation by making a
translation of the Dirac equation as usually stated in quaternion formalism. In his approach
to the Dirac equation, a two-component biquaternion and one-component biquaternion
wave equations were considered [45].

In the present paper, we solve the problem from a different point of view. We use
formalism, which is well adapted to the problem and is based upon the “quaternions”
introduced by Hamilton. We do not try to heuristically find analogies with the classical field
equations. Using quaternion algebra, we combine the Planck–Kleinert crystal hypothesis
and Cauchy theory of an ideal elastic solid. We construct a Hamiltonian with the use of the
Cauchy–Riemann operator, acting on quaternionic valued functions.

Quaternion calculus has never really been adopted in physics. The ideas coming from
complex quantum theory remain almost completely unfamiliar to most mathematicians,
mainly because of the absence of clear definitions and statements of the concepts involved.
This paper attempts to close some of these gaps in communication and starts with the
fundamentals of the quaternion quantum theory, with the specification of what the theory
is basically about. The quaternion section can be skipped by experienced readers.

2. The Quaternions

Hamilton created the R4 analog of complex numbers; his unquestionable motivation
was the mechanics of solids and liquids. In Hamilton’s own words [46]:

“Time is said to have only one dimension, and space to have three dimensions. The
mathematical quaternion partakes of both these elements; in technical language it may
be said to be ’time plus space’, or ’space plus time’: and in this sense it has, or at least
involves a reference to, four dimensions.”

The beauty of quaternions was immediately recognized. James Clerk Maxwell stated
the following [47]:

“The invention of the calculus of quaternions is a step towards the knowledge of quantities
related to space which can only be compared for its importance, with the invention of
triple coordinates by Descartes. The ideas of this calculus are fitted to be of the greatest in
all parts of science.”
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Quaternions can be considered a physical reality; they allow the computation of
processes in continua, particularly wave mechanics. The reformulation of basic principles
in terms of quaternion algebra allows one to understand classical and quantum mechanics.
Our review of the basic definitions and formulas of quaternion numbers and functions is
limited to those used in the paper [48].

The algebra of quaternions, Q, owns all laws of algebra with unique properties [49].
The essentials here are:

(1) the multiplication of quaternions is noncommutative;
(2) the quaternionic displacement potential, i.e., the displacement four-potential or q-

potential, which is a relativistic vector function from which the displacement field can
be derived. It combines both a compression scalar potential (pressure) and a torsion
vector potential (twist) into a single quaternion (four-vector);

(3) the quaternionic displacement potential is the Lorentz invariant.

In the original Hamilton notation, a quaternion is regarded as the sum of a real
(scalar q0) and imaginary (vector q̂) parts: q = q01 + q̂ = [q0, q̂] ∈ Q. The following alge-
braical notation is useful: e0 = 1, e1 = i, e2 = j, e3 = k. Thus, an arbitrary quaternion q,
i.e., q ∈ Q : = R⊗ P, can be written in terms of its basis components,

q = (q0, q1, q2, q3) = q01 + q1i + q2 j + q3k ∈ Q (1)

Because it is reserved for the scalar quantity (real), for the first component, the notation
l is used. The unit vector 1 behaves like the ordinary unit and can be ignored as a factor,
q = q0 + q1i+ q2 j+ q3k. The remaining unit vectors, i, j, k, are usually called imaginary units.

Rigorously, in the mathematical way, quaternion algebra Q can be defined as fol-
lows. Let R4 be the four-dimensional Euclidean vector space with the orthonormal basis
{e0, e1, e2, e3}, where e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1), and with
the three-dimensional vector subspace, P = span{e1, e2, e3}.

The component-wise addition and component-wise scalar multiplication are the con-
ventional operations. Multiplication is the fundamental operation that is defined by the
multiplication of the unit vectors. The Hamilton product (multiplicative group structure)
on the quaternions is defined as follows:

- The real quaternion 1 is the identity element;
- The real quaternions commute with all other quaternions, that is a · q = q · a, for every

quaternion q and every real quaternion a;
- The Hamilton product is not commutative, p · q 6= q · p, but it is associative,

p · (q · r) = (p · q) · r. Thus, the quaternions form an associative algebra over the
real numbers;

- Every nonzero quaternion has an inverse with respect to the Hamilton product;
- The product is first given for the unit vectors, and then extended to all quaternions;

The quaternions form division algebra. This means that the non-commutativity
of multiplication is the only property that makes quaternions different from a real and
complex numbers. The unit vectors obey the following relations:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j,
i1 = 1i = i, j1 = 1j = j, k1 = 1k = k.

(2)

The multiplication is associative but not commutative. Instead of the simple commu-
tative law, p · q = q · p, in quaternion algebra we have the following law:

p · q = (p0 q0 − p̂ ◦ q̂) e0 + p̂× q̂ + p0 q̂ + q0 p̂. (3)

From the multiplication law (3) follows the convenient formula:

(p · q)∗ = q∗ · p∗, (4)
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where p = ∑3
i=0 pi ei, q = ∑3

i=0 qi ei∈ R4; p̂ = ∑3
i=1 pi ei, q̂ = ∑3

i=1 qi ei∈ P; and ◦ and ×
mean the scalar and vector, i.e., cross-products in P, respectively:

p̂ ◦ q̂ = ∑3
i=1 pi qi,

p̂× q̂ = det

e1 e2 e3
p1 p2 p3
q1 q2 q3

.

A conjugate quaternion is defined as follows:

q∗ = q0 − q1i− q2 j− q3k, (5)

where the asterisk means the following: one goes over to the “conjugate” of the quaternion,
that is to say, one gives the imaginary units the opposite sign. The conjugate means one
gives the vector components (the space part), q̂ = q1i + q2 j + q3k, the opposite sign:

q∗ = q0 − q̂ = q0 − q1i− q2 j− q3k. (6)

It is easy to see that the quantity q · q∗ is simply a scalar number, and all spatial
components vanish. From Equations (2)–(6), it can be seen that q · q∗ = q∗ · q = ∑3

i=0 q2
i ,

and therefore the Euclidian norm can be denoted as follows:

‖q‖ =
√

q∗ · q. (7)

Hence, Q is a normed algebra.
The multiplication given by (2) and (3) is noncommutative. The cross-product of p and

q relative to the orientation determined by the ordered basis i, j, and k is as follows:

p̂× q̂ = (p2q3 − p3q2)i + (p3q1 − p1q3)j + (p1q2 − p2q1)k (8)

Equally,

p̂× q̂ =
1
2
(p · q− q · p). (9)

The vector space R4 with the multiplication (3) is a noncommutative algebra with
unity usually denoted by Q, and it is named quaternion algebra. The commutator of two
elements, p and q, is defined by the following:

[p, q] = p · q− q · p = 2p̂× q̂ (10)

and can be looked at as a measure of noncommutativity. The noncommutativity of quater-
nion multiplication stems from the multiplication of vector quaternions. Two quaternions
commute [p, q] = 0 if, and only if, their vector parts are collinear.

Representations of quaternions. The quaternions can be represented as follows:

- matrices in such a way that quaternion addition and multiplication correspond to
matrix addition and matrix multiplication, e.g., as 2 × 2 complex matrices and
4 × 4 real matrices [49]. There is a strong relation between quaternion units and
Pauli matrices;

- exponent functions that have trigonometrical representation: eq = eq0(cos|q̂|+ q̂/|q̂| sin|q̂|);
- rotors, the generalization of quaternions that represents a rotation about the origin and

introduces the concept of bi-vectors. Only in R3 does the number of basis bivectors
equal the number of basis vectors, and each bivector can be identified as a pseudovec-
tor. In physics and mathematics, a pseudovector (or axial vector) is a quantity that is
defined as a function of some vectors or other geometric shapes, which resemble a
vector and behave like a vector in many situations. Geometrically, the direction of a
reflected pseudovector is opposite to its mirror image but with equal magnitude [50].
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Functions of a quaternion variable. Like functions of a complex variable, functions
of a quaternion variable represent useful physical models. For example, the origi-
nal electric and magnetic fields described by Maxwell are functions of a quaternion
variable [51].

Let Ω ⊂ R3 be a bounded set. The so-called Q-valued functions may be written as

q (x) = q0(x)1 + q1(x)i + q2(x)j + q3(x)k, x = (x1, x2, x3) ∈ Ω, (11)

where the functions q0(x), ql(x), l = 1, 2, 3 are real-valued.
Similarly, the functions q (t, x), depending on time t, may be considered. Properties

such as continuity, differentiability, integrability, and so on, which are ascribed to q, have to
be possessed by all the components q0(t, x), ql(t, x), l = 1, 2, 3. In this manner, the Banach,
Hilbert, and Sobolev spaces of Q-valued functions can be defined [51], e.g., in the Hilbert
space over Q,

L2(Ω) =

{
q : Ω→ Q

∣∣∣∣∫Ω
q2

0 dx < ∞,
∫

Ω
q2

l dx < ∞, l = 1, 2, 3
}

(12)

and we introduce the inner product as follows:

〈q1, q2〉 =
∫

Ω
q1 · q2 dx, q1, q2 ∈ L2(Ω). (13)

In a similar way, the Sobolev spaces are defined:

Hk(Ω) =
{

q : Ω→ Q
∣∣∣q, q(1), . . . , q(k) ∈ L2(Ω)

}
, k ∈ N. (14)

The definition of self-adjoint operators acting on these spaces is analogous as in the
real and complex cases. Moreover, the theories of analytic functions, distributions, Fourier
series, Lebesgue measure, Gelfand triples, Laplace transform, and many others on the
vector space of Q-valued functions over Q can be defined in a standard way as in the real
and complex cases with analogous properties.

Remark 1. Because it is possible to divide quaternions, they form a division algebra, and the norm
makes the quaternions into a normed algebra. Hurwitz’s theorem says that there are only four
normed division algebras: R,C,Q and the octonions algebra.

Lagrange’s four-square theorem in number theory states that every non-negative
integer is the sum of four integer squares. This theorem may have applications in different
areas of mathematics, e.g., quaternion algebra.

Time is scalar and has only one dimension, and space has three. Quaternion might be
conceived as “time plus space”, and in this sense, it has reference to four dimensions.

Quaternions and Cauchy Elastic Continuum

The displacement vector u has the following standard definition:

u := x(X, t)− X, (15)

X denotes the position vectors of material points at t = 0 and x spatial position at other
times t of the point that moved, and was X at t = 0. The velocity and acceleration are defined
by the following:

.
u :=

∂ x(X, t)
∂ t

,
..
u :=

∂2 x(X, t)
∂ t2 . (16)

The Cauchy theory describes the case in which an infinitesimal line element dX of
the reference configuration undergoes extremely small rotations and fractional change in
length in deforming to the corresponding line element dx, i.e., when

∣∣∂ ui/∂Xj
∣∣ << 1.
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We now start with notation that is precise and convenient in a case of an ideal elastic
continuum where only the compression and twist emerge, i.e., p0 = σ0, and p̂ = φ̂,
explicitly: p1 = φ1, p2 = φ2, and p3 = φ3. We introduce the deformation that is a function
of twist vector and compression:

σ = σ0 + φ̂ ∈ Q, (17)

where σ0 = divu0, φ̂ = rotuφ, divφ̂ = div rot uφ = 0.
The commutator of two elements σ1 and σ2 equals[

σ1, σ2
]
= σ1 · σ2 − σ2 · σ1 (18)

and we have the formulae

σ1 · σ2 =
(
σ1

0 σ2
0 − φ̂1 ◦ φ̂2 )+ σ1

0 φ̂2 + σ2
0 φ̂1 + φ̂1 × φ̂2,

σ2 · σ1 =
(
σ2

0 σ1
0 − φ̂2 ◦ φ̂1 )+ σ2

0 φ̂1 + σ1
0 φ̂2 − φ̂1 × φ̂2.

(19)

From Equations (18) and (19), it follows that:
[
σ1, σ2] = 2φ̂1 × φ̂2. Two quaternions

commute
[
σ1, σ2] = 0 if, and only if, their vector parts φ̂1 and φ̂2 are collinear.

We use here the Cauchy–Riemann operator D acting on the quaternion-valued func-
tions σ:D σ = −divφ̂ + gradσ0 + rotφ̂, where gradσ0 = ∂σ0

∂x1
i + ∂σ0

∂x2
j + ∂σ0

∂x3
k,

divφ̂ =
∂φ1

∂x1
+

∂φ2

∂x2
+

∂φ3

∂x3

and

rotφ̂ = det

 i j k
∂

∂x1
∂

∂x2
∂

∂x3
φ1 φ2 φ3


Under the constraint divφ̂ = 0, fundamental in the Cauchy model, D equals

D σ = gradσ0 + rotφ̂. (20)

Note that DD σ = −∆ σ, and hence, D corresponds physically to the gradient in R3.
The exponent function has its trigonometrical representation as follows:

eσ = eσ0

(
cos
∣∣φ̂∣∣+ φ̂∣∣φ̂∣∣ sin

∣∣φ̂∣∣), (21)

where σ is a Q valued function.
We also introduce a deformation four-potential as a single quaternion (four-vector)

σ :=
(
σ0, φ̂

)
. (22)

It is the relativistic function defined by the displacement field, u. As measured in
a given frame of reference, and for a given gauge (gauge theory is a type of field theory
in which Lagrangian is invariant under local transformations), the first component of
the deformation four-potential is the compression scalar potential, and the other three
components make up the twist vector potential. Note that while both the scalar and vector
potential depend upon the frame, the deformation four-potential is the Lorentz covariant.

3. Quaternion Representation of the Cauchy Classical Theory of Elasticity

In the following section, the mechanical reactions in the real FCC crystal are assessed
by means of Cauchy continuum theory, i.e., we approximate the grainy continuum by field
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variables. The Cauchy model of an ideal elastic continuum [52] constitutes the consistent
base used here due to the following:

- the macroscopic phenomena are expressed in terms of field variables [53];
- from the beginning, the model was applied to study the elementary waves [54];
- the proof of the uniqueness of solutions [55] and the completeness proof are complete [56].

We follow the Planck–Kleinert crystal hypothesis [38] and consider an ideal FCC
structure, in which the Poisson number ν = 0.25, lP equals the Planck length and denotes
the dimension of the FCC elementary cell that consists of four interacting Planck particles,
showing the Planck mass mP. The density of such continuum equals ρP = 4mP/l3

P .
We reduce the problem, and the continuum is treated as a closed system occupying

the constant volume Ω ⊂ R3. The Cauchy theory describes the case when any infinitesimal
line element dX of the reference configuration undergoes extremely small rotations and
fractional change in length in deforming the corresponding line element dx, i.e., when∣∣∂ ui/∂Xj

∣∣ << 1. The following considerations should also be taken into account:

1. The continuum density, ρP, is high, and we consider the small deformation limit only,
lP ∼= const.; thus, the density changes are negligible and ρP = 4mP/l3

P = const.;
2. The small deformation limit implies the invariant wave’s velocities, particularly the

constant transverse wave velocity in Equation (24):

c =
√

0.4Y/ρP = const. (23)

where Y is the Young modulus [57].
3. We consider here the long evolution times, t� tP, where tP is the Planck time;
4. The quasi-stationary wave exists, which may exhibit the velocity of its mass

center, υ [10,11]

In such a continuum, the equation of motion relates to local acceleration due to the
displacement, u, with the field variables, compression (divu), and twist (rotu):

∂2u
∂ t2 = 3 c2graddivu− c2 rotrotu (24)

where, for the sake of simplicity, we do not consider the external fields.
From Equation (24), the energy per mass unit in the deformation field follows [57,58]

e =
ρE
ρP

=
1
2

.
u ◦ .

u +
3
2

c2(divu)2 +
1
2

c2rotu ◦ rotu (25)

where
.
u = ∂u/∂t.

Equation (24) and relation (25) obey the Euler–Lagrange relation
∂e
∂u −

d
dt

(
∂e
∂

.
u

)
= 0 and are sufficient to describe deformation in the ideal elastic contin-

uum. The Helmholtz theorem allows the use of quaternion algebra. The strong formulation
of the decomposition theorem introduces the four-potential Ã:

F = DÃ = gradA0 + rotAφ, (26)

where Ã = A0 + Aφ = A01 + iA1 + jA2 + kA3 and divAφ = 0.
Note that the Cauchy–Riemann operator D defined by the Equation (20), acting on

the quaternion-valued potential Ã in an ideal elastic continuum, corresponds physically
to the force F in R3, Equation (26). We use here the weak formulation of Helmholtz’s
decomposition theorem. Every deformation can be expressed by the curl-free component,
u0, and a divergence-free component, uφ, and if u belongs to the C3 class of functions, then
u = u0 + uφ, where rotu0 = 0 and divuφ = 0 [59]. Upon acting on Equation (24) by the
divergence and rotation operators, we decompose it and obtain well-known transverse and
longitudinal wave equations in the usual form att = k ∆a:
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div
(

∂2u
∂ t2 = 3c2graddivu− c2rotrotu

)
⇒ ∂2

∂ t2 divu0 = 3c2 ∆divu0,

rot
(

∂2u
∂ t2 = 3c2graddivu− c2rotrotu

) ∆u=∇(∇·u)−∇×(∇×u)⇒ ∂2

∂ t2 rotuφ = c2 ∆rotuφ.
(27)

The Cauchy equation of motion combined with the Helmholtz decomposition theorem
in (27) leads to four second-order scalar differential equations, i.e., “quattro cluster”, which
implies the presence of transverse and longitudinal waves in the Cauchy elastic solid. Note
that these equations remain coupled by the relation of the energy density (25); however,
the more complex wave phenomena are not apparent in (27).

The Cauchy displacement field in the quaternion deformation representation shows
the physical reality, the correspondence with Hamilton time–space continuum, and the com-
plexity of wave phenomena. The Hamilton algebra Q allows the curl-free and divergence-
free components that are separated in (27) to be coupled. Upon denoting σ0 = divu0 and
φ̂ = rotuφ we obtain

∂2σ0
∂ t2 = 3c2 ∆σ0,
∂2φ̂

∂ t2 = c2 ∆φ̂
(28)

and the energy density per mass unit (25) takes the following form:

e = 1/2
.
u ◦ .

u + 3/2c2 σ2
0 + 1/2c2φ̂ ◦ φ̂. (29)

The decomposition u = u0 + uφ in (27) and the change in variables results in four
Equations (28) and allows the use of Hamilton quaternions. Namely, it implies the existence
of the deformation field σ = σ0 + φ̂ that represents the twist and compression fields as a
superposition of real (scalar compression σ0) and imaginary (twist vector φ̂) field parts at
each point

σ = σ0 + φ̂ and σ∗ = σ0 − φ̂ ∈ Q, (30)

where the Helmholtz decomposition implies the following constraint [58]:

divφ̂ = divrotuφ = 0. (31)

This representation specifies three displacement components in terms of four potential
components; furthermore, the divergence of u0 is arbitrary. It is common to choose φ̂ with
zero divergence: divφ̂ = 0.

Adding Equations in (28), and from (30) we obtain the quaternion form of the
motion equation

1
c2

∂2σ

∂ t2 − ∆σ− 2∆σ0 = 0, where σ = σ0 + φ̂, (32)

where φ̂ must obey constraint (31).
Since

.
u ◦ .

u =
.̂
u ◦ .̂

u = − .̂
u · .̂

u =
.̂
u · .̂

u
∗
, where

.̂
u =

.̂
u1i +

.̂
u2 j +

.̂
u3k and

.
u =

( .
u1,

.
u2,

.
u3
)
,

the overall energy of the deformation field, Formula (29) reaches the quaternion form

e =
1
2

.̂
u · .̂

u
∗
+

1
2

c2σ · σ∗ + c2σ2
0 . (33)

The energy is conserved, so relation (33) leads to the nonlocal boundary condition for
Equation (32) [29].

Remark 2. The Cauchy model combined with the Helmholtz decomposition theorem and quaternion
algebra results in second-order differential Equation (32) and constraint (31). It infers the transverse,
longitudinal, and complex forms of waves and shows Lorentz invariance. Equations (32) and (33)
satisfy the Euler–Lagrange differential equation, i.e., satisfy the fundamental equation of the calculus
of variations.
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4. Quaternion Quantum Mechanics, the Planck–Kleinert Model

In this section, we present already published results, namely the use of the quaternion algebra
for combining the Cauchy R3 model with the Planck–Kleinert crystal hypothesis [29,35,38,39]. We
regard quantum space as an analog to the Cauchy elastic solid. The properties of ideal elastic
æther are presented in Table 1.

Table 1. The physical constants of the Planck–Kleinert crystal (fcc ideal isotropic crystal).

Label Used in This Work Planck Constants Symbol
for Unit Value SI Unit Reference

Lattice parameter Planck length lP 1.616229(38) × 10−35 m [60]
Poisson ratio ν 0.25 - [60]
Mass of the Planck particle Planck mass mP 2.176470(51) × 10−8 kg [60]
Planck–Kleinert crystal density ρP 2.062072 × 1097 kg·m−3 [60]
Duration of the internal process Planck time tP 5.39116(13) × 10−44 s−1 [60]
Young modulus,
intrinsic energy
density

Y 4.6332447 × 10114 kg·m−1s−2 c =
√

0.4Y/ρP

Transverse wave velocity Light velocity
in vacuum c 2.99792458× 108 m·s−1 [60]

The relativistic waves in a Cauchy continuum follow from the postulate of existence of
the stable wave, showing the energy due to the motion and the strain of one and the same
medium. Upon splitting Equation (32) into the system, the nonlinear form of the wave
equation follows [1,29] { (

1
c2

∂2

∂ t2 − ∆
)

σ + k2
0σ · σ∗ = 0,

−2∆σ0 − k2
0σ · σ∗ = 0,

(34)

where k0 = 1/λ0(E). In [29], we postulated that k2
0 = 8πm/(} tP), where } = mP c2 tP.

The above second-order equation fulfills the laws of special relativity and the Lorentz
invariance and fixes the fundamental problems of negative energy in the complex formula-
tions [61]. The energy computed using Formula (33) is per definition always positive due
to the constraint (31). The system (34) is a hyperbolic–elliptic quaternion representation of
a the wave and has solutions of the following form:

σ (t, x) = σ0 + φ̂ = σ0 + φ1i + φ2 j + φ3k ∈ Q. (35)

The second equation in (34) is the Poisson-type equation [62], which describes the
compression potential as a function of energy density in a case of the particle showing the
energy E, [29]. When expressed as a function of the local mass density ρ = ρE/c2, where
ρE = m c2/l3

P × σ · σ∗, we obtain

c2∆σ0 = −4πρ
l3
P

mPt2
P
= −4π ρ G . (36)

The gravitational constant equals: G = l3
P/
(
t2
PmP

)
= 6.674082× 10−11

[
m3 · kg−1s−2

]
.

Remark 3. The low deformation limit allows for the simplified assumption of the constant mass
density, ρP ∼= const, as well as the constant transverse wave velocity. Consequently, gravity in
the simplified form of the Poisson equation follows. By considering the nonlinear dependence of the
energy density on deformation and its impact on the wave velocity, c := c (ρE), one can obtain a
more general form of relation (36), i.e., the relations of general relativity [13].
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4.1. The Quaternion Schrödinger Equation

We treat the wave as a particle in an arbitrary volume Ω [1]. The overall wave energy,
E = E0 +Q, where E0 and Q are the ground and excess energies, respectively, follows from
the energy density, E =

∫
Ω ρEdx, where ρE = ρpe. The key step in deriving Schrödinger is

the symmetrization of the overall energy Formula (33) i.e., e = 1
2

.̂
u · .̂

u
∗
+ 1

2 c2σ · σ∗ + c2σ2
0 ,

which can be written in the equivalent symmetrical form:

e =
1
2

.̂
u · .̂

u
∗
+

1
2

c2σ̃ · σ̃∗ where σ̃ = σ̃0 + φ̂ =
√

3σ0 + φ̂. (37)

The overall mass of the particle, m, follows from the overall energy density ρE = ρpe

m =
ρP

2c2

∫
Ω

( .̂
u · .̂

u
∗
+ c2σ̃ · σ̃∗

)
dx. (38)

The terms c2σ̃ · σ̃∗ and
.̂
u · .̂

u
∗

oscillate and depend on the time and position. The symme-
try normalizes the deformation and mass velocity with respect to the overall particle mass:∫

Ω
ρP
m σ̃ · σ̃∗ dx =

∫
Ω ψ · ψ∗ dx = 1, where ψ =

√
ρP
m σ̃,∫

Ω
ρP

mc2
.̂
u · .̂

u
∗

dx =
∫

Ω ψ · ψ∗ dx = 1, where ψ =
√

ρP
m

.̂
u
c

, (39)

The quaternionic particle mass density ψ can be called the quaternionic probability be-
cause the relation

∫
Ω ψ · ψ∗ dx = 1 in (39) is satisfied. Obviously, terms ψ =

√
ρP/m σ̃ (t, x)

and ψ · ψ∗, vary in time.
We analyzed the evolution of the wave as in relation (38) in the time-invariant potential

field [1], e.g., the wave in the field generated by other particles. The overall energy is now a
sum of the ground and excess energy Q,

E = E0 + Q =
∫

Ω

(
1
2

ρP
.̂
u · .̂

u
∗
+

1
2

ρP c2σ̃ · σ̃∗ + V(x) ψ · ψ∗
)

dx (40)

We considered the low excess energies, and the impact of Q on the overall particle
mass was marginal. Thus, relation (40) becomes

E = E0 + Q =
∫

Ω

(
1
2 mc2ψ · ψ∗ + 1

2 ρP
.̂
u · .̂

u
∗
+ V(x)ψ · ψ∗

)
dx

= 1
2 mc2 +

∫
Ω

(
1
2 ρP

.̂
u · .̂

u
∗
+ V(x)ψ · ψ∗

)
dx.

. (41)

Both the E0 and m are constant; thus, it is enough to minimize the relation

Q =
∫

Ω

(
1
2

ρP
.̂
u · .̂

u
∗
+ V(x)ψ · ψ∗

)
dx. (42)

The above relation contains two unknowns:
.̂
u = ∂û/∂t and ψ. By relating the local

lattice velocity
.̂
u to the force, the normalized Cauchy–Riemann derivative of deformation

lPDσ̃, the velocity equals
.̂
u =

p̂
m

= − }
m

D σ̃. (43)

By introducing (43) and normalization (39), the relation (42) becomes the functional

Q[ψ] =
∫

Ω

(
}2

2m
(Dψ) · (Dψ)∗ + V(x)ψ · ψ∗

)
dx. (44)

The functional Q[ψ], that is, the integral above, was minimized with respect to a
quaternion function, such that ψ satisfies the normalization introduced in the relation
(39) [1]. In simple terms, we looked for a differential equation that has to be satisfied
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by the ψ function to extremize (here minimize) the energies allowed by (44). Given the
functional (44) and the constraint in (41), the conditional extreme was found using the
Lagrange coefficients method and the Du Bois Reymond variational lemma [63]. The whole
procedure is presented in [1]. It was found that in such a case, ψ satisfies the time-invariant
diffusion equation, i.e., the time-independent Schrödinger equation satisfied by the particle
wave in the ground state of the energy E,

− }
2m

∆ψ +
1
h
[V(x)− E] ψ = 0 (45)

that has to be satisfied together with the condition (31)

4.2. Time-Dependent Schrödinger Equation

By analogy to the complex time-dependent Schrödinger equation i ∂Ψ
∂t = − }

2m ∆Ψ +
1
h V(x) Ψ, we proposed the quaternion form [1]

i + j + k
3

∂Ψ
∂t

= − }
2m

∆Ψ +
1
h

V(x) Ψ (46)

and demonstrated that in the diagonal case, both the quaternion (46) and the complex time-
dependent Schrödinger equations are equivalent in same sense. Moreover, it was shown
that by suitable natural substitution, the time-dependent Schrödinger Equation (46) implies
the quaternion stationary Schrödinger Equation (45). Upon multiplying Equation (44) by
−(i + j + k), it can also be expressed as follows:

(−i − j − k)
(

i + j+ k
3

∂Ψ
∂t = − }

2m ∆Ψ + 1
}V(x) Ψ

)
⇒

∂Ψ
∂t = ΘP ∆Ψ− i + j+ k

} V(x) Ψ
, (47)

where ΘP = (i + j + k)}/2m
[
m2s−1] denotes the imaginary diffusion coefficient.

When the external potential V(x) is negligible, then it can be seen that we generated a
quaternion form of the diffusion equation:

∂Ψ/∂t = ΘP ∆Ψ. (48)

5. Results
5.1. Second-Order Wave Systems of Equations

The Cauchy equation of motion is a sum of transverse (vector) and longitudinal (scalar)
deformation waves, according to Equation (32).(

∂2

∂ t2 − c2∆
)

σ − 2c2∆σ0 = 0,[
Quaternion
wave term

]
−

[
Laplacian

term

]
= 0.

(49)

It looks like Equation (49) contains two matchless terms. By postulating the existence
of a stable wave, we already draw from (49) the Klein–Gordon Equation (29) and subse-
quently the formulae relating the density of the wave σ · σ∗, with the density of the rate of
momentum change G0(m)σ · σ∗:{ (

∂2

∂ t2 − c2∆
)

σ + G0(m)σ · σ∗ = 0,
2c2∆σ0 + G0(m)σ · σ∗ = 0,

(50)

where the q-potential is given by σ (σ0, φ1, φ2, φ3) = σ0 + φ̂, and G0(m) ∈ R is a scalar
function of the particle mass.

System (50) represents a boson particle showing positive energy at rest, m > 0 [29] The
real meaning of System (50) is the postulate of the scalar coupling, G0(m)σ · σ∗, between
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the longitudinal and transverse waves. Coupling is more evident upon expressing system
(50) in the equivalent form:

{ (
∂2

∂ t2 − c2∆
)

σ + G0(m)σ · σ∗ = 0,

2c2∆σ0 + G0(m)σ · σ∗ = 0,
⇔


(

∂2

∂ t2 − c2∆
)

φ̂ = 0,(
∂2

∂ t2 − c2∆
)

σ0 + G0(m)σ · σ∗ = 0,

2c2∆σ0 + G0(m)σ · σ∗ = 0,

⇔


(

∂2

∂ t2 − c2∆
)

φ̂ = 0,(
∂2

∂ t2 − 3c2∆
)

σ0 = 0,

2c2∆σ0 + G0(m)σ · σ∗ = 0.

(51)

Systems (50) and (51) are identical: five equations and five unknowns, σ (σ0, φ1, φ2, φ3)
and m. If mass is known, m is the parameter in the Poisson equation above. In this section,
we further develop the coupling concept and present the family of second-order quaternion
wave equations.

Coupling coefficient. System (51) can be generalized to the following form:
(

∂2

∂ t2 − c2∆
)

φ̂ = 0,(
∂2

∂ t2 − 3c2∆
)

σ0 = 0,
2(n− 1)c2∆σ0 − G0(m)σ · σ∗ = 0 where n = 0, 2, 3, . . .

(52)

It follows that harmonic oscillator implies the following relation:

2(n− 1)c2∆σ0 − G0(m)σ · σ∗ = 0 where n = 0, 2, 3, . . . (53)

The term G0(m)σ · σ∗ in (53) is corresponds to the density of the rate of the momentum
change and can be called propagator. In the following G0(m) is referred to as the harmonic
oscillator. It is evident that at n = 0, the coupling for boson particle follows Systems (50)
and (51). For weaker coupling, n = 2, 3, . . ., and the q-potentials σ̃n equal

σ̃n = σ− nσ0 = (1− n)σ0 + φ̂ where n = 2, 3, . . . (54)

Upon σ̃n substitution into System (52), the two wave equations are evident:
(

∂2

∂ t2 − c2∆
)

σ̃n + G0(m)σ · σ∗ = 0,[
n ∂2

∂ t2 − (n + 2)c2∆
]
σ0 − G0(m)σ · σ∗ = 0.

(55)

5.2. The Quaternionic Oscillator

The coupling take place in the crystal elementary cell, i.e., at the Planck scale. The
oscillator grants the following:

That the accelerations at the Planck scale of all q-potential components are equal,
..
σ0 =

..
φ1 =

..
φ2 =

..
φ3. The function G0 σ∗ · σ∈ R we call the quaternionic oscillator with the

following properties:

1. The q-potential σ (t, x) represents the four deformations: the volume change σ0 = divu,
and twists in all three directions φ̂(φ1, φ2, φ3) = rotu, according to Equation (54);

2. The q-potential components show common frequencies of the two harmonic oscilla-
tions: of the particle wave f and of the local process fP. The oscillations energies obey
the equipartition theorem in in the P-KC unit cell;

3. The slowest process within the particle wave controls the velocity of deformation
propagation. In all the systems (55), particle wave propagation depends on the velocity
of the transverse wave cl

4. Following Cauchy, we neglect the dependence of the velocities of transverse and
longitudinal waves on the energy density. This implies the constant Planck frequency:
fP = 1/tP = const 6= f (m, σ) and c = const;

5. The overall mass of the particle controls the frequency of the particle wave, namely
the frequency of the compression and twists: f = f (m), where m might be known
or computed;



Symmetry 2023, 15, 1672 15 of 23

6. The amplitudes of the q-potential, i.e., the Euclidian norms ‖σ̃n‖ =
√

σ̃n · σ̃∗n (t, x),
depend on the particle geometry, e.g., its volume, shape, the velocity of the particle
center, etc. These are not discussed in this work;

7. We also neglect the energy of the external field, EQF, that is generated by the particle
itself, i.e., we neglect the energy of the force fields generated by Poisson equations,
Equations (51) and (55);

8. The duration of the particle wave cycle T = 1/ f exceeds the Planck cycle duration
(the Planck time is the least analyzed period of time and can be considered as the
time unit in QQM) by many orders of magnitude: fP � f . We consider processes at
t > T � tP, i.e., stable particles only, and do not analyze processes at T > t > tP, e.g.,
the collapse or interactions between particles.

The original Cauchy motion equation in vector form, in R3, and its equivalent quater-
nion form, in R4, show that the cycle duration cannot be affected by space dimensions:
R4 vs. R3. Accordingly, we simplify the oscillator problem by analyzing the displacement
u in R1 and applying the results to the q-potential σ in R4.

The displacement u (t, x) of the Planck mass mP in the unit cell is a function of two
simultaneous harmonic processes, i.e., f and fP, namely the displacement due to the Planck
cycle uP (decisive for the propagation velocity) and due to the particle cycle uλ. The same
is valid in R1: u (t, x) = f (uλ, uP). The simultaneous displacements can be understood as
the displacement during the Planck cycle occurring simultaneously with the displacement
due to the particle wave cycle. In both cycles, we assume the harmonic approximation,
which implies a simple relation between the characteristic velocities: the magnitude

∣∣ .
uP
∣∣

and the average velocity
.
uP:

uP(t) = uP[α (t)] = |uP| sin α (t),
.
uP(t) =

.
uP[α (t)] =

∣∣ .
uP
∣∣ cos α (t),∣∣ .

uP
∣∣ = 1

2 π
.
uP.

(56)

During the Planck cycle, the average velocity,
.
uP = c, and the magnitude of the

displacement velocity are related by Equation (56):∣∣∣ .
u
∣∣∣ P = 1/2π

.
uP = 1/2π c. (57)

During each Planck cycle, the velocity changes four times in the range [−1/2π c, 1/2π c],
as shown in Figure 1. Thus, the sum of velocity changes at the Planck distance equals the
following:

∆P
∣∣ .
u
∣∣
P = 4

1
2

π c = 2π c. (58)

Upon dividing the sum of the changes by the Planck length, we obtain the rescaled
Planck frequency as follows:

f ∗P = 2πc/lP = 2π fP (59)

The momentum change during the particle wave cycle follows the same schema, as
displayed in Figure 1. The average velocity of the particle wave

.
uλ = f λ and the magnitude

of the particle wave velocity follow relation (56):
∣∣ .
u
∣∣
λ
= 1/2π f λ. The sum of velocity

changes at the wavelength solely due to the particle cycle equals the following:

∆λ

∣∣ .
u
∣∣
λ
= 4

∣∣ .
u
∣∣
λ
= 2π f λ (60)

Which, upon dividing by the wavelength λ, results in the rescaled frequency solely
due the particle cycle:

f ∗ = 2π f . (61)



Symmetry 2023, 15, 1672 16 of 23

Symmetry 2023, 15, x FOR PEER REVIEW 18 of 27 
 

 

 

 
1

2

( ) ( ) sin ( ),

( ) ( ) cos ( ),

.

P P P

P P P

P P

u t u t u t

u t u t u t

u u

 

 



= =

= =

=

 (56) 

During the Planck cycle, the average velocity, Pu c= , and the magnitude of the 

displacement velocity are related by Equation (56): 

1 2 1 2| |P Pu u c = = . (57) 

During each Planck cycle, the velocity changes four times in the range 

 1 2 ,1 2c c − , as shown in Figure 1. Thus, the sum of velocity changes at the Planck 

distance equals the following:  

1
2

2
4P P

c cu  = = . (58) 

 

Figure 1. The Planck cycle. The velocity of the displacement in the Planck volume of the ideal elas-

tic continuum visualized as 1  projection of the circular motion: 

 ( ) ( ) cos ( )P P Pu t u t u t = = , where 1
2( ) Pt f t =  and 1

2Pu c=  is the magni-

tude of the displacement rate, according to Equation (56). 

Upon dividing the sum of the changes by the Planck length, we obtain the rescaled 

Planck frequency as follows: 

* 2 2 PP Pc l ff  = =  (59) 

The momentum change during the particle wave cycle follows the same schema, as 

displayed in Figure 1. The average velocity of the particle wave u f =  and the mag-

nitude of the particle wave velocity follow relation (56): 1 2u f


 = . The sum of ve-

locity changes at the wavelength solely due to the particle cycle equals the following: 

Figure 1. The Planck cycle. The velocity of the displacement in the Planck volume of the ideal elastic
continuum visualized as R1 projection of the circular motion:

.
uP(t) =

.
uP[α (t)] =

∣∣ .
uP
∣∣ cos α (t),

where α (t) =1⁄2π fP t and
∣∣ .
uP
∣∣ =1⁄2πc is the magnitude of the displacement rate, according to Equation (56).

The Planck and particle cycles are simultaneous, and the average displacement accel-
eration is a product as follows:

..
u = f ∗ f ∗P = 4π2 f fP. (62)

By noting that σ0 = divu0 = lim
∆x→lP

∆u0/∆x, we assume that relation (62) holds at the

Planck scale for deformation. Thus, the average acceleration of the scalar part σ0 of the
q-potential σ equals the following:〈

∂2σ0

∂t2

〉
= 4π2 fP f . (63)

The common frequency postulate allows the relation (63) for the all q-potential com-
ponents to be extended: σ0, φ1, φ2, φ3 in R4:〈

∂2σ

∂t2

〉
= 4

〈
∂2σ0

∂t2

〉
= 16π2 fP f . (64)

The average acceleration of the q-potential σ equals the estimated average acceleration
of changes of the quaternionic oscillator in the particle wave:

G0( f ) = 16π2 fP f , (65)

where f is an unknown particle frequency that may be postulated or computed.
The particle wave frequency f = f (m0) follows from the R1 schema in Figure 1.

The sum of moments of all the Planck masses forming the particle wave (at the arbitrary
time and solely due to the particle wave) equals the momentum of particle m0 itself. To
simplify, we estimate the average moment of the arbitrary single Planck mass mP during the
particle cycle T = f−1. The cycle implies that Planck mass returns to its initial conditions:
uP(t) = uP(t + T) and

.
uP(t) =

.
uP(t + T). The overall distance in which the moment of
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the mass mP changes equals 2πlP. Consequently, the average momentum of a Planck mass
mP is given as follows:

p (mP) = mP
2π lP

T
= 2π mP lP f . (66)

The momentum of the particle m0 is due to the particle propagation velocity:

p (m0) = m0c. (67)

Both moments (66) and (67) must be equal, and the frequency of the particle
wave becomes:

f =
m0c

2π mP lP
=

m0c2

2π mPc lP
=

m0c2

2π} where } = mPclP. (68)

Combining relations (68) and fP = 1/tP, the total power of the quaternionic
oscillator equals:

G0 = 8πm0c2/} tP. (69)

Upon replacing m0c2 = E0 in (68), the Planck–Einstein relation follows: E0 = h f
where h = 2π}.

5.3. The First-Order Wave Equation in P-KC

Complex quantum mechanics is based on complex number algebra, the matrices,
and the matrix algebra [64]. Canonical quantization starts from classical mechanics and
assumes that the point particle is described by a “probabilistic wave function”. Dirac
applied complex combinations of displacements and velocities in the linear problem of
secondary quantization [65,66]. He replaced second-order Klein–Gordon equation by an
array of first-order equations, and as a result, separated the different time scales. Dirac
immediately recognized the problem of medium for the transmission of waves: ”It is
necessary to set up an action principle and to get a Hamiltonian formulation of the equations suitable
for quantization purposes, and for this the aether velocity is required” [67]. We follow a different
path and advance quaternion quantum mechanics using simple heuristic considerations
based on the concept of the medium as a solid “aether”, i.e., we consider the aether as the
Planck–Kleinert crystal. We base it on the following:

(1) Quaternion representation of the P-KC dynamics and canonical quantization (canoni-
cal quantization in the sense that we develop quantum mechanics from quaternion
representation of classical mechanics) that yielded the Klein–Gordon Equation (29):

Cauchy equation of motion &
harmonic oscillator in R4 ⇒ Klein−Gordon & Poisson

equations system in R4{ (
∂2

∂ t2 − c2∆
)

σ− 2c2∆σ0 = 0,
2c2∆σ0 + G0(m)σ · σ∗ = 0,

⇒
{ (

∂2

∂ t2 − c2∆
)

σ + G0(m)σ · σ∗ = 0,
2c2∆σ0 + G0(m)σ · σ∗ = 0,

(70)

where σ = σ0 + φ̂ ∈ Q is the deformation q-potential;
(2) Postulation of the time-invariant harmonic oscillator at the Planck scale G0 (m) oper-

ating at the Planck frequency fP = 1/tP = const (see Section 5.2);
(3) Quaternion representation of the deformations (37) and (39) velocities (43) that yielded

the Schrödinger equation.

From the second-order “electron wave equation” to the first-order equation. Schema
of the secondary quantization:
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Step 1:

Second order equation in R4, variable :
q− potential σ̃ =

√
3σ0 + φ̂

+ ⇒
First order equation in R3, variable :

momentum per mass unit,
.̂
u(t, x)

Planck frequency : fP = 1/tP

Step 2:

Continuity equation in R3 :
∂tρP = −div

[
ρP

.
u (t, x)

] The elastic compression
in R4: ∂tσ0(t, x) = f (σ),

+ ⇒ ⇓
Ideal compression

in R4 : ρP(t, x) = f (σ)
the quaternionic form of

the Riccati equation

Step 1. From the q-potential σ̃ to the vectorial momentum
.̂
u

Using relations (54) and the q-potential of the Schrodinger equation, i.e., σ̃ = σ̃0 + φ̂ =√
3σ0 + φ̂ [1], we generate the following system:

The Cauchy wave equations in R4

& harmonic oscillator :
σ = σ0 + φ̂ and n = 1 −

√
3

⇒ two 2nd order wave equations; σ̃ =
√

3σ0 + φ̂
(

∂2

∂ t2 − c2∆
)

φ̂ = 0,(
∂2

∂ t2 − 3c2∆
)

σ0 = 0,
2(n − 1)c2∆σ0 − G0(m)σ · σ∗ = 0,

n = 1−
√

3
⇒


(

∂2

∂ t2 − c2∆
)

σ̃ + G0(m)σ · σ∗ = 0,(
1−
√

3
)[

∂2

∂ t2 − 3−
√

3
1−
√

3
c2∆
]
σ0 − G0(m)σ · σ∗ = 0.

Thus, System (55) for the deformation potential σ̃ = σ̃0 + φ̂ =
√

3σ0 + φ̂ becomes:
(

∂2

∂ t2 − c2∆
)

σ̃ + G0(m)σ · σ∗ = 0,(
1−
√

3
)(

∂2

∂ t2 − 3−
√

3
1−
√

3
c2∆
)

σ0 − G0(m)σ · σ∗ = 0,
(71)

where c denotes the transverse wave velocity.
The relation (40) for the total energy of the free particle and the relation between the

mass velocity and the Cauchy–Riemann derivative, D σ̃ = −m
}

.̂
u, hint at the displacement

velocity (i.e., the normalized momentum
.̂
u.) as the alternative variable:

.̂
u = −m

} D σ̃. (72)

The particle is stable, and its wave is at a steady state. The local changes of deformation
potential σ̃ are only due to the wave propagation within the volume occupied by the particle.
We know the propagation velocity c; thus, the time derivative of the potential σ̃ in (72) we
express as follows:

∂σ̃

∂t
=

∂x
∂t
·
(

∂σ̃

∂x

)
. (73)

The first term on the right-hand side is the propagation velocity c, and the term in
the bracket is the Cauchy–Riemann derivative. We have already proved that, taking into
account the obligatory restriction of the Cauchy continuum, divφ̂ = 0, at any time t, the
spatial distribution of deformation potential obeys the following set [1]:{

Dσ̃ = gradσ̃0 + rotφ̂,
divφ̂ = 0.

(74)
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The next step might be called secondary quantization. The ∂x/∂t term is the known
wave propagation velocity:

∂x
∂t

=
lP
tP

= c, (75)

and relations (76) imply the following

∂σ̃
∂t = c Dσ̃ = −mc

}
.̂
u,

DDσ̃ = −D
(

m
}

.̂
u
)
= −m

} D
.̂
u.

(76)

The relation between the deformation and kinetic energies in P-KC, relations (37) and
(40), imply the Introduce [1]:

.̂
u · .̂

u
∗
= c2σ̃ · σ̃∗. (77)

Introducing the relations (77), (78) and G0 = 8π mc2

} tP
in system (72) results in

mc
}

(
− ∂

∂ t + c D
) .̂

u + 1
c2 8π mc2

} tP

.̂
u · .̂

u
∗
= 0,(

1−
√

3
)(

∂2

∂ t2 − 3−
√

3
1−
√

3
c2∆
)

σ0 − G0(m)σ · σ∗ = 0,
(78)

and finally, 
(

1
c

∂
∂ t − D

) .̂
u− 8π

tPc2
.̂
u · .̂

u
∗
= 0,(

1−
√

3
)(

∂2

∂ t2 − 3−
√

3
1−
√

3
c2∆
)

σ0 − G0(m)σ · σ∗ = 0
. (79)

Relation (39) ψ (t, x) =
√

ρP/m
.̂
u, implies that by multiplying the particle wave

equation in the system (80), by
√

ρP/m, it will be expressed as a function of probability,(
1
c

∂

∂ t
− D

)
ψ− 8π

lP

√
m
ρP

ψ∗ · ψ = 0 where ψ (t, x) =
√

ρP/m
.̂
u. (80)

The system (80) requires the σ0 time dependence. This dependence results from the
continuity equation presented in the next section. Only upon neglecting the compression
σ0 = const, and we have Dσ̃ = rotφ̂;

.̂
u = − }

m rotφ̂. First-order Equation (80) reduces to
the following:(

1
c

∂

∂ t
− D

)
.̂
u− 8π

c2 tP

.̂
u
∗
· .̂

u = 0 ⇒
(

1
c

∂

∂ t
− D

)
rotφ̂− 8π

mP
m

rotφ̂∗ · rotφ̂ = 0. (81)

5.4. The Time Dependence of Irrotational Deformation, σ0(t, x)
In this section, we combine the equations of the mass continuity, CE, and of the state

to obtain the time dependence of the scalar potential σ0 (compression) in an ideal elastic
solid (it can be considered an quaternionic equivalent of the Riccati equation that usually is
written as follows:

(
∂/∂t +

.
u · ∇

)
σ + σ ◦ σ + σp = 0). Obviously, a simplified assumption

of the constant Planck density is disobeyed (consequently, all the waves’ velocities depend
on the displacement). The mass density in an ideal elastic solid in R3 is affected only by
displacements u:

∂ρP
∂t

+ ρPdiv
.
u = − .

u · gradρP. (82)

The mass density can be defined as follows:

ρP(t, x) = lim
Ω→0

m (Ω)/Ω (t, x), (83)

where m (Ω) denotes the time-invariant mass contained in the deformed volume Ω (t, x).
In an ideal elastic medium, it depends exclusively on the irrotational deformation

(divu = divu0 = σ0). One can relate the deformation and density in a case of sphere in an
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ideal elastic continuum. In such a case, the mass in a sphere does not depend on its radius,
m(Ω[r(t, x)]) = m = const, and the density is affected only by the radius:

ρP (t, x) = m /
(

4
3

π[r (t, x)]3
)
⇒ dρP = −m/

(
4
3

πr3
)

3
dr
r

= −3ρP
dr
r

. (84)

In an ideal elastic continuum, dσ0 = dr/r and (85) in quaternionic notation becomes
the following:

1
ρP

dρP = −3 dσ0. (85)

Consequently, from (86), it follows:

1
ρP

∂ρP
∂t

= −3
∂σ0

∂t
and

1
ρP

gradρP = −3gradσ0. (86)

By introducing relations (87) and the identity div
.
u = ∂

∂t divu0 = ∂σ0
∂t into the Equation (83),

we obtain the following:

−3
∂σ0

∂t
+

∂σ0

∂t
= 3

.
u · gradσ0, (87)

by expressing the velocity as a function of the Cauchy–Riemann derivative, i.e., introducing
(43), we finally obtain the following:

∂σ0

∂t
=

3
2
}
m
(Dσ) · gradσ0 =

3
2
}
m
(
rotφ̂ + gradσ0

)
· gradσ0. (88)

The quaternion form of the first-order wave equation presented in this work allows
one to obtain an insight into the Dirac equation and therefore spin 1/2. Spin 1/2 fermions
are the cause of the Pauli exclusion principle, and therefore it is important to understand
the physical meaning of spin 1/2 in the Planck–Kleinert model. In order to visualize this
concept, a simple interactive simulation of a periodically twisting and compressing 3D grid
illustrating spin 1/2 in an elastic solid for two particles is presented [68,69].

6. Conclusions

The presented quaternion representation of quantum mechanics allows its ontological
interpretation. In simple words, the correspondence between classical and quaternion
quantum equations permits one to consider the universe (vacuum) as an ideal elastic solid.
Elementary particles would have to be standing or soliton-like waves. Tension induced by
the compression and twisting of the elastic medium would increase energy density and
consequently, carry out the following:

- generate a gravity forcing;
- affect the wave speed. Consequently, the gravity could be described by an index of

refraction [69].

The present theory was created by combining the Cauchy model of the elastic contin-
uum with the Planck–Kleinert crystal hypothesis. The quaternion–imaginary Lagrangian,
the quaternion motion equation, and the quaternionic oscillator allowed the following to
be derived:

- A Schrödinger equation from the functional integral, which identifies the quaternion–
imaginary quantum Hamiltonian;

- The second-order wave equation system describing both the bosons and the gravity
in terms of quaternionic Poisson equation;

- The first-order quaternionic wave equation system;
- The family of the second-order wave equation systems describing both the particles

and the generated quaternionic force fields (four-potential);
- The Planck constants, } = mP c2 tP = 1.0545727 × 10−34, and gravity constant,

G = l3
P/
(
t2
PmP

)
= 6.674082× 10−11;
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- The quaternionic continuity equation in an ideal elastic solid.

The meaning of the particle mass center (particle ≡ wave) is assigned here to “space-
localized” and is used in the sense given by the Bodurov definition [70].

Quaternion quantum mechanics has many new features that make it a much richer
theory. Its great potential is visible, e.g., in the following:

- The comparison of the first-order wave equations in quaternion formulation, Equation (81),
with the form in the Dirac algebra formalism:

Dirac :
(
i γµ∂µ − mc

}
)
ψ(t, x) = 0 where γµ∂µ = 1

c
∂
∂t + α1

∂
∂x + α2

∂
∂y + α3

∂
∂z ,

Quaternion : ∂µ̂ψ(t, x)− mc
} β ψ∗ · ψ (t, x) = 0, where ∂µ̂ = 1

c
∂
∂ t − grad − rot

and β = 8πmP/m
√

m/ρP

(89)

- A simple interactive simulation of a periodically twisting and compressing 3D grid
illustrating spin 1

2 in an elastic solid for two particles is presented [68].
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Abbreviations

u (u1, u2, u3) displacement in R3;
u displacement in R1;
uλ displacement by the particle wave in R1;
uP displacement by the Planck process in unit cell in R1;
| u | magnitude of u;
.
u or

〈 .
u
〉

average value of the displacement rate;∣∣ .
u
∣∣ magnitude of

.
u;

σ (σ0, φ1, φ2, φ3) q-potential in R4, the quaternion deformation potential;
‖σ‖ =

√
σ · σ∗(t, x) q-potential amplitude, i.e., the Euclidian norm of the deformation;

G0 overall power of the quaternionic oscillator, i.e., the overall action;
G0 σ∗ · σ density of the rate of the momentum change in R4, i.e., the quaternionic

oscillator action;
σ∗ · σ strain energy density;
ψ = σ̃

√
ρP/m particle wave function;

ψ · ψ∗ probability, i.e., the particle mass density;
1/(n− 1) coupling coefficient in the oscillator action, where n = 0, 2, 3, . . .
lP Planck length;
fP = 1/tP Planck frequency, inverse of the Planck time;
mP Planck mass;
ν Poisson number;
Y Young modulus;
c = lP/tP transverse wave velocity in elastic continuum;
ρP = 4mP/l3

P Planck density, i.e., the mass density of the Cauchy continuum;
ρ mass density ρ = ρE/c2, as the equivalent of the energy density ρE;
} Planck constant in terms of angular frequency;
h Planck constant, h = 2π};
m equivalent mass of the wave, i.e., mass of the particle;
λ length of the particle wave;
f frequency of the particle wave.
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