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Abstract: One of the frequently studied approaches in metric fixed-point theory is the generalization
of the used metric space. Under this approach, in this study, we introduce a new extension of M-
metric spaces, called controlled M-metric spaces, achieved by modifying the triangle inequality and
keeping the symmetric condition of the space. The investigation focuses on exploring fundamental
properties of this newly defined space, incorporating topological aspects. Several fixed-point theorems
and fixed-circle results are established within these spaces complemented by illustrative examples
to demonstrate the implications of our findings. Moreover, we present an application involving
high-degree polynomial equations.
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1. Introduction and Preliminaries

Fixed-point theory has been attracting significant attention from researchers in recent
times due to its powerful applications in various fields, including integral equations,
differential equations and engineering. The larger the class of metric spaces, the more
fields fixed-point theory can be applied on [1–3]. In this paper, we introduce the concept
of a “controlled M-metric space”, which serves as a generalization of both an M-metric
space and a controlled metric-type space. We explore the interconnections between this
novel metric space and some known generalized metrics where the space is symmetric,
accompanied by illustrative examples to elucidate our findings.

Asadi et al. were the first to introduce M-metric spaces [4]. Therefore, we recall the
definition of an M-metric space and present some additional notations.

Notation 1 ([4]). Consider a map D : X2 → [0, ∞) where X is a nonempty set, for every Ω, Φ ∈ X

• DΩ,Φ := min{D(Ω, Ω),D(Φ, Φ)}.
• MΩ,Φ := max{D(Ω, Ω),D(Φ, Φ)}.

Definition 1 ([4]). Let X be a nonempty set and let D : X2 → R+ be a function satisfying the
following properties for all Ω, Φ, Ψ ∈ X. Then, the pair (X,D) is called an M-metric space:

(1) D(Ω, Ω) = D(Φ, Φ) = D(Ω, Φ) if and only if Ω = Φ,
(2) DΩ,Φ ≤ D(Ω, Φ),
(3) D(Ω, Φ) = D(Φ, Ω),
(4) (D(Ω, Φ)−DΩ,Φ) ≤ (D(Ω, Ψ)−DΩ,Ψ) + (D(Ψ, Φ)−DΨ,Φ).
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The notion of Mb-metric spaces, an extension of M-spaces, was introduced in [5],
accompanied by the establishment of certain fixed-point theorems.

Let us now revisit the definitions and notations pertinent to Mb-metric spaces.

Notation 2. Consider a map Db : X2 → [0, ∞) where X is a nonempty set

• DbΩ,Φ := min{Db(Ω, Ω),Db(Φ, Φ)}.
• MbΩ,Φ := max{Db(Ω, Ω),Db(Φ, Φ)}.

Definition 2 ([5]). An Mb-metric space on a nonempty set X is a function Db : X2 → R+ that
satisfies the following conditions for all Ω, Φ, Ψ ∈ X :

(1) Db(Ω, Ω) = Db(Φ, Φ) = Db(Ω, Φ) if and only if Ω = Φ,
(2) DbΩ,Φ ≤ Db(Ω, Φ),
(3) Db(Ω, Φ) = Db(Φ, Ω),
(4) There exists a real number s ≥ 1 such that for all Ω, Φ, Ψ ∈ X, we have

(Db(Ω, Φ)−DbΩ,Φ) ≤ s[(Db(Ω, Ψ)−DbΩ,Ψ) + (Db(Ψ, Φ)−DbΨ,Φ)]−Db(Ψ, Ψ).

The parameter s is referred to as the coefficient of the Mb-metric space (X,Db).

In [6], it was demonstrated that the condition (4) given in Definition 2 is equivalent to
the following condition:

(4)′ There exists a real number s ≥ 1 such that for all Ω, Φ, Ψ ∈ X, the inequality holds:

(Db(Ω, Φ)−DbΩ,Φ) ≤ s[(Db(Ω, Ψ)−DbΩ,Ψ) + (Db(Ψ, Φ)−DbΨ,Φ)]

for all Ω, Φ, Ψ ∈ X.

In contrast, the concept of a controlled metric-type space was introduced as a general-
ization of a metric space and a b-metric space, defined as follows:

Definition 3 ([7]). Consider a nonempty set X and a function α : X2 → [1, ∞). The function
D : X2 → [0, ∞) is defined as a controlled metric type if the following conditions hold:

(D1) D(Ω, Φ) = 0 if and only if Ω = Φ,
(D2) D(Ω, Φ) = D(Φ, Ω),
(D3) D(Ω, Φ) ≤ α(Ω, Ψ)D(Ω, Ψ) + α(Ψ, Φ)D(Ψ, Φ),

for all Ω, Φ, Ψ ∈ X. The pair (X, d) is called a controlled metric-type space.

The paper is organized as follows. In Section 2, we introduce the definition and
examples of a controlled M-metric space, a novel form of generalized metric space. We
then explore the fundamental topological properties of these controlled M-metric spaces.
Moving on to Section 3, we establish various fixed-point results for self-mappings of
controlled M-metric spaces. Given that non-unique fixed points are of interest, we delve
into studying the geometric properties of fixed points, specifically in the context of the
fixed-circle and fixed-disc problems. Previous works on metric and generalized metric
spaces, such as [8], have been influential in this area. Section 4 presents an application
of our findings to high-degree polynomial equations, highlighting the practical utility of
our results.

2. Controlled M-Metric Spaces

In this section, we present a novel generalization of the M-metric spaces. Then,
we explore the fundamental properties of this newly defined concept, including various
topological aspects.

2.1. The Notion of a Controlled M-Metric Space

Initially, we introduce the following notations.
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Notation 3. Consider a map ν : X2 → [0, ∞) where X is a nonempty set

• νΩ,Φ = min{ν(Ω, Ω), ν(Φ, Φ)}.
• µΩ,Φ = max{ν(Ω, Ω), ν(Φ, Φ)}.

Definition 4. Suppose X is a nonempty set and α : X2 → [1, ∞) and ν : X2 → [0, ∞) are two
functions. We define (X, ν) as a controlled M-metric space if the following conditions are met for all
distinct Ω, Φ, Ψ ∈ X :

(ν1) ν(Ω, Φ) = νΩ,Φ = µΩ,Φ if and only if Ω = Φ;
(ν2) νΩ,Φ ≤ ν(Ω, Φ);
(ν3) ν(Ω, Φ) = ν(Φ, Ω);
(ν4) ν(Ω, Φ)− νΩ,Φ ≤ α(Ω, Ψ)[ν(Ω, Ψ)− νΩ,Ψ] + α(Ψ, Φ)[ν(Ψ, Φ)− νΨ,Φ].

For the remainder of this paper, we refer to controlled M-metric spaces as CMMS.
Now, let us provide an example of CMMS.

Example 1. Suppose C is the set of all complex numbers and A = {Ψ ∈ C : |Ψ| = 1}, B =
{Ψ ∈ C : |Ψ| = 2} ⊂ C. Consider the set X = A ∪ B ∪ {0} and the functions α : X2 → [1, ∞)
and ν : X2 → [0, ∞) defined by

α(Ψ1, Ψ2) = |Ψ1||Ψ2|+ 1

and
ν(Ψ1, Ψ2) = |Ψ1 −Ψ2|,

respectively, for all Ψ1, Ψ2 ∈ X. We can easily verify that (X, ν) is a controlled M-metric space.
Indeed, conditions (ν1)− (ν3) are trivial by the definition of the absolute value function. For the
condition (ν4), we have

ν(Ω, Φ)− νΩ,Φ = |Ω−Φ| −min{ν(Ω, Ω), ν(Φ, Φ)} = |Ω−Φ|

and

α(Ω, Ψ)[ν(Ω, Ψ)− νΩ,Ψ] + α(Ψ, Φ)[ν(Ψ, Φ)− νΨ,Φ]

= (|Ω||Ψ|+ 1)[|Ω−Ψ| − 0] + (|Ψ||Φ|+ 1)[|Ψ−Φ| − 0]

= (|Ω||Ψ|+ 1)|Ω−Ψ|+ (|Ψ||Φ|+ 1)|Ψ−Φ|.

Then, by the triangle inequality and considering the facts that α(Ω, Ψ) ≥ 1, α(Ψ, Φ) ≥ 1 for
all distinct Ω, Φ, Ψ ∈ X, we obtain

|Ω−Φ| ≤ |Ω−Ψ|+ |Ψ−Φ|
≤ (|Ω||Ψ|+ 1)|Ω−Ψ|+ (|Ψ||Φ|+ 1)|Ψ−Φ|.

Thus, condition (ν4) is a consequence of the triangle inequality for the absolute value function.

Remark 1. (1) If we set the function α : X2 → [1, ∞) as α(Ω, Φ) = 1 for all Ω, Φ ∈ X, then
(X, v) becomes an M-metric space. Consequently, every M-metric space is a CMMS. However, it
is crucial to note that a CMMS does not necessarily qualify as an M-metric space, as demonstrated
in the following example.

(2) If ν(Ω, Ω) = 0 for all Ω ∈ X, then (X, v) is a controlled metric-type space. Despite this,
not all CMMS instances are controlled metric-type spaces, as illustrated in the subsequent example.

(3) If νΩ,Φ = µΩ,Φ for each Ω, Φ ∈ X, then taking α = β in Definition 3.1 introduced in [3],
we see that our Definition 4 coincides with this definition of a double controlled M-metric space (see
Example 1).
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Example 2. Let X = {1, 2, 3} and the functions α : X2 → [1, ∞) and ν : X2 → [0, ∞) be
defined as

α(Ω, Φ) = (Ω + Φ)2

and
v(1, 1) = v(2, 2) = v(3, 3) = 1,
v(1, 2) = v(2, 1) = 7,
v(1, 3) = v(3, 1) = 5,
v(2, 3) = v(3, 2) = 2,

for all Ω, Φ ∈ X, respectively, then (X, ν) is a CMMS. However, the function v is not both an
M-metric and a controlled metric type. Indeed, if we take Ω = 1, Φ = 2, Ψ = 3, then we have

v(1, 2)− v1,2 = 6 ≤ [v(1, 3)− v1,3] + [v(3, 2)− v3,2] = 5,

a contradiction. Hence, the condition (4) of Definition 1 is not satisfied, that is, v is not an M-metric.
However, we observe that v(1, 1) = v(2, 2) = v(3, 3) = 1 6= 0. As a result, the condition (D1) is
not fulfilled, and thus, v does not qualify as a controlled metric-type space.

Next, we proceed to introduce the following intriguing proposition.

Proposition 1. Consider a CMMS, denoted by (X, v), and let Ω, Φ, Ψ ∈ X. The following hold:

(1) µΩ,Φ + vΩ,Φ = v(Ω, Ω) + v(Φ, Φ) ≥ 0.
(2) µΩ,Φ − vΩ,Φ = |v(Ω, Ω)− v(Φ, Φ)| ≥ 0.
(3) µΩ,Φ − vΩ,Φ ≤ α(Ω, Ψ)[µΩ,Ψ − vΩ,Ψ] + α(Ψ, Φ)[µΨ,Φ − vΨ,Φ].

Proof. (1) First, we may assume v(Ω, Ω) ≥ v(Φ, Φ). Then, we obtain

µΩ,Φ = v(Ω, Ω) and vΩ,Φ = v(Φ, Φ).

Hence, using the definition of v, we obtain

µΩ,Φ + vΩ,Φ = v(Ω, Ω) + v(Φ, Φ) ≥ 0.

(2) Similar to the reasoning used as in the proof of (1), we can easily demonstrate this.
(3) Suppose that

v(Φ, Φ) < v(Ψ, Ψ) < v(Ω, Ω).

Then, we obtain

µΩ,Φ − vΩ,Φ = v(Ω, Ω)− v(Φ, Φ)

= [v(Ω, Ω)− v(Ψ, Ψ)] + [v(Ψ, Ψ)− v(Φ, Φ)]

≤ α(Ω, Ψ)[v(Ω, Ω)− v(Ψ, Ψ)] + α(Ψ, Φ)[v(Ψ, Ψ)− v(Φ, Φ)]

= α(Ω, Ψ)[µΩ,Ψ − vΩ,Ψ] + α(Ψ, Φ)[µΨ,Φ − vΨ,Φ].

Given that α(Ω, Ψ) ≥ 1 and α(Ψ, Φ) ≥ 1, we find that the condition (3) is fulfilled. For the
remaining cases, similar arguments are used.

2.2. Basic Topological Properties

We define the following, which are used in the theoretical results.

Definition 5. Consider a CMMS denoted by (X, ν). The following hold:

1. A sequence {Ωn} in X converges to a point Ω if and only if

lim
n→∞

(ν(Ωn, Ω)− νΩn ,Ω) = 0.
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2. A sequence {Ωn} in X is said to be a ν-Cauchy sequence if and only if

lim
n,m→∞

(ν(Ωn, Ωm)− νΩn ,Ωm) and lim
n→∞

(µΩn ,Ωm − νΩn ,Ωm)

exist and are finite.
3. A CMMS is said to be ν-complete if every ν-Cauchy sequence {Ωn} converges to a point Ω

such that

lim
n→∞

(ν(Ωn, Ωm)− νΩn ,Ωm) = 0 and lim
n→∞

(µΩn ,Ωm − νΩn ,Ωm) = 0.

Definition 6. Consider a CMMS denoted by (X, ν), Ω ∈ X and ε ≥ 0.

(1) The open ball B(Ω, ε) is

B(Ω, ε) = {Φ ∈ X, ν(Ω, Φ)− νΩ,Φ < ε}.

(2) The closed ball B[Ω, ε] is

B[Ω, ε] = {Φ ∈ X, ν(Ω, Φ)− νΩ,Φ ≤ ε}.

(3) The circle Cv
Ω,ε is

Cv
Ω,ε = {Φ ∈ X, ν(Ω, Φ)− νΩ,Φ = ε}.

Definition 7. Consider a CMMS denoted by (X, ν) and let A ⊂ X. If there exists ε > 0 such
that B(a, ε) ⊂ A, then A is referred to as an open subset of X.

Definition 8. Consider a CMMS denoted by (X, ν).

(1) The self-mapping T : X→ X is considered continuous at Ω ∈ X if, for all ε > 0, there exists
δ > 0 such that T(B(Ω, δ)) ⊆ B(TΩ, ε).

(2) The mapping T : X → Y is referred to as sequentially continuous at Ω ∈ X if and only if
{TΩn} converges to a point TΩ whenever {Ωn} converges to a point Ω.

Next, we present the following lemma.

Lemma 1. Consider a CMMS denoted by (X, ν). If the sequence Ωn in X converges to both Ω
and Φ with Ω 6= Φ, then we have v(Ω, Φ)− vΩ,Φ = 0

Proof. Suppose the sequence {Ωn} converges to two different points, say, Ω and Φ. Using
Definition 5 (1), we obtain

lim
n→∞

(ν(Ωn, Ω)− νΩn ,Ω) = 0

and
lim

n→∞
(ν(Ωn, Φ)− νΩn ,Φ) = 0.

Using the conditions (v3) and (v4), we obtain

ν(Ω, Φ)− νΩ,Φ ≤ α(Ω, Ωn)[ν(Ωn, Ω)− νΩn ,Ω] + α(Ωn, Φ)[ν(Ωn, Φ)− νΩn ,Φ]

and so taking a limit for n→ ∞, by the condition (v2), we have

ν(Ω, Φ)− νΩ,Φ = 0.

Lemma 2. Consider a CMMS denoted by (X, ν). If the function ν is sequentially continuous,
then the limit of a convergent sequence is unique.
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Proof. Let Ωn be a convergent sequence in a CMMS (X, ν), assume that Ωn converges
to x and y in X. Now, using the fact that the function ν is sequentially continuous, we
deduce that

0 = lim
n→∞

(ν(Ωn, Ωn)− νΩn ,Ωn) = ν(x, y)− νx,y.

Similarly,
0 = lim

n→∞
(ν(Ωn, Ωn)− νΩn ,Ωn) = µ(x, y)− νx,y.

Thus, x = y as required.

3. Fixed-Point Results

First, we present this interesting and useful lemma.

Lemma 3. Consider a CMMS denoted by (X, ν) and let T be self-mapping on X such that for all
Ω, Φ ∈ X, we have,

ν(TΩ,TΦ) ≤ kν(Ω, Φ), where 0 < k < 1. (1)

For some Ω0 ∈ X, the sequence {Ωn}n≥0 is defined by Ωn+1 = TΩn. If Ωn → u as n→ ∞, then
TΩn → Tu as n→ ∞.

Proof. Noting that if ν(TΩn,Tu) = 0, then νTΩn ,Tu = 0. This is due to the fact that
νTΩn ,Tu ≤ ν(TΩn,Tu), implying that

ν(TΩn,Tu)− νTΩn ,Tu → 0 as n→ ∞ and hence TΩn → Tu as n→ ∞.

Hence, if we assume that ν(TΩn,Tu) > 0, by inequality (1), we may deduce that ν(TΩn,Tu) <
ν(Ωn, u).

Case 1: If ν(u, u) ≤ ν(Ωn, Ωn) and by (1), we find that ν(Ωn, Ωn) → 0, implying
that ν(u, u) = 0 and with ν(Tu,Tu) ≤ kν(u, u) = 0 we find that ν(Tu,Tu) = ν(u, u) = 0
and ν(Ωn, u) → 0. On the other hand, we have ν(TΩn,Tu) ≤ kν(Ωn, u) → 0. Therefore,
ν(TΩn,Tu)− νTu,TΩn → 0 and thus TΩn → Tu.

Case 2: If ν(u, u) ≥ ν(Ωn, Ωn) and by (1), we find that ν(Ωn, Ωn) → 0, implying
that νΩn ,u → 0. From this, ν(Ωn, u) → 0 and since ν(TΩn,Tu) < ν(Ωn, u) → 0, then
ν(TΩn,Tu)− νTu,TΩn → 0 and thus TΩn → Tu as desired.

The first fixed-point result is as the following.

Theorem 1. Consider a CMMS denoted by (X, ν) that is ν-complete. Let T be self-mapping on X
such that for all Ω, Φ ∈ X. Then, we have

ν(TΩ,TΦ) ≤ kν(Ω, Φ), where 0 < k < 1. (2)

Subsequently, consider the sequence Ωn = TnΩ0 for some Ω0 ∈ X where

sup
m≥1

lim
i→∞

α(Ωi+1, Ωi+2)

α(Ωi, Ωi+1)
α(Ωi+1, Ωm) <

1
k

. (3)

If for each Ω ∈ X, say

lim
n→∞

α(Ωn, Ω) and lim
n→∞

α(Ω, Ωn) exist and are finite, (4)

there is a unique fixed point for T.

Proof. Throughout this proof, we denote by Ωn the sequence defined in Lemma 3. In
addition, let

νm
n = ν(Ωn, Ωm)− νΩn ,Ωm .
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Now, it is not difficult to see that by using (2), we obtain

ν(Ωn, Ωn+1) ≤ knν(Ω0, Ω1) for all n ≥ 0,

which implies that
νn+1

n ≤ ν(Ωn, Ωn+1) ≤ knν(Ω0, Ω1).

For all natural numbers n < m, we have

νm
n ≤ α(Ωn, Ωn+1)ν

n+1
n + α(Ωn+1, Ωm)ν

m
n+1

≤ α(Ωn, Ωn+1)ν
n+1
n + α(Ωn+1, Ωm)α(Ωn+1, Ωn+2)ν

n+2
n+1

+ α(Ωn+1, Ωm)α(Ωn+2, Ωm)ν
m
n+2

≤ α(Ωn, Ωn+1)ν
n+1
n + α(Ωn+1, Ωm)α(Ωn+1, Ωn+2)ν

n+2
n+1

+ α(Ωn+1, Ωm)α(Ωn+2, Ωm)α(Ωn+2, Ωn+3)ν
n+3
n+2

+ α(Ωn+1, Ωm)α(Ωn+2, Ωm)α(Ωn+3, Ωm)ν
m
n+3

≤ · · ·

≤ α(Ωn, Ωn+1)ν
n+1
n +

m−2

∑
i=n+1

(
i

∏
j=n+1

α(Ωj, Ωm)

)
α(Ωi, Ωi+1)ν

i+1
i

+
m−1

∏
k=n+1

α(Ωk, Ωm)ν
m
m−1

≤ α(Ωn, Ωn+1)knν(Ω0, Ω1) +
m−2

∑
i=n+1

(
i

∏
j=n+1

α(Ωj, Ωm)

)
α(Ωi, Ωi+1)kiν(Ω0, Ω1)

+
m−1

∏
i=n+1

α(Ωi, Ωm)km−1ν(Ω0, Ω1).

Hence,

νm
n ≤ α(Ωn, Ωn+1)knν(Ω0, Ω1) +

m−2

∑
i=n+1

(
i

∏
j=n+1

α(Ωj, Ωm)

)
α(Ωi, Ωi+1)kiν(Ω0, Ω1)

+

(
m−1

∏
i=n+1

α(Ωi, Ωm)

)
km−1α(Ωm−1, Ωm)ν(Ω0, Ω1)

= α(Ωn, Ωn+1)knν(Ω0, Ω1) +
m−1

∑
i=n+1

(
i

∏
j=n+1

α(Ωj, Ωm)

)
α(Ωi, Ωi+1)kiν(Ω0, Ω1)

≤ α(Ωn, Ωn+1)knν(Ω0, Ω1) +
m−1

∑
i=n+1

(
i

∏
j=0

α(Ωj, Ωm)

)
α(Ωi, Ωi+1)kiν(Ω0, Ω1).

Since α(Ω, Φ) ≥ 1, we deduce that

Fp =
p

∑
i=0

(
i

∏
j=0

α(Ωj, Ωm)

)
α(Ωi, Ωi+1)ki.

Hence, we have
νm

n ≤ ν(Ω0, Ω1)[knα(Ωn, Ωn+1) + (Fm−1 − Fn)]. (5)

Using the condition (3), and applying the ratio test, we can establish that the sequence {Fn}
is ν-Cauchy. Now, taking the limit as n, m→ ∞ in the inequality (5), we conclude that

lim
n,m→∞

νm
n = 0. (6)
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Moreover, by using (2), it is easy to see that the sequence {ν(Ωn, Ωn)}n≥0 is decreasing.
Hence, for n ≤ m, we have

µΩn ,Ωm = ν(Ωn, Ωn).

Thus,

µΩn ,Ωm − νΩn ,Ωm ≤ ν(Ωn, Ωn) ≤ kν(Ωn−1, Ωn−1) ≤ · · · ≤ knν(Ω0, Ω0). (7)

Limiting in inequalities (7), as n, m tends to ∞, we obtain

lim
n,m→∞

µΩn ,Ωm − νΩn ,Ωm = 0.

Therefore, {Ωn} is a ν-Cauchy sequence in the ν-complete CMMS (X, ν), so {Ωn} con-
verges to some a ∈ X. Next, we prove that a is a fixed point of T. Using Lemma 3, we have

a = lim
n→∞

Ωn+1 = lim
n→∞

TΩn = Ta.

a is therefore a fixed point of T. Suppose that T has two fixed points, a and b, and

νa,b = ν(a, a) and µa,b = ν(b, b).

Thus, we obtain

ν(a, b)− νa,b ≤ ν(a, b)

= ν(Ta,Tb)

≤ kν(a, b)

= kν(Ta,Tb)

≤ k2ν(a, b)

= k2ν(Ta,Tb)

<
...

≤ knν(a, b)→ 0 as n→ ∞,

implying that ν(a, b) = νa,b = ν(a, a). In addition,

µa,b − νa,b ≤ µa,b

= ν(b, b)

= ν(Tb,Tb)

≤ kν(b, b)

= kν(Tb,Tb)

≤ k2ν(b, b)

= k2ν(Tb,Tb)

<
...

≤ knν(b, b)→ 0 as n→ ∞.

Therefore, ν(a, b) = νa,b = µa,b, which implies a = b, as desired.

Definition 9. Consider a self-mapping T on a nonempty set X and let Ω0 ∈ X, and O(Ω0) =
{Ω0,TΩ0,T2Ω0, . . .} be the orbit of Ω0. A function H : X −→ R is said to be T-orbitally
lower semi-continuous at v ∈ X if for {Ωn} ⊂ O(Ω0) such that Ωn −→ v, we have H(v) ≤
lim

n→∞
inf H(Ωn).
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Similar to [9], using Definition 9, we can present the following corollary of Theorem 1,
which is a generalization of Theorem 1 in [10].

Corollary 1. Consider a CMMS denoted by (X, ν) that is ν-complete. Let Ω0 ∈ X and T be
self-mapping on X. Suppose there exists k ∈ (0, 1) such that

ν(TΦ,T2y) ≤ kν(Φ,TΦ) for each y ∈ O(Ω0).

Take Ωn = TnΩ0. Let

sup
m≥1

lim
i→∞

α(Ωi+1, Ωi+2)

α(Ωi, Ωi+1)
α(Ωi+1, Ωm) <

1
k

. (8)

Then, Ωn → u ∈ X (as n→ ∞). Moreover, Tu = u if and only if the functional Ω 7→ ν(Ω,TΩ)
is T-orbitally lower semi-continuous at u.

We recall the following lemma.

Lemma 4. If a self-mapping T : X→ X is surjective, then there exists a self-mapping T∗ : X→ X
such that T ◦T∗ is the identity map on X.

We have proved another fixed-point results for an expansive condition.

Theorem 2. Consider a CMMS denoted by (X, ν) that is ν-complete and T be a surjective self-
mapping on X such that for all Ω, Φ ∈ X we have

v(TΩ,TΦ) ≥ kv(Ω, Φ), (9)

where k > 1. Let us consider the sequence Ωn = TnΩ0 for some Ω0 ∈ X where

sup
m≥1

lim
i→∞

α(Ωi+1, Ωi+2)

α(Ωi, Ωi+1)
α(Ωi+1, Ωm) < k.

Additionally, if for every Ω ∈ X, we have

lim
n→∞

α(Ωn, Ω) and lim
n→∞

α(Ω, Ωn) exist and are finite.

This implies that T has a unique fixed point.

Proof. Since T is surjective, by Lemma 4, there exists a self-mapping T∗ : X→ X such that
T ◦T∗ is the identity map on X. Let Ω, Φ ∈ X be arbitrary points. Assume that T∗Ω = Ψ
and T∗Φ = w. Then, we have

TΨ = TT∗Ω = Ω and Tw = TT∗Φ = Φ.

From inequality (9), we have

v(TΨ,Tw) ≥ kv(Ψ, w),

this implies
v(Ω, Φ) ≥ kv(T∗Ω,T∗y)

and
v(T∗Ω,T∗y) ≤ 1

k
v(Ω, Φ),
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where 1
k ∈ (0, 1). Hence, T∗ satisfies the inequality (2). From Theorem 1, T∗ has a unique

fixed point a ∈ X. Therefore, we have

Ta = TT∗a = a,

that is, the point a is a fixed point of T. Suppose that the point b is another fixed point of T
such that a 6= b. Therefore, using inequality (9), we obtain

v(Ta,Tb) = v(a, b) ≥ kv(a, b),

a contradiction. Consequently, T has a unique fixed point in X.

Recently, the fixed-circle (resp. fixed-disc) problem has been studied by different
methods on a metric space and some generalized metric spaces in the cases where the
fixed point is non-unique (for example, see [11] and the references therein). In this context,
we define the notion of a fixed circle and obtain new fixed-circle results on a controlled
M-metric space.

Definition 10. Let (X, v) be a CMMS and T : X→ X be self-mapping. If T fixes all of the points
Cv

Ω0,r, that is, TΩ = Ω for all Ω ∈ Cv
Ω0,r, then Cv

Ω0,r is called the fixed circle of T.

Definition 11. Let (X, v) be a CMMS and T : X→ X be self-mapping. T is called a controlled
Ω0-mapping if there exist Ω0 ∈ X and k ∈ (0, 1) such that for all Ω ∈ X, we have

v(Ω,TΩ)− vΩ,TΩ ≤ k
[
v(Ω, Ω0)− vΩ,Ω0

]
. (10)

Before we prove our fixed-circle result, we define the number r as

r = inf
Ω∈X
{(Ω,TΩ)− vΩ,TΩ : TΩ 6= Ω}. (11)

Theorem 3. Let (X, v) be a CMMS, T : X→ X be a controlled Ω0-mapping with Ω0 ∈ X and r
be defined as in (11). If vΩ,TΩ = µΩ,TΩ for each Ω ∈ Cv

Ω0,r, then T fixes the circle Cv
Ω0,r.

Proof. Let r = 0. Then, we have Ω0 ∈ Cv
Ω0,r = {Ω : v(Ω, Ω0) = vΩ,Ω0}. Using the

controlled Ω0-mapping property, we obtain

v(Ω0,TΩ0)− vΩ0,TΩ0 ≤ k
[
v(Ω0, Ω0)− vΩ0,Ω0

]
= 0

when using the hypothesis vΩ,TΩ = µΩ,TΩ and the condition (v2), we get

v(Ω0,TΩ0) = vΩ0,TΩ0 = µΩ0,TΩ0 .

By condition (v1), we find TΩ0 = Ω0.
Let r > 0 and Ω ∈ Cv

Ω0,r. Now, we show that TΩ = Ω whenever Ω ∈ Cv
Ω0,r. From the

inequality (10), we have

v(Ω,TΩ)− vΩ,TΩ ≤ k
[
v(Ω, Ω0)− vΩ,Ω0

]
= kr,

which implies v(Ω,TΩ)− vΩ,TΩ = 0 by the definition of r and the condition (v2). Using
the hypothesis vΩ,TΩ = µΩ,TΩ, we obtain

v(Ω,TΩ) = vΩ,TΩ = µΩ,TΩ,

that is, by condition (v1), Ω = TΩ. Consequently, Cv
Ω0,r is a fixed circle of T.
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Example 3. Consider the CMMS defined in Example 1. Let us define the self-mapping T : X→ X
as

TΨ =

{
Ψ ; Ψ ∈ A ∪ {0}
Ψ
2 ; Ψ ∈ B

,

for all Ψ ∈ X. Then, T is a controlled Ω0-mapping with Ω0 = 0. In addition, we obtain

r = inf
Ω∈X
{(Ω,TΩ)− vΩ,TΩ : TΩ 6= Ω} = 1

and
Cv

0,1 = {Ω : v(Ω, 0)− vΩ,0 = 1} = A.

Since the self-mapping T satisfies the conditions of Theorem 3, T fixes the circle Cv
0,1.

If T fixes all of the points B[Ω0, r], then B[Ω0, r] is called as the fixed-closed ball (or
fixed disc) of T.

Corollary 2. Consider a CMMS denoted by (X, v) and let T : X→ X be a controlled Ω0-mapping
where Ω0 ∈ X and r be defined as in (11). If vΩ,TΩ = µΩ,TΩ for each Ω ∈ B[Ω0, r], then T fixes
the closed ball B[Ω0, r].

Proof. By employing similar arguments as in the proof of Theorem 3, we can readily verify
this.

4. An Application to the Determination of Polynomial Zeros

In this section, we showcase the following application utilizing our fixed-point result
Theorem 4.

Theorem 4. Let n ≥ 2 be any even natural number. The equation

Ωn + 1 = (n3 − 1)Ωn+1 + n3Ω (12)

has a unique positive real solution.

Proof. If |Ω| > 1, then clearly Equation (12) does not have a solution. Therefore, we
consider the interval [−1, 1]. Now, by Descartes’ Rule of Signs (see [12] and the references
therein), we know that the equation

(n3 − 1)Ωn+1 −Ωn + n3Ω− 1 = 0 (13)

has 3 or 1 positive real roots and has no negative real roots. Therefore, we take X = [0, 1].
Let us define the functions

ν(Ω, Φ) = |Ω−Φ|

and
α(Ω, Φ) = |Ω|+ |Φ|+ 2,

for all Ω, Φ ∈ X. It is not difficult to see that (X, ν) is a ν-complete CMMS.
Let us consider the self-mapping

TΩ =
Ωn + 1

(n3 − 1)Ωn + n3 .

We obtain
Ωn + 1

(n3 − 1)Ωn + n3 ≤
Ωn + 1

n3 .
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Next, since n ≥ 2, we can deduce that n3 > 6. Hence, we obtain

ν(TΩ,TΦ) =

∣∣∣∣ Ωn + 1
(n3 − 1)Ωn + n3 −

Φn + 1
(n3 − 1)Φn + n3

∣∣∣∣
=

∣∣∣∣ Ωn −Φn

((n3 − 1)Ωn + n3)((n3 − 1)Φn + n3)

∣∣∣∣
≤ |Ω−Φ|

n3

≤ |Ω−Φ|
6

=
1
6

ν(Ω, Φ).

Therefore, we obtain

ν(TΩ,TΦ) ≤ kν(Ω, Φ) where k =
1
6

.

On the other hand, for each Ω0 ∈ X we have

Ωn = TnΩ0 ≤
2
n3 .

Thus,

sup
n≥1

lim
i→∞

α(Ωi+1, Ωi+2)

α(Ωi, Ωi+1)
α(Ωi+1, Ωm) = sup

m≥1
lim
i→∞

|Ωi+1|+ |Ωi+2|+ 2
|Ωi|+ |Ωi+1|+ 2

(|Ωi+1|+ |Ωm|+ 2)

≤ sup
n≥1

lim
i→∞

4
n3 + 2
4

n3 + 2

(
4
n3 + 2

)
=

4
n3 + 2

≤ 4 + 2 = 6 =
1
k

.

Similarly, we can see that

lim
n→∞

α(Ωm, Ω) and lim
m→∞

α(Ω, Ωm) exist and are finite.

Hence, all the conditions of Theorem 1 are satisfied. Consequently, T possesses a unique
fixed point in X, implying that Equation (12) has only one real solution.

Descartes’ Rule of Signs only says that the polynomial defined in (13) has 3 or 1
positive real roots, while Theorem 1 guarantees the uniqueness of the positive real roots.
Thus, Theorem 1 provides complementary support to the Descartes’ Rule of Signs in the
study of polynomial zeros.

5. Conclusions

In this paper, we have presented the concept of a controlled M-metric space, which
includes both M-metric spaces and controlled metric-type spaces. As a result, our findings
extend and generalize numerous results already presented in the literature. Nevertheless,
we invite the reader to explore further the applications of Meir–Keeler contraction and
Suzuki contraction in the context of controlled M-metric spaces. These investigations could
lead to new and intriguing outcomes. Furthermore, on this new space, our fixed-circle
results can be extended to several fixed-figure results. That is, the existence of a geometric
figure (e.g., a disc, an ellipse, a Cassini curve) in the fixed-point set of a self-mapping on a
controlled M-metric space can be investigated (for more details see, for instance, ref. [11]
and the references therein).
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