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Abstract: A molecular formalism based on a decomposed energy space constructed by a modular
basis of matter and radiation is proposed for relativistic quantum mechanics. In the proposed
formalism, matter radiation interactions are incorporated via the dynamical transformation of the
coupled particle/antiparticle pair in a multistate quantum mechanical framework. This picture
generalizes relativistic quantum mechanics at minimal cost, unlike quantum field theories, and the
relativistic energy–momentum relation is interpreted as energy transformations among different
modules through a multistate Schrödinger equation. The application of two-state and four-state
systems using a time-dependent Schrödinger equation with pair states as a basis leads to well-defined
solutions equivalent to those obtained from the Klein–Gordon equation and the Dirac equation. In
addition, the particle–antiparticle relationship is well manifested through a particle conjugation
group. This work provides new insights into the underlying molecular mechanism of relativistic
dynamics and the rational design of new pathways for energy transformation.

Keywords: relativistic quantum mechanics; energy–momentum relation; Schrödinger equation;
Klein–Gordon equation; Dirac equation; energy transformation

1. Introduction

The theory of quantum mechanics has achieved unprecedented success, being applied
in numerous research fields spanning astronomy, physics, chemistry, and biology. Never-
theless, the understanding of some fundamental concepts in quantum mechanics is notably
challenging. For example, the interpretation of the wave function and the underlying
mechanism for the wave–particle duality is still under debate [1–4]. Moreover, additional
puzzles appeared when quantum mechanics was generalized to a relativistic theory based
on Einstein’s energy–momentum relation [5–7]. The resulting relativistic quantum me-
chanics (RQM) came out with the negative energy solution, which was interpreted as an
antiparticle [5,6]. Both the particle and antiparticle can be represented by multicomponent
wave functions, and they are connected through charge conjugation [8]. However, in
our opinion, the underlying mathematical structure is not fully understood yet, and the
particle–antiparticle interactions are obscured. Consequently, conceptual and technical
difficulties arise in describing observables in relativistic dynamics, such as the position,
momentum, and spin [9–11], and arbitrariness and inconsistencies in measurements and
interpretations exist.

The research on antiparticles and antimatter has received tremendous interest [12–17],
and nowadays, antiparticles and antiatoms could be produced routinely in high-energy
experiments [15–17]. Nevertheless, the fact that the observing universe comprises matter
predominately and a scarcity of antimatter [18–21] leads to a poor understanding of the
properties of antimatter, and the asymmetry of matter and antimatter has not been well
explained. On the other hand, in most practical applications, it is preferable to simply
remove the negative energy solution. In fact, extensive efforts [22–31] have been devoted to
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constructing a consistent single-particle interpretation to either the Klein–Gordon equation
or Dirac equation and decoupling the positive and negative energy solutions, therefore
correctly nonrelativistic and semiclassical limits could be achieved, and variational collapse
could be avoided. For instance, recently, the treatment of diagonalizing the Dirac Hamil-
tonian by using a series of unitary transformations has become successfully practical in
quantum chemistry calculations (in particular) for many-electron systems [30,31]. Alter-
native approaches for relativistic dynamics have also been developed from a variety of
perspectives [32–43]. However, the underlying mechanisms of the applied mathematical
structures and transformations are often elusive.

In addition, RQM in the conventional treatments focuses on a low-energy particle
picture, and matter and radiation are normally treated in different ways, whereas particle–
antiparticle transformations such as pair creation and annihilation fall outside its validating
regime. One may think RQM should be substituted by the more advanced modern quantum
field theories (QFT) [5]. Indeed, some of the problems of RQM have been solved in QFT, but
not for all [2]. However, the interpretation to wave function (or physical reality) becomes
even more abstract in QFT, and the quantization of fields is performed in a predefined and
parameterized space-time with infinitely many degrees of freedom. The resulting many-
body picture at a higher level complicates the representation and has the disadvantage
of introducing additional difficulties in understanding the underlying mechanisms of
quantum mechanics.

In this work, we propose a molecular formalism for relativistic quantum mechanics
based on a coherent synthesis of the mathematic framework of vector space, physical map-
ping of basis onto energy quanta (Planck’s particles), and chemical interpretation of energy
transformation. In the proposed formalism, the energy space is decomposed into classified
energy basis (modules) corresponding to matter and radiation, respectively. The modular
basis can be constructed systematically and hierarchically for complicated systems in high
dimensional energy space, resulting in an energy tensor (ET) representation of RQM. The ET
representation of RQM incorporates matter and radiation interactions coherently as energy
transformation among different energy modules and therefore goes beyond the scope of
conventional RQM. In particular, the formalism geometrically illustrates a straightforward
multistate interpretation of the relativistic energy–momentum relation and sheds light on
the underlying molecular mechanism of relativistic dynamics and on the interpretation of
dynamical variables and wave function in fundamental quantum mechanics.

In the application of this formalism on a quantum two-state model, the Hamiltonian
system is projected onto energy modules in the decomposed energy space, resulting in
the relativistic multistate Schrödinger equation that manifests the transformation between
mass energy and radiation energy through the energy–momentum relation. For both the
two-state and the extended four-state system, well-defined solutions with positive definite
probability density to the equivalent Klein–Gordon equation and Dirac equation can be
systematically generated, taking advantage of a universal type of unitary transformations
based on a pair-state basis. This treatment simplifies the mathematical structure of the
solution space and motivates us to propose a particle conjugation group to manifest the
symmetry of the particle–antiparticle relationship. Although numerous unitary transfor-
mations for diagonalizing the relativistic Hamiltonian matrix [22–28] were developed and
applied widely a long time ago, our approach is unique in its design for incorporating the
dynamical coupling of matter and radiation in a unified molecular framework.

In the following, the ET formalism for relativistic quantum mechanics is proposed in
Section 2, and then the solutions for both the two-state and four-state systems, equivalent to
the Klein–Gordon equation and the Dirac equation, respectively, will be derived in the same
molecular framework of energy space at different hierarchies. Section 3 provides discus-
sions on energy space decomposition (ESD), energy transformation, free particle solutions,
and the features of the multistate relativistic quantum mechanics in energy space. Section 4
concludes. Appendix A includes the results of comparable unitary transformations applied
to RQM and the details of the solution to the four-state problem.
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2. Theoretical Models
2.1. Two-State System

The quantum dynamics of an interested system, in general, may be described by the
time-dependent Schrödinger equation, i.e.,

i} ∂

∂t
|ψ〉 = Ĥ|ψ〉 (1)

where |ψ〉 is the ket state describing the properties of the system and the Hamiltonian
operator Ĥ determines the time evolution of the system. Now let us take a two-state system
as an example to illustrate multistate systems in general. Instead of using the conventional
coordinates space (basis), we stay with the (energy) state space and will construct the basis
in this space in multidimensions. The representation of the time-dependent Schrödinger
equation for this system can be written as

i} ∂

∂t
ψ = Hψ (2a)

with ψ = 〈1|ψ〉
(

1
0

)
+ 〈2|ψ〉

(
0
1

)
=

(
ψ1
ψ2

)
, and (2b)

H =

(
〈1|Ĥ|1〉 〈1|Ĥ|2〉
〈2|Ĥ|1〉 〈2|Ĥ|2〉

)
=

(
H11 H12
H21 H22

)
(2c)

where ψi is the i-th component of the state ket, Hij = 〈i|Ĥ|j〉 is the Hamiltonian matrix
element in the chosen representation, and i, j = 1, 2 are the state indexes.

The solution of Equation (2) may be found through standard treatment of an eigen-
value problem [44], (

ψ1
ψ2

)
= U

(
ψ+

ψ−

)
(3a)

with the corresponding eigenfunctions given by

ψ± ∼ e−
iE±t
} (3b)

and the eigenvalues of the Hamiltonian matrix being

E± =
1
2
(H11 + H22)±

√
(H11 −H22)

2

4
+ H12H21 (3c)

The unitary transformation here effectively diagonalizes the Hamiltonian matrix and
is also known as the diabatic-to-adiabatic transformation matrix.

U =

(
cos θ −sin θ
sin θ cos θ

)
(3d)

Here for the real H, θ =
1
2

atan
2H12

H11 −H22
(3e)

Equation (2) manifests the mathematical structure of the quantum system of interest.
When mapped to physically realistic models, this simple mathematical structure could
transform into a general framework to accommodate a variety of different representations
in the realistic world. We start by thinking about the well-known fact of the annihilation of
an electron and its antiparticle (positron) into their intermediate bosons, i.e., photons, and
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consider a two-state model for a particle–antiparticle pair coupled through intermediate
bosons. The system Hamiltonian matrix may be represented by

H =

(
EM iER
−iER −EM

)
(4a)

where i =
√
−1 and the pure state energy of the particle (antiparticle) and the coupling are

EM = m0c2, (4b)

ER = pc, (4c)

where m0, p, and c is the rest mass, momentum, and light speed, respectively. In this way,
we effectively decompose the energy space of a multistate system into classified energy
modules, namely matter and radiation (see discussion below).

Substituting the mapping scheme in Equation (4) into Equation (2) results in an explicit
multistate Schrödinger Equation:

i} ∂

∂t

(
ψ1
ψ2

)
=

(
m0c2 icp
−icp −m0c2

)(
ψ1
ψ2

)
(5)

The solutions to Equation (5) can be represented through Equation (3a) using the
energy eigenstates,

ψ± ∼ e−
iE±t
} (6a)

with E± = ±
√

p2c2 + m2
0c4 = ±mc2, (6b)

with m being the total (renormalized) mass of the transformed particle as a composite of
matter and radiation. Here we obtain the energy–momentum relation from a molecular
two-state model. However, Equation (6) does not fully resolve the solution space of the
multistate Schrödinger equation. An alternative way to reach another mathematically
equivalent solution of Equation (5) [see Appendix A for other solutions] may adopt the
following orthogonal transformation, i.e.,

O =
1√
2

(
1 1
1 −1

)
(7)

So that Equation (1) becomes

i}O
∂ψ

∂t
= OHÕOψ (8a)

which is

i} ∂

∂t

(
ψ′1
ψ′2

)
=

(
0 m0c2 − icp

m0c2 + icp 0

)(
ψ′1
ψ′2

)
(8b)

with ψ′ =
(
ψ′1
ψ′2

)
= O

(
ψ1
ψ2

)
(8c)

Equation (8b) indicates that the pair state ψ′ obeys the wave equation, i.e.,

∂2

∂t2ψ
′ + ω2ψ′ = 0 , and (9a)

ω =
E
} , and E =

√
p2c2 + m2

0c4. (9b)
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Therefore, we can easily write down the general form of ψ′, i.e.,

ψ′ =

(
ψ′1
ψ′2

)
=

(
Aeiωt + Be−iωt

Ceiωt + De−iωt

)
. (9c)

where A, B, C, D are coefficients to be determined. Substituting Equation (9c) into Equation (8b)
results in linear equations of these coefficients, and the solution can be found to be

A = −1+i
2 , B = 1+i

2

C = 1
2

(
m0c2+cp

E − i m0c2−cp
E

)
D = 1

2

(
m0c2−cp

E + i m0c2+cp
E

) (10)

Here we allow the coefficients to be complex with the real and imaginary parts
corresponding to matter and radiation, respectively. To obtain Equation (10), first A and B
are chosen to reflect the fact that the pair state comprises the linear combination of particle
and antiparticle states (Equation (6a)) with an equal contribution from matter and radiation,
and then C and D are determined accordingly. Other equivalent forms exist. Furthermore,
we find that it is illuminative to write the transformed wave function in terms of particle
pair states as follows:

ψ′1 =
−1 + i

2
eiωt +

1 + i
2

e−iωt; (11a)

ψ′2 =
m0c2 + icp

E

(
1− i

2
eiωt +

1 + i
2

e−iωt
)

(11b)

So the solution of Equation (5) can be written explicitly

ψ1 = 1
2
√

2

[(
m0c2+cp−E

E − i m0c2−cp−E
E

)
eiωt +

(
m0c2−cp+E

E + i m0c2+cp+E
E

)
e−iωt

]
ψ2 = 1

2
√

2

[(
−m0c2+cp+E

E + i m0c2−cp+E
E

)
eiωt +

(
−m0c2−cp−E

E − i m0c2+cp−E
E

)
e−iωt

] (12)

The positive and negative energy solutions to relativistic equations were convention-
ally interpreted as the wave functions of the particle and antiparticle, respectively, which
are connected to each other under charge conjugation [8]. However, this charge conjugation
is not a symmetry transformation of the relativistic dynamics [5]. Furthermore, it is not
represented in a universal form indicating that the underlying mathematical structure is
obscured. For example, the charge conjugation transform takes different forms for the
Klein–Gordon equation and the Dirac equation [5].

Here we suggest an alternative connection between particles and antiparticles via
energy conjugation. The energy conjugation is defined by a symmetry transformation in
the energy space, i.e.,

E|Ψ〉 = |Ψ〉, E|Ψ〉 = |Ψ〉; (13a)

where |Ψ〉 and |Ψ〉 are the quantum states of the system corresponding to the particle and
antiparticle, respectively. It is clear that the identity transformation I = E2 and the group
of {I, E} are isomorphic to the space inversion group.

In the case of the simple two-state system, the energy space representation of energy

conjugation is E =

(
0 1
1 0

)
, and we have EHE−1 = −H. The result of the transformation is

the sign flip of the Hamiltonian matrix, or all the matrix elements associated with classified
energy modules. Consistently, the two components of the solution in Equation (12) are
interchangeable with each other when both the signs of the matter module and the radiation
module are reversed, or when the sign of the total energy E is reversed. Therefore, we
may associate these two components with the particle and antiparticle states, respectively.
This picture is clearly different from the conventional multicomponent representation of
the particle (antiparticle) state (see discussion below). Therefore, the energy conjugation
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here and the conventional charge conjugation are two different representations of the
particle–antiparticle relationship.

In the same spirit to introduce energy conjugation, we may define two closely related
conjugation relationships, i.e., matter conjugation and radiation conjugation. The matter
conjugation may be defined by

M|Ψ〉 = −|Ψ〉∗. (13b)

Therefore, radiation conjugation can be represented by

R = ME. (13c)

For the two-state system given in Equation (5), it is easy to see that the matter conjuga-
tion of the particle (and antiparticle) state (Equation (12)) satisfies that:

M|Ψ(m0)〉 = −|Ψ〉∗ = |Ψ(−m0)〉. (13d)

Here matter and antimatter can be interpreted as mirror images of each other under
the matter conjugation transformation. Therefore, M and the identity transformation I form
a symmetric group in the energy space isomorphic to Z2 or the reflection group. Similarly,
the radiation conjugation may be represented by the sign flip of the radiation module, i.e.,

R|Ψ(p)〉 = |Ψ(−p)〉. (13e)

Thus, it can be associated with a two-fold symmetry axis, or a reflection with respect
to the matter plane. Altogether, these three types of conjugation (E, M, and R) and the
identity transformation I constitute a group of particle conjugation isomorphic to the
vierergruppe V4.

The symmetry captured by the particle conjugation group is illustrated in Figure 1.
It shows that the energy eigenstates, i.e., particle and antiparticle, can be represented by
matter modules (matter and antimatter) or radiation modules (intermediate bosons), or a
combination of both, as indicated in Equations (5) and (6). In addition, the mathematical
structure of the energy space indicates that the system may also transform from matter
modules into radiation modules or vice versa under unitary transformations. Moreover,
there is no need to worry about requiring the energy bounded from below since the sign
and the direction of energy (tensor) only manifest the types of various energy modules
and do not count when only the magnitude of the energy is concerned. Physically, the
coupling of matter (or antimatter) and radiation would not change the polarization of the
renormalized matter state (or the sign of the energy of the particle/antiparticle). Specifically,
all state transitions for a particle (m > 0) would stay in the upper plane in the energy space
(Figure 1). The transition from positive energy levels to negative energy levels has to involve
the crossing between different systems (i.e., particle and antiparticle), which requires at
least an extra energy of 2EM.

It would be interesting to examine some features of the relativistic multistate Schrödinger
Equation in the matrix form, i.e., Equation (5). It transforms into the Klein–Gordon (KG)
equation for a spin zero system upon the diagonalization of the state space, i.e.,

−}2 ∂2ψD
∂t2 = E2ψD =

(
p2c2 + m2

0c4
)
ψD (14)

Indeed, the same equation can also be obtained (see Equation (9)) provided the state
space can be decomposed into the two disjointed subspaces with certain mapping schemes.
Some limiting cases are worth noting. First, for the strong coupling case when cp� m0c2,
we have

i} ∂

∂t

(
ψ1
ψ2

)
≈
(

0 icp
−icp 0

)(
ψ1
ψ2

)
(15)
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In fact, when m0 = 0, E = cp, Equation (14) is reduced to a conventional wave
equation for radiation such as a photon, i.e.,

∂2ψ

∂t2 = −
(pc
}

)2
ψ = −ω2ψ (16)
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by the particle conjugation group.

Consistently, the solution (Equation (12)) gives the particle/antiparticle in radiation
states (particle state in the radiation limit):

ψ1 =
1√
2

i
(

eiωt + e−iωt
)

; ψ2 = − 1√
2

(
eiωt − e−iωt

)
. (17a)

The corresponding particle pair states are

ψ′1 =
−1 + i

2
eiωt +

1 + i
2

e−iωt; ψ′2 =
1 + i

2
eiωt +

−1 + i
2

e−iωt. (17b)
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Note that both sets of wave functions in Equation (17) are radiation-like. Here the
energy eigenstates of the system (Equation (6a)) are the linear combination (coherent
mixture) of the radiation states, i.e., both are connected through a unitary transformation,(

ψ+

ψ−

)
= L

(
ψ1
ψ2

)
=

1√
2

(
−iψ1 +ψ2
−iψ1 −ψ2

)
(18)

On the other hand, when cp→ 0 , Equation (6) reaches the weak coupling case, i.e.,

i} ∂

∂t

(
ψ1
ψ2

)
≈
(

m0c2 0
0 −m0c2

)(
ψ1
ψ2

)
(19)

The particle (and antiparticle) state can be approximated by

i} ∂

∂t
ψ+ = E+ψ+ ≈

(
m0c2 +

p2

2m0
− . . .

)
ψ+ (20a)

i} ∂

∂t
ψ− = E−ψ− ≈ −

(
m0c2 +

p2

2m0
− . . .

)
ψ− (20b)

If we transform to the operator form and leave out the highly oscillatory term due
to the energy m0c2, Equations (20a) and (20b) are reduced to the standard nonrelativistic
Schrödinger equation for a single free particle (antiparticle), i.e.,

}∂ψ

∂t
= − }2

2(±m0)
∇2ψ. (21)

In particular, when p = 0, E = m0c2, the particle and antiparticle states read

ψ1 =
1√
2
(1 + i)e−iωt; ψ2 =

1√
2
(−1 + i)eiωt. (22a)

They are matter states (particle state in the matter limit) represented by completely de-
coupled energy eigenstates, i.e., ψ+ → ψ1 , and ψ− → ψ2 . Interestingly, the corresponding
particle pair states are

ψ′1 =
−1 + i

2
eiωt +

1 + i
2

e−iωt; ψ′2 =
1− i

2
eiωt +

1 + i
2

e−iωt. (22b)

Here we obtain one matter-like wave function and another radiation-like function, in
contrast to the radiation limiting case in Equation (17). Note that when radiation particles
form the pair state, the polarization changes from linear to circular, which may facilitate
the matter radiation transformation.

To illustrate the difference between the above two limiting cases, we consider the
parity of the wave functions under the matter conjugation. Therefore, for the matter state,
we have Mψ1 = ψ2 and Mψ2 = ψ1; and for the pair states, Mψ′1 = ψ′1 and Mψ′2 = −ψ′2.
In contrast, for the radiation state, we obtain Mψ1 = ψ1 and Mψ2 = ψ2; and for the pair
states, Mψ′1 = ψ′1 and Mψ′2 = ψ′2. In the former case, one of the two pair states has odd
parity and the other has even parity, while in the latter case, both pair states have even
parity under matter conjugation. All these observations are consistent with the result of
matter conjugation as a reflection transformation.

The probability density and flux probability are also well-defined in the two-state
model. According to Equation (5), we have [1]

i}ψ∗1
∂ψ1
∂t

= ψ∗1H11ψ1 +ψ
∗
1H12ψ2 (23a)
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−i}ψ1
∂ψ∗1
∂t

= ψ1H11ψ
∗
1 +ψ1H∗12ψ

∗
2 . (23b)

Subtracting Equation (23b) from (23a), we obtain

i}∂|ψ1|2

∂t
= ψ∗1H12ψ2 −ψ1H∗12ψ

∗
2 (24a)

If we write the momentum in the operator form, this equation becomes

∂ρ1
∂t

= −ic(ψ∗1∇ψ2 −ψ1∇ψ∗2), (24b)

where ρ1 = |ψ1|2. If we consider the other component in Equation (5) based on a steady-
state approximation of that ψ2 = − }∇

m0cψ1, Equation (24b) can be written as

∂ρ1
∂t

= −2∇J1, with J1 = − i}
2m0

(ψ∗1∇ψ1 −ψ1∇ψ∗1) (24c)

Similarly, for state 2, we have

∂ρ2
∂t

= −2∇J2, with J2 = − i}
2(−)m0

(ψ∗2∇ψ2 −ψ2∇ψ∗2). (24d)

Equation (24b–d) indicates that the change in the probability density is simply due to
the interstate transfer. The change in the normalized total probability density is given by

∂ρ

∂t
=

1
2

(
∂ρ1
∂t

+
∂ρ2
∂t

)
= −(∇J1 +∇J2) = −∇J. (25)

Now we obtain the continuity equation with positive definite probability densities.
For the solution to the two-state model given in Equation (12), the state population of

the two states is:
|ψ1|2 = 1 +

cp
E

cos2ωt|ψ2|2 = 1− cp
E

cos2ωt. (26)

Here, the role of intermediate bosons is clearly demonstrated through the time-
dependent term. In other words, particles and antiparticles are coupled with each other
through intermediate bosons (radiation) dynamically. Moreover, it can be verified that the
continuity equation, Equation (25), is satisfied.

Although the energy–momentum relation in the theory of relativity connects mass
with energy, no clue was provided about how exactly energy transformation occurs. Here
the relativistic multistate Schrödinger equation suggests a molecular interpretation of the
energy–momentum relation via dynamical coupling and transition between particle and
antiparticle and a geometric relation in the energy space mapped to the energy decom-
position into different types of energy modules (Figure 1). Our analysis further shows
that the first-order (with respect to time) single-particle Schrödinger equation (good for
the matter-like case) and the second-order (with respect to time) Klein–Gordon equation
(good for the radiation-like case) can be connected through dynamical coupling of matter
and radiation in the unified ESD framework. To our knowledge, this is the first time that
such a transformation between mass energy and radiation energy is manifested clearly in
a molecular model. In addition, the projection of the particle (antiparticle) state onto the
matter and radiation basis straightforwardly illustrates the wave–particle (matter) duality.
Note that our model assumes that a pure matter state (and pure radiation state) exists,
which possesses a pure corpuscular/particle (or pure wave) characteristic (detailed classifi-
cation of energy modules to be presented in separate work). Also, Figure 1 is like a phase
diagram consisting of only equilibrium/stationary states of the system, while the realistic
(nonequilibrium/nonstationary) dynamics may be much richer and more complicated.
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2.2. Four-State System

When the state space expands to a higher hierarchy to incorporate an extra spin degree
of freedom, the treatment of the relativistic spin-1/2 particle follows the same pattern as
that for the two-state system. The resulting relativistic multistate Schrödinger equation
(essentially the Dirac equation) reads:

i} ∂

∂t

(
ψ1
ψ2

)
=

(
Im0c2 iσ · cp
−iσ · cp −Im0c2

)(
ψ1
ψ2

)
, (27a)

with ψi =

(
ψu

i
ψd

i

)
, i = 1, 2 (27b)

and each i-th wave function now comprises the up and down components, i.e., ψu
i and ψd

i .
The Hamiltonian matrix elements become 2 × 2 matrices, i.e.,

H =

(
IH11 σ ·H12

σ ·H21 IH22

)
. (27c)

in terms of the unit matrix I =
(

1 0
0 1

)
, and the Pauli matrices σ = (σ1,σ2,σ3), σ1 =

(
0 1
1 0

)
,

σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. Equation (27) can also transform into the Klein–Gordon-

like equation under the unitary transformation similar to Equation (7), i.e.,

−}2 ∂2ψ

∂t2 = E2ψ =
(

p2c2 + m2
0c4
)
ψ. (28)

The eigenvalues of the Hamiltonian are the same as that of the two-state system
(Equation (6b)), each of which is now doubly degenerated corresponding to two spin
components. The positive and negative solutions to Equation (27) (see the Appendix A) are
images symmetrical to each other under the energy conjugation (Equation (13a)).

Similar to the two-state case, a straightforward calculation leads to the transformed
wave function of particle pair states:

ψ′
u
1 = χ+

R ; (29a)

ψ′
u
2 =

m0c2 + icpz
E

χ+
M +

i
(

cpx − kcpy

)
E

χ−M; (29b)

ψ′
d
1 = −χ−R ; (29c)

ψ′
d
2 =

m0c2 − icpz
E

χ−M +
i
(

cpx + kcpy

)
E

χ+
M, (29d)

where px, py, pz are components of the momentum projecting on the x, y, and z axis in the
three-dimensional space. Here a new set of (modular) composite bases is constructed based
on the eigenstates in Equation (6) with positive and negative frequencies (Figure 2a), which
provides an alternative decomposition scheme for the energy space, i.e.,

χ+
M =

1− i
2
φ− +

1 + i
2
φ+; (30a)

χ−M =
1 + i

2
φ− +

1− i
2
φ+; (30b)
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χ+
R = iχ−M; (30c)

χ−R = iχ+
M; (30d)

with φ± = e∓iωt. (30e)

Symmetry 2023, 15, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 2. Representation of wave functions in constructed composite energy modules. Shown are 
the four composite modular bases (panel (a) constructed based on primitive energy modules (Equa-
tion (30)) and the projection of pair states in Equation (29) on this new basis (panel (b–e)). 

Some limiting cases are worth noting for the wave functions in Equation (29). For 
massless particles, i.e., m0 = 0, E = cp, the wave functions of the pair states are 

𝜓𝜓′1𝑢𝑢 = 𝜒𝜒𝑅𝑅+;  𝜓𝜓′1𝑑𝑑 = −𝜒𝜒𝑅𝑅−;  (31a) 

𝜓𝜓′2𝑢𝑢 = 𝜒𝜒𝑅𝑅−;  𝜓𝜓′2𝑑𝑑 = −𝜒𝜒𝑅𝑅+. (31b) 

The corresponding particles (and antiparticle) read: 

𝜓𝜓1𝑢𝑢 = 1
√2

i(ϕ− + ϕ+) = 1
√2

(𝜒𝜒𝑅𝑅+ + 𝜒𝜒𝑅𝑅−); 

𝜓𝜓1𝑑𝑑 = − 1
√2

i(ϕ− + ϕ+) = − 1
√2

(𝜒𝜒𝑅𝑅− + 𝜒𝜒𝑅𝑅+); 

𝜓𝜓2𝑢𝑢 = 1
√2

(ϕ+ − ϕ−) = 1
√2

(𝜒𝜒𝑅𝑅+ − 𝜒𝜒𝑅𝑅−); 

𝜓𝜓2𝑑𝑑 = 1
√2

(ϕ+ − ϕ−) = 1
√2

(𝜒𝜒𝑅𝑅+ − 𝜒𝜒𝑅𝑅−). 

(32) 

In contrast, when p = 0, E = m0c2, the particle/antiparticle states become 

Figure 2. Representation of wave functions in constructed composite energy modules. Shown
are the four composite modular bases (panel (a) constructed based on primitive energy modules
(Equation (30)) and the projection of pair states in Equation (29) on this new basis (panel (b–e)).

Figure 2b–e schematically displays the pair states in Equation (29) represented in this
four-dimensional modular basis, i.e., Equation (30).
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Some limiting cases are worth noting for the wave functions in Equation (29). For
massless particles, i.e., m0 = 0, E = cp, the wave functions of the pair states are

ψ′
u
1 = χ+

R ; ψ′
d
1 = −χ−R ; (31a)

ψ′
u
2 = χ−R ; ψ′

d
2 = −χ+

R . (31b)

The corresponding particles (and antiparticle) read:

ψu
1 = 1√

2
i(φ− +φ+) =

1√
2

(
χ+

R + χ−R
)
;

ψd
1 = − 1√

2
i(φ− +φ+) = − 1√

2

(
χ−R + χ+

R
)
;

ψu
2 = 1√

2
(φ+ −φ−) = 1√

2

(
χ+

R − χ−R
)
;

ψd
2 = 1√

2
(φ+ −φ−) = 1√

2

(
χ+

R − χ−R
)
.

(32)

In contrast, when p = 0, E = m0c2, the particle/antiparticle states become

ψu
1 = 1√

2
(1 + i)e−iωt; ψd

1 = 1√
2
(1− i)e−iωt;

ψu
2 = − 1√

2
(1− i)eiωt; ψd

2 = − 1√
2
(1 + i)eiωt.

(33)

Here, all four types of composite basis survive as particle pair states, i.e.,

ψ′u1 = χ+
R ; ψ′d1 = −χ−R ;

ψ′u2 = χ+
M; ψ′d2 = χ−M.

(34)

Equations (32)–(34) clearly indicate that Equation (29) gives only one independent
pair of massless particle/antiparticle, but two pairs of massive particles. It also shows that
the massive particles/antiparticles comprise both matter and radiation components while
the massless particles/antiparticles are made of radiation components only. Consistently,
the moduli of the component of the total wave function (see Appendix A) are all constantly
unity for the former case but all vary dramatically for the latter case, and there exists energy
flux between the two component pairs of the wave function ψu

1 /ψu
2 and ψd

1/ψd
2 .

The parity of the wave functions under the matter conjugation is similar to that for
the two-state problem. For the matter state, the two states are matter conjugated with
each other, i.e., Mψ1 = ψ2 and Mψ2 = ψ1, for both up and down components. In contrast,
radiation states are invariant under matter conjugation, i.e., Mψ1 = ψ1 and Mψ2 = ψ2. In
the former case, one pair state (χ±M) has odd parity and the other (χ±R ) has even parity, while
all have even parity under matter conjugation in the latter case.

These observations seem consistent with the fact that the annihilation of electrons
and positrons results in photons, which have only two degrees of freedom (DOFs) and the
extra DOFs are normally disregarded by applying gauge constraints. Here it implies that
the extra DOFs may be associated with another massless neutral pair (MLNP), so that the
dimensionality of the state space is conserved (see further discussions below).

3. Discussions
3.1. ESD and Energy Transformation

What is the motivation for the proposed energy space decomposition and the mathe-
matical mapping suggested by Equation (4)? What are the underlying mechanisms of this
framework? We know that in quantum mechanics, a system of interest can be described in
general by a state (or wave function) in terms of a complete basis set in vector space. The
basis is normally constructed from the eigenstates of some specific operators associated
with particular physical observables of the interested system (e.g., energy eigenstates).
Moreover, different bases could result in different representations of the system from dif-
ferent perspectives. Here we suggest using a generalized energy space to quantify the
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system of interest. Rather than just using the traditional (scalar) energy eigenstates of the
Hamiltonian system, materializing the mathematical basis or the classification of the energy
eigenstates is investigated to explore the detailed structure of the energy space, and to
better understand the properties of the system.

To elaborate on our idea, let us take a simple two-state model as an example [44], i.e.,

H0 = EM|1〉〈1| − EM|2〉〈2|;
V(t) = Ve−iω′t|1〉〈2|+ Veiω′t|2〉〈1| . (35a)

Here the diagonal elements represent the eigenstates of the system Hamiltonian matrix
when there are no interactions between the two states. The off-diagonal elements represent
the interstate interactions described by a time-dependent potential. The solution to this
problem is well known as the Rabi oscillation with a frequency of

}Ω =
√

4V2 + (}ω′ − }ω)2,
with ω = 2EM/}.

(35b)

The interaction between the two states can be illustrated as an absorption-emission
cycle of energy exchange. In particular, when the resonance condition is satisfied, i.e.,
ω′ = ω, the two states transform into each other completely back and forth.

In connection with this model, our mapping strategy is to associate the diagonal
elements of the Hamiltonian matrix with the particle/antiparticle in standstill, i.e., the pure
matter state, and the off-diagonal elements with the radiation states or massless interme-
diate bosons (e.g., photon) that mediate the interactions between particles (antiparticles).
Thus, the energy space associated with Hamiltonian can be decomposed into different
types of energy modules, i.e., matter and radiation, in connection with massive particles
and massless particles, respectively. Consequently, the conventional basis (e.g., energy
eigenstates) may be reorganized into a modular composite basis and classified based on
the underlying structures.

Note that when ω′ = 0 in Equation (35), the intermediate bosons may be regarded as
confined within the system. In this case, the system Hamiltonian matrix is reduced to

H =

(
EM V
V −EM

)
(36)

The confined intermediate bosons create internal coherence of the coupled parti-
cle/antiparticles, corresponding to the coherence energy of V between the primitive parti-
cle/antiparticle pair. Equation (35) also indicates that there are, in general, two types of
intermediate bosons, i.e., the free (external) and confined (internal) intermediate bosons.
The representation of the free intermediate bosons is given in Equation (4). In fact, this
mapping scheme also generates Rabi-like oscillation (Equation (26)).

Combining these two cases, the Hamiltonian matrix takes the following general form:

H =

(
EM V + iER

V− iER −EM

)
(37)

Here, i =
√
−1 in the off-diagonal states differentiates these two kinds of contributions

to the interstate couplings. Note that this matrix has a similar form to the nonadiabatic
Hamiltonian matrix [45], in which the interstate coupling comes from the momentum term
(this is different from the picture of minimal coupling of electromagnetic interactions [32]).
In addition, our model implies that the particle moves due to the coupling with external
intermediate bosons, which carry specific momentum.
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Equation (37) illustrates the well-known fact that a 2× 2 Hermitian matrix can be
decomposed in terms of the unit matrix I and three Pauli matrices σi:

H = IE0 + ∑3
i=1 σiEi (38)

and interprets it as the energy space representation based on various types of energies,
where E0 is the base energy and E1 = V, E2 = ER, E3 = EM. The energy associated with
the diagonal element corresponds to the stationary state or eigenstate of the system, and
therefore manifests its mapping to the rest energy. On the other hand, the energy associated
with the off-diagonal elements corresponds to the inter-state interactions or nonstationary
parts (e.g., Equation (26)) of the system, and therefore behaves like mobile energy. The
mapping scheme in Equation (4) illustrates the coupling between the particle and antiparti-
cle while if E3 is replaced by E0 = Mc2, and E2 by E1, then the resulting Equation would
describe the (internal) coupling between two particles. Thus, it seems that including the
diagonal energy polarization (E3) is necessary to obtain the relativistic dynamics. In other
words, our mapping scheme in Equation (4) implies that relativistic dynamics result from
particle–antiparticle coupling. Therefore, to obtain a single-particle description for RQM
is, in principle at best, an approximation to the truth. Here our formalism emphasizes the
molecular origin of the theory of relativity from particle pair interactions rather than the
dynamical invariance between different frames, thus providing a broader foundation for
the theory of relativity and a natural connection with quantum mechanics.

One way to expand the dimensionality of the energy space is to construct a direct
product space from existing energy modules, for example, the energy representation at a
higher level of hierarchy may read:

H = σ3 ⊗ IE3 + ∑3
i=1 σ2 ⊗σi · E2. (39a)

Then we have Equation (27), which corresponds to the Dirac Equation for a four-state
system. By comparison, the Hamiltonian for the Klein–Gordon Equation in Equation (5) is

H = σ3E3 +σ2E2 (39b)

which may be interpreted as energy modules associated with internal time and space.
Equation (39a) may also be interpreted as the further decomposition of Equation (39b),
which expands the internal space from 1D to 3D. Our formalism implies that spin may be
attributed to internal motion. Nevertheless, superluminal motion is not needed for electron
spin since the electromagnetic potential is an effective potential for interstate interactions
and therefore the corresponding classical electron radius is not an appropriate measure,
while the Compton wavelength should be used resulting in a consistent light-speed motion.
Here we offer a molecular manifestation of the relativistic equations. However, one must
keep in mind that the mathematical structures of conventional relativistic equations such
as the Dirac equation are not directly and uniquely mapped to physical observables,
and different mapping schemes may result in different representations/perspectives [43].
Ambiguities and uncertainties will not be resolved unless the underlying structures are
well understood. Further investigation into the hierarchical decomposition of energy space
may help to uncover the underlying mechanisms of relativistic quantum mechanics.

It is worth mentioning that relativistic quantum dynamics may be generated from the
irreducible representations of the Poincare group [6], and the corresponding mathematical
structure has been well studied [46]. However, the Poincare group is associated with a
predefined Minkowski spacetime and there are no unique schemes to generate a composite
basis. Therefore, the space–time-dependent quantities may result in significant complexity
in the practical applicability of the formalism in particular for multistate systems. In con-
trast, the proposed molecular formalism of RQM in the energy space has a straightforward
molecular foundation, based on which the ESD can be performed systematically to higher
dimensions. Therefore, it is expected to be practically applied to general multistate systems
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to obtain molecular insights into the relativistic dynamics, demonstrated by the successful
application of the prototypical two-state and four-state model systems.

For a system with the Hamiltonian given in Equation (36), the solution to the rel-
ativistic multistate Schrödinger equation may be obtained by using the unitary trans-
formation in Equation (3), or transformation similar to Equation (7) (see Appendix A).
Therefore, for a general system with the Hamiltonian in Equation (37), the corresponding
Schrödinger equation can be solved by applying a combined transformation of the two
given in Equations (3) and (7). Alternatively, the wave function may be constructed hier-
archically taking intermediate bosons at each level as external ones (see below) using the
transformation in Equation (7) or a similar form.

To observe the effect of the two types of intermediated bosons, consider the massless
case for the general Hamiltonian, and Equation (37) is reduced to

H =

(
0 V + iER

V− iER 0

)
, (40a)

while the Hamiltonian for the corresponding four-state system reads:

H = σ1 ⊗ IE1 + ∑3
i=1 σ2 ⊗σi · E2. (40b)

In the latter case, the solution to the corresponding Schrödinger equation for the
particle states is the same as the pair states given in Equation (34), i.e.,

ψu
1 = χ+

R ; ψd
1 = −χ−R ;

ψu
2 = χ+

M; ψu
2 = χ−M.

(41)

Now all four types of pair bases show up and the missing DOFs are recovered. In fact,
for the massless case, the particle/antiparticles are already in the pair state form, and the
MLNP corresponds to the internal radiation.

The transformation of the energy eigenstates could be performed in a nontrivial
way to form a complicated structure in the energy space (Figure 3a). For instance, one
primitive particle (pure matter state) with a bare mass m0 is coupled with its antiparticle
through a pair of intermediate bosons, each of which carries an amount of energy V = cp′.
Under certain conditions, these intermediate bosons are “trapped” or confined within

the whole particle complex, which results in a renormalized mass m′c2 =
√

p′2c2 + m2
0c4.

The new particle (the renormalized matter state) can now be coupled with its antiparticle
through additional intermediate bosons at a different level. In principle, this successive
transformation process could be performed iteratively in the decomposed energy space,
resulting in a hierarchical structure of constructed particles.

ESD therefore offers a comprehensive perspective on energy transformation and
may help to design new pathways. The conventional strategy of putting energy into a
particle well captured by special relativity is to increase radiation energy (normally through
coupling with external fields) without directly controlling the primitive mass of the particle
(path A in Figure 3b). The total energy of the particle increases, as does the effective
mass. Our analysis indicates that annihilation of particles and antiparticles may take the
minimum path B (Figure 3b), and alternatively, energy transformation could take another
pathway to convert the matter state into radiation (massless neutral pair state, MLNP)
completely (path C in Figure 3b). Note that the transitions exactly following pathways
B and C do not involve external momentum. During the transitions, there may exist a
quantum-phase transition between the particle pairs and MLNP when the speed of the
particle approaches the light speed, or when the particle transforms from its matter state
into the radiation state.
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3.2. Free Particle and Generalized Relativistic Quantum Mechanics

The free-particle system (no external field) was considered in this work to illustrate
the idea of the proposed multistate model of relativistic quantum dynamics. In the conven-
tional Copenhagen interpretation of quantum mechanics, no trajectory of a particle exists,
and the dynamics of a free particle can be described by a single quantum state, e.g., an
eigenstate of a plane wave basis, i.e., e−iωt+ipx. For a relativistic free particle, the quan-
tum state described by either the Klein–Gordon equation or the Dirac equation becomes
multicomponent as the dimensionality of the system increases (see for example ref. [5]).
Concurrently, the antiparticle associated with the negative energy solution comes in contact
with an entangled component with the corresponding particle unless the momentum of the
particle (antiparticle) is zero. It is the dynamical coupling between the (free) particle and
antiparticle that motivates us to generalize the conventional scalar energy basis (eigenstate)
to a classified modular energy basis in terms of matter and radiation modules. The resulting
decomposed energy space provides an energy tensor (ET) representation of relativistic
quantum mechanics (RQM), which could incorporate both particle generation/annihilation
and matter radiation interactions within the same unified framework. This is the key step in
which we move forward beyond the relativistic quantum mechanics in the narrow sense [5]
without additional involved treatments such as invoking quantum field theory.

In contrast to conventional quantum mechanics and quantum field theory, which are
built on a predefined and parameterized space-time, the ET representation of RQM works
in the energy space and therefore does not suffer from any mind-twisting puzzles related
to space-time coordinates such as locality, wave function collapse, and a variety of different
types of divergence. For example, a conventional field representation of a free particle
involves infinitely many degrees of freedom and overemphasizes the system environment
interactions, and thus can be regarded as a representative model of an open system. As a
result, the physical quantities calculated from the phase space integral normally contain
divergent terms.

In contrast, the two-state and four-state models considered in this work may corre-
spond well to an isolated system or closed system. For an isolated system, i.e., no exchange
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of both matter and radiation between the system and environment, the matter state and the
radiation state may transform into each other upon unitary transformation (e.g., path B in
Figure 3b and the polarization change in Equation (A7)), in exactly the same way as basis
transformation upon rotation. Here, the dimensionality of the system is unchanged but
the representation of the system changes as the basis changes. On the other hand, for a
closed system, radiation exchange is allowed, whereas matter exchange is forbidden, and
the coupling of the matter and radiation results in an effective rotation in the energy space
(see e.g., path A in Figure 3b), which again can be regarded as the particle tends to turn into
its antiparticle counterpart. The introduction of the radiation state (particle/antiparticle
state in the radiation limit corresponding to the off-diagonal element of the Hamiltonian
matrix) would not change the dimensionality of the state space, therefore the total state
population would not change either (c.f. Equations (26) and (A7)). Instead, these intermedi-
ate states represent the dynamic transition between the discrete matter states going beyond
two-state transformations, while guaranteeing the conservation of both the energy and
the population.

The diagonalization of the relativistic Hamiltonian matrix in the free particle case
can be achieved through various unitary transformations [22–28] including the Feshbach–
Villars transformation [5], which are normally momentum dependent and associated with
a predefined space-time. The transformed state space is essentially the body frame attached
to the renormalized particle. Consequently, the renormalized space-time basis becomes
nonlocal. In contrast, the unitary transformations we used to solve the relativistic multistate
Schrödinger equations that are equivalent to the Klein–Gordon equation and the Dirac
equation are a universal transformation free of any space-time coordinates. Although it
seems equivalent to the unitary transformation between the Dirac basis and Weyl basis,
our approach is designed for the energy space, and it applies to cases where there is no
spatial coordinate. On the other hand, the energy space is decomposed upon transformation
(Equation (8b), and a similar form can be obtained for Equation (A1), but the transformation
becomes Equation (A3)) to manifest the detailed underlying structure.

In addition, the transformed state space comprises pair-state bases, which are funda-
mental building blocks of the modular energy space, and the ET representation of RQM.
The advantage of using a pair state as energy modules is that the solution space of the
relativistic wave equations (Equations (5) and (27)) is well represented in terms of the
two-dimensional state space for second-order ordinary differential equations (ODE). This
treatment allows the interstate transformation among different energy modules including
the matter state and radiation state, in contrast to the conventional treatments such as the
Feshbach–Villars transformation, which focuses on the multicomponent representation
in the one-dimensional (scalar energy) state space for first-order ODEs. Mathematically
these two representations, i.e., ET representation and Feshbach–Villars representation, are
equivalent. However, the well-organized mathematical structure of the energy space in
the ET representation helps clarify the underlying mechanism of RQM and realize its full
power to include matter radiation interactions.

One of the limitations of the proposed formalism is that the external fields have
not been explicitly included. Note that radiation states could be related to both internal
and external sources (Equation (37)). Moreover, the momentum in Equation (4c) is the
momentum of the radiation although it is also equivalent to the momentum of the composite
particle. Therefore, the inclusion of radiation does not have to be associated with external
fields. In fact, conventionally, the relativistic equation for spin-1/2 particles coupled with
an external electromagnetic field might be obtained by applying the following gauge
transformation to the free particle equation, Equation (27), i.e.,
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i} ∂

∂t
→ i} ∂

∂t
− eA0, p→ p− e

c
A, (42)

where e is the electric charge of the particle and A0, A are the electrostatic potential
and magnetic vector potential, respectively. Obviously, the contribution of vector fields
can be incorporated into the off-diagonal Hamiltonian matrix elements corresponding to
intermediate bosons, which indicates the equivalency of the momentum representation
and the external field representation of the radiation state. This observation suggests that
the effect of external fields on RQM might be integrated into the current framework of ESD
in some way through the radiation state, which deserves further investigation.

The other challenge in further developing the proposed formalism is the identification
of the mapping schemes between the energy modules or modular bases and physical
realities. As shown in the previous discussion, in principle, there are infinitely many
possibilities to construct energy modules and there are also infinitely many physical realities.
So, are there any rules to follow to generate mapping schemes between the two? For
example, there could be different interpretations of the same Dirac equation [43]. The
proposed formalism could help reorganize the state space, so the next question is how to
intelligently or efficiently reorganize it. One strategy to start with is the further classification
of the energy modules, and the results will be presented in future work.

4. Conclusions

In summary, a molecular formalism for quantum mechanics was proposed by decom-
posing the energy space into a modular basis associated with mass energy and radiation
energy. In this framework, the energy space decomposition (ESD) quantifies the system of
interest in terms of energy quanta (modules) corresponding to matter and radiation. The
system evolution manifests the energy transformation among different energy modules.
The formalism naturally generates the relativistic energy–momentum relation through the
relativistic multistate Schrödinger equation and extends the scope of conventional relativis-
tic quantum mechanics to incorporate matter radiation interactions in a unified framework.

The application of the proposed formalism to the prototypical two-state and four-state
systems results in a well-organized energy tensor representation of relativistic dynamics.
A universal type of unitary transformation based on a pair state basis is applied to obtain
well-defined solutions compared to the conventional treatments of the Klein–Gordon
equation and the Dirac equation. Moreover, a particle conjugation group isomorphic to
the vierergruppe is constructed including energy conjugation, matter conjugation, and
radiation conjugation, which manifest the symmetry of the particle–antiparticle relationship
in a systematic and straightforward way in comparison with the conventional charge
conjugation.

The modular basis can be constructed hierarchically to generate high-dimensional
energy space to represent the structures of complicated particles. For example, the primitive
matter module coupled with the radiation module resulting in a renormalized matter
module could further couple with an additional radiation module. The confined radiation
is responsible for the internal correlation that may operate together with external radiation
at different levels. The proposed ESD representation thus provides molecular insight into
the energy transformation between matter and radiation and facilitates the rational design
of new energy transformation pathways.
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Appendix A

1. Comparison with conventional treatments

The ET representation of RQM for the two-state system is equivalent to the Klein–
Gordon (KG) equation in the canonical form in the sense that both can transform into the
same 2nd ODE (Equation (14)). The Hamilton form of the free particle KG equation [5] is

represented in a particle picture with a kinetic energy term p2

2m . The canonical form of the
Dirac equation retains the radiation energy term cp, which may correspond to the internal
coherence case in this work, i.e., H12 = cp. However, the conventional treatment on the
relativistic equations (both KG and Dirac equations) implicitly takes the single particle
ansatz in a predefined space-time, e.g., Ψ ∼ e−i(p·x−Et)/}, although the wave function itself
is multicomponent. The particle–antiparticle correlation is projected out on the multiple
state space of the same particle system, or in other words, on the multidimensional subspace
for the same particle state (or a single basis in the Hilbert space). Correspondingly, the
transformation to diagonalize the Hamiltonian matrix in the conventional treatment, such
as the Feshbach Villars transformation, only manipulates the components of the wave
function rather than the basis itself. This is only a special case of the general unitary
transformation in Equation (3).

To make an explicit comparison with the conventional treatment, let us consider, for
example, the KG equation in an equivalent form of a relativistic multistate Schrödinger
equation for a two-state system:

i} ∂

∂t

(
ψ1
ψ2

)
=

(
m0c2 cp

cp −m0c2

)(
ψ1
ψ2

)
. (A1)

The solution may be obtained by Equation (3), i.e.,(
ψ1
ψ2

)
= U

(
ψ+

ψ−

)
=

(
ψ+cosθ −ψ−sinθ
ψ+sinθ +ψ−cosθ

)
=

√E+m0c2

2E eiωt −
√

E−m0c2

2E e−iωt√
E−m0c2

2E eiωt +
√

E+m0c2

2E e−iωt

.
(A2)

Here the transformation is performed in energy space for the whole particle–antiparticle
system, resulting in mixed states for each component of the wave function, which is as-
sociated with the particle and antiparticle individually. Clearly, this is just a different
representation (or perspective) of the conventional treatment of the same system.

On the other hand, it is also a different representation in the solution space (in the
renormalized perspective) from that in Equation (12). Our treatment takes advantage of a
universal transformation in a fixed space (momentum independent), which provides de-
tailed structures of the decomposed energy space and presumably can be straightforwardly
and systematically extended into high-dimensional systems. To solve Equation (A1) using
the same strategy as we did in the text, we take the following transformation,

U =
1√
2

(
1 −i
i −1

)
(A3)

The solution to Equation (A1) may be written by

ψ′1 =
−1 + i

2
eiωt +

1 + i
2

e−iωt; (A4a)

ψ′2 =
m0c2 + icp

E

(
1 + i

2
eiωt +

−1 + i
2

e−iωt
)

, (A4b)
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in terms of pair states. The corresponding particle/antiparticle states are given by

ψ1 = 1
2
√

2

[(
m0c2+cp−E

E − i m0c2−cp−E
E

)
eiωt +

(
m0c2−cp+E

E + i m0c2+cp+E
E

)
e−iωt

]
ψ2 = 1

2
√

2

[(
−m0c2−cp+E

E − i m0c2+cp+E
E

)
eiωt +

(
m0c2+cp−E

E − i m0c2−cp−E
E

)
e−iωt

] (A5)

2. The explicit solutions for the four-state system.

The solution to Equation (28) for the four-state system may be given by

ψu
1 = 1

2
√

2

[(
m0c2−

(
cpx−kcpy

)
+cpz−E

E − i
m0c2−

(
cpx−kcpy

)
−cpz−E

E

)
eiωt

+

(
m0c2+

(
cpx−kcpy

)
−cpz+E

E + i
m0c2+

(
cpx−kcpy

)
+cpz+E

E

)
e−iωt

]

ψd
1 = 1

2
√

2

[(
m0c2+

(
cpx+kcpy

)
+cpz−E

E + i
m0c2+

(
cpx+kcpy

)
−cpz−E

E

)
eiωt

+

(
m0c2−

(
cpx+kcpy

)
−cpz+E

E − i
m0c2−

(
cpx+kcpy

)
+cpz+E

E

)
e−iωt

]

ψu
2 = 1

2
√

2

[
−
(

m0c2−
(

cpx−kcpy

)
+cpz+E

E − i
m0c2−

(
cpx−kcpy

)
−cpz+E

E

)
eiωt

−
(

m0c2+
(

cpx−kcpy

)
−cpz−E

E + i
m0c2+

(
cpx−kcpy

)
+cpz−E

E

)
e−iωt

]

ψd
2 = 1

2
√

2

[
−
(

m0c2+
(

cpx+kcpy

)
+cpz+E

E + i
m0c2+

(
cpx+kcpy

)
−cpz+E

E

)
eiωt

−
(

m0c2−
(

cpx+kcpy

)
−cpz−E

E − i
m0c2−

(
cpx+kcpy

)
+cpz−E

E

)
e−iωt

]

(A6)

Here px, py, pz are the x, y, and z projections of the momentum, and k denotes the
further decomposition of the energy. The population of each component of the parti-
cle/antiparticle states can be calculated as follows:

|ψu
1 |

2 = 1 +
cpx−kcpy

E +

(
1 +

cpx−kcpy
E

)(
cpz
E cos 2ωt−

cpx−kcpy
E sin 2ωt

)
;∣∣∣ψd

1

∣∣∣2 = 1−
cpx+kcpy

E +

(
1−

cpx+kcpy
E

)(
cpz
E cos 2ωt−

cpx+kcpy
E sin 2ωt

)
;

|ψu
2 |

2 = 1−
cpx−kcpy

E +

(
1−

cpx−kcpy
E

)(
− cpz

E cos 2ωt +
cpx−kcpy

E sin 2ωt
)

;∣∣∣ψd
2

∣∣∣2 = 1 +
cpx+kcpy

E +

(
1 +

cpx+kcpy
E

)(
− cpz

E cos 2ωt +
cpx+kcpy

E sin 2ωt
)

.

(A7)

which are all time-dependent in general. However, the population of the total wave function
ψ is constant. Here, an additional factor of 1/2 should be used for each component if the
normalization of the total wavefunction is required. Time-dependent state populations for
the pair states and the particle states for a number of different configurations are shown in
Figures A1 and A2, respectively. Here a variety of energy decomposition ratios of matter,
longitude radiation and transverse radiation, i.e., m0c2 : cpz :

∣∣∣cpx ± kcpy

∣∣∣ are considered.
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