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Abstract: An ideal projector on the space of polynomials C[x] = C[x1, . . . , xd] is a projector whose
kernel is an ideal in C[x]. Every ideal projector P can be written as a sum of ideal projectors P(k)

such that the intersection of their kernels ker P(k) is a primary decomposition of the ideal ker P.
In this paper, we show that P is a limit of Lagrange projectors if and only if each P(k) is. As an
application, we construct an ideal projector P whose kernel is a symmetric ideal, yet P is not a limit
of Lagrange projectors.
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1. Introduction

Let C[x] = C[x1, . . . , xd] denote the algebra of polynomials in d variables with complex
coefficients. A projector P on C[x] is a linear idempotent operator on C[x]. Such a projector
is called an ideal projector if ker P is an ideal in C[x]. An ideal projector is called a Lagrange
projector if ker P is a radical ideal in C[x]. If the range of P is N-dimensional, then P is a
Lagrange projector if and only if there exist N distinct points x1, . . . , xN ∈ Cd such that

ker P = { f ∈ C[x] : f (x1) = . . . = f (xN) = 0}

or equivalently
(P f )(xj) = f (xj)

for all j = 1, . . . , N and all f ∈ C[x]. The last equivalence shows that Lagrange projectors
interpolate at nodes x1, ..., xN and therefore present a natural extension of the classical
Lagrange interpolation theory to the multivariate setting.

The notion of an ideal projector was first introduced by Birkhoff in [1]. Since then, it
was further studied, and connections to different branches of mathematics were explored
(see [2–11]). In this paper, we consider exclusively finite dimensional ideal projectors.

In one variable, every Hermite interpolation projector is the limit of a sequence of
classical Lagrange interpolation projectors. That allows us to extend the definition of the
Hermite interpolation projectors to the multivariate setting as follows.

Definition 1. An ideal projector P is called a Hermite projector if there exist a sequence of Lagrange
projectors Pn on the range of P such that

Pn f → P f

for every f ∈ C[x]. We do not specify type of convergence because Pn f and P f belong to the same
finite-dimensional space; hence, all forms of convergence are equivalent.

In one variable setting, the ideal projectors are the same as classical Hermite projectors
(see for example [10]). The natural question arises as to whether, in the multivariate setting,
the same is true, i.e., is any ideal projector necessarily a limit of Lagrange projectors? Rather
surprisingly, the resulting answer is positive in two variables (cf. [4]) but negative in three
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or more variables (cf. [12]). The question of a description of those ideal projectors that are
Hermite was raised by Carl de Boor in [3]. Some partial results regarding this question were
obtained in [8,9] and, in the very different language of algebraic geometry, in [13,14]. In this
paper, we make a contribution to this problem by examining the primary decomposition of
Hermite projectors.

Every finite-dimensional ideal projector P can be written as a finite (direct) sum of
ideal projectors P(k)

P = P(1) ⊕ P(2) ⊕ . . .⊕ P(m), (1)

where P(k) are ideal projectors such that the ideals ker P(k) form the primary decomposition
of the ideal ker P. That is

ker P =
m⋂

k=1

ker P(k) (2)

and, for each P(k), the variety

V(ker P(k)) := {x ∈ Cd : f (x) = 0, for all f ∈ ker P(k)} (3)

consists of exactly one point.
The main result of this paper is

Theorem 1. P is Hermite if and only if each P(k) is Hermite.

Based on the above theorem, as an application, we will show the existence of a
symmetric ideal projector (in three or more variables) that is not Hermite (see Theorem 7).
Finally, we will showcase some problems in matrix theory (see Problem 2) that are related
to the main result.

2. Preliminaries

Let C′[x] denote the algebraic dual of C[x], i.e., the space of all linear functionals on
C[x]. For an ideal J ⊂ C[x], let V(J) denote the affine variety associated with J:

V(J) := {x ∈ Cd : f (x) = 0, for all f ∈ J}.

The ideal J has a finite codimension (0-dimensional) if and only if the set V(J) is finite
(cf. [15]). Moreover, |V(J)| ≤ dim(C[x]/J) and |V(J)| = dim(C[x]/J) if and only if the
ideal J is radical i.e.,

J = { f : f (x) = 0, for all V(J)}.

Let J⊥ denote a subspace of C′[x] of all functionals that vanish on J. Hence

dim J⊥ = dim(C[x]/J).

For x ∈Cd, we use δx ∈ C′[x] to denote the point evaluation functional:

δx( f ) = f (x).

It is easy to see that for any N-dimensional Lagrange interpolation projector P, the va-
riety V(ker P) is consisting of exactly N distinct points. Assuming V(ker P) = {x1, . . . , xN},
we have

ker⊥ P = span{δx1 , ..., δxN}.

Below, we will review relations between ideal projectors and the sequence of commut-
ing matrices.

Let P be an N-dimensional ideal projector and let G be its range. Hence,C[x] = G⊕ ker P
and ker P is an ideal of codimension N in C[x]. Thus, C[x]/ ker P is an N-dimensional
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algebra. For each coordinate xj of x, we define a multiplication operator (N × N matrix)
Mj : C[x]/ ker P→ C[x]/ ker P associated with P by

Mj[ f ] = [xj f ] (4)

where [·] represents a class equivalence in C[x]/ ker P. The set (M1, . . . , Md) forms a
sequence of commuting matrices that are associated with the projector P. In fact, such a
sequence uniquely defines P (see [4] for details). The matrices Mj represent the operators
defined on G by

Mj( f ) = P(xj f ).

The matrices M1, . . . , Md were introduced by Hans Stetter (cf. [11,16,17]) who discov-
ered the main relation between common eigenvalues (eigentuples) of these matrices and
the variety V(ker P).

Definition 2. A d-tuple of complex numbers (λ1, . . . , λd) is called an eigentuple for (M1, . . . , Md)
if there exists a non-zero vector u ∈CN such that

Mju = λju, ∀j = 1, . . . , N.

Let σ(M1, . . . , Md) denote the set of all eigentuples of the commuting matrices (M1, . . . , Md).

Theorem 2 ([17]). σ(M1, . . . , Md) = V(ker P).

Theorem 3 (cf. [4]). Suppose that we have a sequence of ideal projectors Pn onto the same space G
and let (M(n)

1 , . . . , M(n)
d ) be multiplication operators associated with Pn while (M1, . . . , Md) is the

multiplication operators on G associated with P. Then, Pn → P if and only if (M(n)
1 , . . . , M(n)

d )→
(M1, . . . , Md).

Next, we prove an extension of Theorem 5.2.1 in Artin [18] to the set of commuting
matrices. Our proof is substantially different than the one presented there.

Theorem 4. Let (M(n)
1 , . . . , M(n)

d ) and (M1, . . . , Md) be a d-tuple of operators on an N-dimensional

space G. Assume that (M(n)
1 , . . . , M(n)

d ) → (M1, . . . , Md). Then, the sets σ(Mn
1 , . . . , Mn

d ) are
uniformly bounded and all accumulation points of σ(Mn

1 , . . . , Mn
d ) are in σ(M1, . . . , Md).

Proof. Let (λ(n)
1 , . . . , λ

(n)
d ) ∈ σ(Mn

1 , . . . , Mn
d ), hence

M(n)
j un = λ

(n)
j un, ∀j = 1, . . . , d.

Assume without loss of generality that ‖un‖ = 1. Then∣∣∣λ(n)
j

∣∣∣ = ∥∥∥λ
(n)
j un

∥∥∥ =
∥∥∥M(n)

j un

∥∥∥ ≤ ∥∥∥M(n)
j

∥∥∥
and since M(n)

j converges, the norms
∥∥∥M(n)

j

∥∥∥ are uniformly bounded, which proves the
first part of the theorem. Now, passing to a subsequence if necessary, we may assume
that λ

(n)
j → λj. Then, M(n)

j un = λ
(n)
j un. The sequence (un) is uniformly bounded in a

finite-dimensional space G; hence, it is compact. Passing to a subsequence if necessary,
we may assume that un → u ∈ G and ‖u‖ = 1. Finally, since (M(n)

1 , . . . , M(n)
d ) are

finite-dimensional operators, the convergence is uniform. Therefore

λ
(n)
j un = M(n)

j un → Mju.



Symmetry 2023, 15, 1658 4 of 11

In addition, λ
(n)
j un → λju, hence (λj) ∈ σ(M1, . . . , Md).

Combining the above with the Theorem 2, we obtain:

Corollary 1. Let P be an N-dimensional Hermite projector and Pn be a sequence of Lagrange projec-
tors such that Pn → P. If V(ker P) = {x1, x2, . . . , xN} and V(ker Pn) = {x(n)1 , x(n)2 , . . . , x(n)N }.
Then, there exists a constant C such that |x(n)k | ≤ C for all k and n. Additionally, x1, x2, . . . , xK are
the only possible limit points of the set

⋃
n V(ker Pn).

Now, we will recollect a few facts regarding the convergence of ideal projectors. The
main idea is that such a convergence depends only on their respective kernels. For more
details and proofs, see [12].

Theorem 5 (cf. [12]). Let Pn and P be ideal projectors onto a finite-dimensional space G ⊂ C[x].
Then, Pn → P if and only if for every functional F ∈ ker⊥ P, there exists a sequence of functionals
Fn ∈ ker⊥ Pn such that Fn → F in the weak-? topology. i.e.,

Fn f → F f , for all f ∈ C[x]. (5)

If each Pn is a Lagrange projector, then ker⊥ Pn is spanned by N point evaluation
functionals δ

x(n)1
, ..., δ

x(n)N
, and each Fn can be written as their linear combination. Using the

above theorem, we obtain the following.

Corollary 2. An N-dimensional ideal projector P is Hermite if and only if every F ∈ ker⊥ P is
the weak-? limit of linear combinations of N point evaluation functionals. That is, there exists sets
Xn ⊂ Cd, each consisting of N distinct points such that for every F ∈ ker⊥ P

F( f ) = lim
n→∞ ∑

x∈Xn

a(n)x δx( f ) = lim
n→∞ ∑

x∈Xn

a(n)x f (x) (6)

for some coefficients a(n)x and for all f ∈ C[x].

3. The Main Result

The main goal is to prove Theorem 1. One side is easy to establish and can be shown
as follows. Let P be an N-dimensional ideal projector and assume that ker P has a primary
decomposition

ker P =
m⋂

j=1

Jj

where the ideals Jj have codimensions equal to Nj, respectively. Since

ker⊥ P = ⊕J⊥j

we have ∑M
j=1 Nj = N. Take any F ∈ ker⊥ P. Then, F = ∑m

j=1 Fj for some Fj ∈ J⊥j . If each Jj

is the kernel of a Hermite projector then, by Corollary 2, there exists sets X j
n ⊂ Cd consisting

of Nj distinct points such

Fj = lim
n→∞ ∑

x∈X j
n

a(n)x δx

It follows that

F =
m

∑
j=1

Fj = lim
n→∞

m

∑
j=1

∑
x∈X j

n

a(n)x δx = lim
n→∞ ∑

x∈∪X j
n

b(n)x δx
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and therefore, F is a weak-? limit of a linear combination of N point evaluations. By
Corollary 2, P is Hermite.

The main result of this section is a proof of the converse statement. The main idea
is as follows. Assume P is Hermite, P = P(1) ⊕ P(2) ⊕ . . .⊕ P(m) and ker P has a primary
decomposition ker P = ∩m

j=1 ker P(j). By Corollary 2, there exists sets Xn ⊂ Cd such that (6)

holds. Let V(ker P(1)) = {y}. We will decompose Xn = Yn ∪ Zn so that all accumulation
points of

⋃
n∈N Zn are away from y. For every functional F ∈ ker⊥ P (in particular, every

functional F ∈ ker⊥ P1), we have

F( f ) = lim
n→∞

(
∑

x∈Yn

a(n)x f (x) + ∑
x∈Zn

a(n)x f (x)

)
, (7)

for some coefficients a(n)x and for all f ∈ C[x]. The main part of the proof is to show that
the above implies that

F( f ) = lim
n→∞ ∑

x∈Yn

a(n)x f (x). (8)

Thus, in (7), we can eliminate all point evaluations that do not accumulate at y, and the
number of points remaining is equal to N1 = dim ker⊥ P1. Hence, by Corollary 2, the
projector P1 is Hermite.

To carry the proof in detail, we need a few preliminary results. First, we will produce
a multivariate analog of Lagrange fundamental polynomials that seems to be new.

Proposition 1. Let Y be a finite set of m points in Cd and take z ∈Cd such that Y and z lie in the
interior of a ball B ⊂ Cd of radius R. Let

r = min{‖y− z‖ : y ∈ Y} > 0.

Then, there exists a constant C(R, r) and polynomial ω(x) = ωY ,z ∈ C[x] of degree at most
m such that

ω(z) = 1, ω(y) = 0, for all y ∈Y

and

‖ω‖B ≤ C(R, r) =
(

2R
r

)2m
.

(here, ‖ω‖B denotes the supremum of the polynomial ω over the ball B ⊂ Cd).

Proof. Let < u, v > denote the Hermitian inner product in the space Cd. Consider the
following polynomial

ω(x) =
∏y∈Y < x− y, z− y >

∏y∈Y‖z− y‖2

Since < x− y, z− y > is a linear polynomial in C[x], ω(x) is a polynomial of degree
at most m. Clearly, ω(y) = 0 for all y ∈Y and ω(z) = 1.

Since x, y, z lie in a ball of radius R∥∥∥∥∥∏
y∈Y

< x− y, z− y >

∥∥∥∥∥ ≤ ∏
y∈Y
||x− y|| · ||z− y|| ≤ (2R)2m.

Additionally

∏
y∈Y
‖z−y‖2 ≥ r2m.
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Combining these two inequalities together yields ‖ω‖B ≤
(

2R
r

)2m
.

We will also need the following lemma.

Lemma 1. Let (u(n)
1 , ..., u(n)

m ) and (γ
(n)
1 , ..., γ

(n)
m ) be two sequences in Cm such that

γ
(n)
j → 1 and

m

∑
j=1

u(n)
j (γ

(n)
j )k → 0, as n→ ∞ (9)

for all k = 1, ..., m. Then, ∑m
j=1 u(n)

j → 0 as n→ ∞.

Proof. By induction on m, if m = 1, then u(n)
1 γ

(n)
1 → 0 and γ

(n)
1 → 1 immediately implies

that u(n)
1 → 0.

Assume that the statement is true for a fixed m. Now, we need to show that the
statement is true for m + 1. Take any (u(n)

1 , ..., u(n)
m+1) and (γ

(n)
1 , ..., γ

(n)
m+1) such that γ

(n)
j → 1

for j = 1, ..., m + 1 and

m+1

∑
j=1

u(n)
j (γ

(n)
j )k → 0 as n→ ∞, for all k = 1, ..., m + 1. (10)

The goal is to show that ∑m+1
j=1 u(n)

j → 0. Since γ
(n)
m+1 → 1, from the above, we obtain

γ
(n)
m+1

m+1

∑
j=1

u(n)
j (γ

(n)
j )k =

m+1

∑
j=1

u(n)
j (γ

(n)
j )kγ

(n)
m+1 → 0,

for k = 1, ..., m. Hence

m

∑
j=1

u(n)
j (γ

(n)
m+1 − γ

(n)
j )(γ

(n)
j )k =

m+1

∑
j=1

u(n)
j (γ

(n)
j )kγ

(n)
m+1 −

m+1

∑
j=1

u(n)
j (γ

(n)
j )k+1 → 0,

for all k = 1, ..., m. Setting ũ(n)
j = u(n)

j (γ
(n)
m+1 − γ

(n)
j ) the above gives

m

∑
j=1

ũ(n)
j (γ

(n)
j )k → 0 for all k = 1, ..., m.

By the inductive assumption applied to (ũ(n)
1 , ..., ũ(n)

m ) and (γ
(n)
1 , ..., γ

(n)
m ), we conclude

that ∑m
j=1 ũ(n)

j → 0. Hence

m

∑
j=1

u(n)
j γ

(n)
j − γ

(n)
m+1

m

∑
j=1

u(n)
j =

m

∑
j=1

u(n)
j (γ

(n)
j − γ

(n)
m+1) =

m

∑
j=1

ũ(n)
j → 0.

Setting k = 1 in (10), we obtain

−
m

∑
j=1

u(n)
j γ

(n)
j − γ

(n)
m+1u(n)

m+1 = −
m+1

∑
j=1

u(n)
j γ

(n)
j → 0.

Combining these two gives

−γ
(n)
m+1

m+1

∑
j=1

u(n)
j =

m

∑
j=1

u(n)
j γ

(n)
j − γ

(n)
m+1

m

∑
j=1

u(n)
j −

m

∑
j=1

u(n)
j γ

(n)
j − γ

(n)
m+1u(n)

m+1 → 0.
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Since γ
(n)
m+1 → 1, we conclude that ∑m+1

j=1 u(n)
j → 0 as required.

We are now ready for the proof of the main theorem.

Theorem 6. Let P be a Hermite projector onto an N-dimensional space G ⊂ C[x]. Suppose that

P = P(1) ⊕ P(2) ⊕ . . . P(m) (11)

where P(k) are ideal projectors such that the ideals ker P(k) form the primary decomposition of the
ideal ker P

ker P =
m⋂

k=1

ker P(k). (12)

Then, each P(k) is Hermite.

Proof. We will start with P(1). Assume that V(ker P) = {u1, . . . um} and ker P(m) = {um}.
Since P is Hermite, by Corollary 2, for every functional F ∈ ker⊥ P

F( f ) = lim
n→∞ ∑

x∈Xn

a(n)x δx( f ) = lim
n→∞ ∑

x∈Xn

a(n)x f (x) (13)

for every f ∈ C[x]. In particular, if F ∈ ∩m−1
j=1 ker⊥ P(j), then due to (12), F ∈ ker⊥ P

and hence (13) holds. By Corollary 1, the sets Xn lie in some ball in Cd of radius R and
{u1, . . . um} are the only accumulation points of ∪nXn. Partition the points Xn = Yn ∪ Zn
so that for every sequence xn ∈ Zn, we have

xn → um (14)

and, for sufficiently large n, the points xn ∈ Yn are arbitrarily close to the set {u1, . . . um−1}.
In particular,

‖xn − um‖ ≥ r > 0, for some r and for all xn ∈ Yn. (15)

We rewrite (13) as

F( f ) = lim
n→∞

(
∑

x∈Yn

a(n)x f (x) + ∑
x∈Zn

a(n)x f (x)
)

, (16)

where the points in Yn and Zn satisfy (15) and (14), respectively. Now, let p be a polynomial
in ∩m−1

j=1 ker P(j) such that p(um) = 1. Such a polynomial exists since, otherwise, every

polynomial in ∩m−1
j=1 ker P(j) would vanish at um and hence um ∈ V(∩m−1

j=1 ker P(j)) =

{u1, . . . , um−1}. Next, consider polynomials

hk,n = (p ·ωYn ,um)
k f (17)

for k = 1, . . . , m where ωYn ,um is defined as in Proposition 1, and f is arbitrary. Since p is in
the ideal ∩m−1

j=1 ker P(j) so are hk,n, hence F(hk,n) = 0. By the same proposition and by (14),
these polynomials are uniformly bounded and belong to a finite-dimensional space of
polynomials of degree ≤ (mm + deg p)+deg f . Thus, the convergence (16) on this space is
uniform, and (16) gives

lim
n→∞

(
∑

x∈Yn

a(n)x hk,n(x) + ∑
x∈Zn

a(n)x hk,n(x)
)
= F(hk,n) = 0. (18)

Furthermore, since ωYn ,um vanishes on Yn, it follows that

lim
n→∞ ∑

x∈Zn

a(n)x (p(x) ·ωYn ,um(x))
k f (x) = lim

n→∞ ∑
x∈Zn

a(n)x hk,n(x) = 0, (19)
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for k = 1, ...m. Finally, since um is the limit point of Zn

lim
n→∞

(
p(xn) ·ωYn ,um(xn)

)
= 1 whenever xn ∈ Zn.

Setting γn = p(xn) ·ωYn ,um(xn) for xn ∈ Zn and applying Lemma 1, we conclude that

lim
n→∞ ∑

x∈Zn

a(n)x f (x) = 0

Thus, we eliminate the points that accumulate at um from the sum in (16). Since
this implies (6) holds for P(1) ⊕ . . .⊕ P(m−1), we can repeat this procedure, eliminating all
points from Xn in the sum (13) that accumulates at um−1, . . . , u2. We arrive at the sequences
of sets X (1)

n = {x(n)1 , . . . , x(n)
N(1)

n
} ⊂ Xn that have an accumulation point at u1 such that every

F in ker⊥ P(1)

F( f ) = lim
n→∞ ∑

x∈X (1)
n

a(n)x δx( f ) = lim
n→∞ ∑

x∈X (1)
n

a(n)x f (x).

Thus, for sufficiently large n, the dimension of this space must be greater or equal
to the dimension of the space ker⊥ P(1). Hence

∣∣∣X (1)
n

∣∣∣ ≥ dim ker⊥ P(1). Repeating this
procedure for the rest of the points uj ∈ V(ker P), we will obtain a disjoint partition of Xn:

Xn = ∪m
j=1X

(j)
n

such that for every F ∈ ker⊥ P(j)

F( f ) = lim
n→∞ ∑

x∈X (j)
n

a(n)x δx( f ) = lim
n→∞ ∑

x∈X (j)
n

a(n)x f (x)

and ∣∣∣X (j)
n

∣∣∣ ≥ dim ker⊥ P(j).

However, for every n

m

∑
j=1

∣∣∣X (j)
n

∣∣∣ = N =
m

∑
j=1

dim ker⊥ P(j).

Hence, for sufficiently large n, we have
∣∣∣X (j)

n

∣∣∣ = dim(ker⊥ P(j)). By Corollary 2, we

obtain that each P(j) is Hermite.

4. Some Applications

The first application of the main theorem is to show the existence of a symmetric ideal
projector (in three or more variables) that is not Hermite.

Definition 3. An ideal J in C[x] is called symmetric if for any polynomial p(x1, . . . , xd) in J and
for any permutation σ on the set {1, . . . , d}, the polynomial p(xσ(1), . . . , xσ(d)) is also in J. An
ideal projector P is called symmetric if ker P is a symmetric ideal.

Theorem 7. In three or more variables, there exists a finite-dimensional symmetric ideal projector
that is not Hermite.

Proof. The result follows from the existence of a finite-dimensional non-Hermite ideal
projector Q such that ker Q is primary, i.e., V(ker Q) consists of one point. We chose such
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Q so that V(ker Q) = {(1, 2, . . . , d)}. Now, for every permutation σ, consider the ideal Qσ

with ker Qσ = {p(xσ(1), . . . , xσ(d)) : p(x1, . . . , xd) ∈ ker Q}. Then, clearly, the ideal

J :=
⋂
σ

ker Qσ (20)

is a symmetric ideal and (20) is a primary decomposition of this ideal. Let P be an ideal
projector with ker P. Then, P is a symmetric ideal projector. If P was a Hermite projector,
then, by the Theorem 6, Q would also be Hermite, which gives us a contradiction.

Problem 1. Does there exist a non-Hermite ideal projector P such that P is symmetric and
V(ker P) = {0}, i.e., ker P is primary?

Our second application concerns linear algebra. A sequence of commuting N × N
matrices (M1, . . . , Md) is called simultaneously diagonalizable if there exists an N × N
matrix S such that the matrices (S−1M1S, . . . , S−1MdS) are diagonal matrices. We have
the following.

Theorem 8 ([12]). Let P be an ideal projector. Then, P is a Lagrange projector if and only if the
sequence of matrices MP = (M1, . . . , Md) associated with P by (4) is simultaneously diagonalizable.
The ideal projector P is Hermite if and only if the sequence of matrices (M1, . . . , Md) associated
with P by (4) is a limit of a sequence (M(n)

1 , . . . , M(n)
d ) of simultaneously diagonalizable matrices.

Commuting matrices that are limits of simultaneously diagonalizable matrices have
received a fair amount of attention (cf. [13,19,20]). The following result was proved in [5]:

Theorem 9. Let P be an ideal projector onto the N-dimensional subspace V and let

P = P(1) ⊕ P(2) ⊕ . . .⊕ P(m)

be the primary decomposition of P. Then,

(i) MP has a unique (up to order of blocks) block diagonalization MP = diag(M(j)) consisting
of m blocks and m is the maximal number of blocks in any block-diagonalization of MP.

(ii) Each block M(j) defines a distinct primary ideal.

ker P(j) = {p ∈ C[x] : p(M(j)) = 0}

Under the assumptions of the above, we can set M(j) = (M(j)
1 , . . . , M(j)

d ) (where all

M(j)
1 , . . . , M(j)

d have the same size) and MP = (M1, ..., Md) where

Mj =


M(1)

j 0 . . . 0

0 M(2)
j . . . 0

...
...

. . .

0 . . . 0 M(m)
j

, for j = 1, ..., d. (21)

Observe that MP = (M1, ..., Md) defines a sequence of commuting matrices.
It is clear that if each sequence M(j) = (M(j)

1 , . . . , M(j)
d ) is a limit of simultaneously

diagonalizable matrices (M(j)
1,n, . . . , M(j)

d,n), then MP is a limit of simultaneously diagonaliz-
able matrices. Our main Theorem 6 asserts that the converse is also true. That is, if MP is
a limit of simultaneously diagonalizable matrices, then the sequences of maximal blocks
M(j) are also limits of simultaneously diagonalizable sequences. This leads to an interest-
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ing question about the extension of this result to an arbitrary commuting block-diagonal
sequence of matrices.

Problem 2. Let M =(M1, . . . , Md) be a sequence of commuting matrices such that each Mj is

block diagonal, i.e., of the form of (21). Let M(j)=(M(j)
1 , . . . , M(j)

d ) be of the same size and commute.
Suppose that M is a limit of simultaneously diagonalizable matrices. Does it imply that each
sequence M(j) is a limit of simultaneously diagonalizable matrices?

Remark 1. In the language of algebraic geometry, the ideals that serve as kernels of Hermite
projectors are called "smoothable" (cf. [14]). Hence, the main result of this paper formulated in this
language says that an ideal J is smoothable if and only if every ideal in the primary decomposition of
J is smoothable.
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