
Citation: Błasik, M. The Implicit

Numerical Method for the Radial

Anomalous Subdiffusion Equation.

Symmetry 2023, 15, 1642. https://

doi.org/10.3390/sym15091642

Academic Editor: Jorge E. Macías

Díaz

Received: 28 July 2023

Revised: 22 August 2023

Accepted: 23 August 2023

Published: 25 August 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

The Implicit Numerical Method for the Radial Anomalous
Subdiffusion Equation
Marek Błasik

Department of Mathematics Applications and Methods for Artificial Intelligence, Silesian University of
Technology, Kaszubska 23, 44-100 Gliwice, Poland; marek.blasik@polsl.pl

Abstract: This paper presents a numerical method for solving a two-dimensional subdiffusion
equation with a Caputo fractional derivative. The problem considered assumes symmetry in both
the equation’s solution domain and the boundary conditions, allowing for a reduction of the two-
dimensional equation to a one-dimensional one. The proposed method is an extension of the fractional
Crank–Nicolson method, based on the discretization of the equivalent integral-differential equation.
To validate the method, the obtained results were compared with a solution obtained through the
Laplace transform. The analytical solution in the image of the Laplace transform was inverted
using the Gaver–Wynn–Rho algorithm implemented in the specialized mathematical computing
environment, Wolfram Mathematica. The results clearly show the mutual convergence of the solutions
obtained via the two methods.
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1. Introduction

Diffusion is a process of spontaneous movement of particles due to collisions with
other particles. These collisions can occur between diffusing particles as well as particles
of the medium in which diffusion occurs. The fundamental characteristic of this type of
movement is that the mean square displacement of the particle (the square of its dispersion)
depends non-linearly on time [1,2]〈

x2(t)
〉
∼ Dαtα, 0 < α ≤ 2, (1)

as opposed to the linear dependence (α = 1) that characterizes Brownian motion. In the
first case, when the exponent of the power is less than one, it is called subdiffusion, whereas
when the diffusion exponent is greater than one, it is called superdiffusion. The second
case concerns the so-called Lévy flights, which have been observed experimentally [3–5].
Subdiffusion is most commonly observed in media such as gels and porous media, where
particle movement is extremely difficult [6,7].

Thermal conductivity, which involves the flow of heat through solid substances like
metal, is a twin process to diffusion. It is a process where thermal energy is transferred
through conduction by the transfer of particle vibrations. The particles in a solid state are
close to each other and are held together by intermolecular forces. When one particle gains
energy, it transfers it to the neighboring particle through vibration transfer. Mathematical
models incorporating fractional-order derivatives are excellent tools for describing thermal
conduction in porous materials, such as porous aluminum [8].

Within the framework of subdiffusion or thermal conductivity processes modeled
by subdiffusion or the fractional thermal conductivity equation, a subclass of so-called
fractional Stefan problems can be distinguished. They are designed to describe the evolution
of the boundary between two phases of a material undergoing a phase transition. Examples
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include the drug release from slab matrices [9,10]. Numerous papers presenting analytical
and numerical results have been devoted to this phenomenon [11–17].

In the papers [18,19], Povstenko et al. consider the two dimensional time-fractional
heat conduction equations. In the solution, they use Laplace and Fourier integral trans-
forms, which facilitate the reduction of higher-degree differential equations to lower-degree
equations, thus greatly improved the obtaining of the solution. The paper [19] uses the
Gaver–Stehfest algorithm to invert the Laplace transform. A similar approach to those
presented in the aforementioned papers is used in this article, based, moreover, on the re-
sults presented in the monograph [20], with the difference being that the Gaver–Wynn–Rho
algorithm [21–23] was used to determine the original solution from the Laplace transform
image. The other analytical method used in the context of fractional partial differential
equations is the method of the separation of variables [24,25].

Numerous numerical methods have been proposed for solving equations of anoma-
lous diffusion. Ciesielski introduced numerical schemes for various cases in his doctoral
dissertation [26], including equations with fractional-order time and spatial derivatives.
The discussed cases were limited to one-dimensional problems. Papers [27,28] consid-
ered one-dimensional subdiffusion equations with a fractional spatial Riemann–Liouville
derivative and provided corresponding numerical schemes. Bhrawy et al. [29] presented a
numerical method for a subdiffusion equation with a Caputo time derivative. Błasik [30–32]
extended the classical Crank–Nicolson method to one-dimensional subdiffusion equations
with a Caputo time derivative, considering a variable diffusion coefficient and nonlinear
source term. Other variants of the Crank–Nicolson method for the subdiffusion equation
are included in the papers [33–35]. Noteworthy are also the articles [36–40], in which the
authors have developed numerical methods characterized by high accuracy. Numerical
results for the two-dimensional subdiffusion equation were presented in papers [41,42],
while a more general case involving a source term was discussed in [43,44].

Other methods for solving the anomalous diffusion equation include meshless tech-
niques [45–47], such as the Singular Boundary Method (SBM), Radial Basis Function
(RBF) and the Moving Particle Semi-Implicit (MPS) approach do not require conventional
structured meshes for problem domain discretization. Other examples of using meshless
methods with Chebyshev and Lagrange polynomials are developed in papers [48,49].

The article is structured as follows. The Section 2 presents the basic definitions and
properties of the following: fractional order differential calculus, integral transforms,
and numerical methods. These concepts are utilized throughout the rest of the article.
In the subsequent section, the problem to be solved is formulated as a two-dimensional
sub-diffusion equation, along with uniqueness conditions. Two different solutions were
employed to solve this problem, and each one is discussed in its respective sub-section.
The Section 4 and 5 showcase the numerical results obtained from the calculations and
convergence analysis of the proposed numerical scheme. Finally, the article concludes with
a section summarizing the findings and providing additional insights.

2. Preliminaries

Let us begin our consideration by introducing two fractional order operators: the
left-sided Riemann–Liouville integral and the left-sided Caputo derivative together with
the composition rule of the two mentioned operators [50].

Definition 1. The left-sided Riemann–Liouville integral of order α, denoted as Iα
0+, is given by the

following formula for Re(α) ∈ (0, 1]:

Iα
0+ f (t) :=

1
Γ(α)

∫ t

0

f (τ)dτ

(t− τ)1−α
, (2)

where Γ is the Euler gamma function.
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Definition 2. Let Re(α) ∈ (0, 1]. The left-sided Caputo derivative of order α is given by
the formula:

CDα
0+ f (t) :=

 1
Γ(1−α)

∫ t
0

f
′
(τ)dτ

(t−τ)α , 0 < Re(α) < 1,
d f (t)

dt , Re(α) = 1.
(3)

Property 1 ([50] Lemma 2.22). Let function f ∈ C1(0, T). Then, the composition rule for the
left-sided Riemann–Liouville integral and the left-sided Caputo derivative is given as follows:

Iα
0+

CDα
0+ f (t) = f (t)− f (0), Re(α) ∈ (0, 1]. (4)

The definition of the Laplace integral transform [51], combined with the following
property [52], will play an important role in determining the semi-analytical solution of the
problem considered in the next section.

Definition 3. Let f (t) be a real function of the variable t ∈ R. Then, the Laplace transform of the
function f (t) is the function f̂ (s) of the complex variable defined by formula

L { f (t)} = f̂ (s) =
∫ ∞

0
e−st f (t)dt, (5)

where Re(s) > 0.

Property 2. Let the function f (t) be the original, and let L { f (t)} = f̂ (s), then the following
formula holds

L {CDα
0+ f (t)} = sα f̂ (s)− sα−1 f (0), Re(α) ∈ (0, 1]. (6)

Bessel functions of the first and second kind [50,53] present two further definitions.

Definition 4. Let z ∈ C \ {R−, 0} and ν ∈ C, then the Bessel function of the first kind denoted
by Jν(z) is given by the following series:

Jν(z) =
∞

∑
l=0

(−1)l(z/2)2l+ν

l!Γ(ν + l + 1)
. (7)

Definition 5. Let ν ∈ C \Z, then the Bessel function of the second kind denoted by Yν(z) is given
by the following formula:

Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ
. (8)

In the case of integer order m ∈ Z, function is defined in terms of the limit of

Ym(z) = lim
ν→m

Yν(z). (9)

The numerical scheme proposed in the next section uses a mesh of nodes defined
as follows:

Definition 6. Let Π = {(r, t) : r ∈
[

1
2 , 1
]
; t ∈ [0, 1]} be a continuous region of solutions for the

partial differential equation. Then, the set Π̄ = {(ri, tj) ∈ Π : ri =
1
2 + i∆r, i ∈ {0, 1, . . . , m},

∆r = 1
2m ; tj = j∆t, j ∈ {0, 1, . . . , n}; ∆t = 1

n}, which we call the rectangular regular mesh
described by the set of nodes.

In the following part of the paper, the real order of the left-sided Caputo derivative
and the left-sided Riemann–Liouville integral is considered.
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3. Mathematical Formulation and Solution of the Problem

Consider a two-dimensional subdiffusion equation in a region with axial symmetry.
Let us also assume an axisymmetric system of boundary and initial conditions. The equa-
tion under consideration has the form:

CDα
0+,tU(x, y, t) = Dα

(
∂2U(x, y, t)

∂x2 +
∂2U(x, y, t)

∂y2

)
,

1
4
< x2 + y2 < 1, t > 0, (10)

supplemented by boundary conditions on the edges of the circular ring:

U(x, y, t) = Ub, x2 + y2 = 1, t > 0, (11)

U(x, y, t) = 0, x2 + y2 =
1
4

, t > 0, (12)

and initial condition
U(x, y, 0) = 0,

1
4
≤ x2 + y2 ≤ 1, (13)

where the generalized diffusion coefficient Dα is constant.
In the axisymmetric region in which we derive the solution of the differential equation,

it is convenient to introduce the polar coordinates given by x = r cos φ, y = r sin φ,
for which the differential Equation (10) with boundary and initial conditions takes the
form of:

CDα
0+,tU(r, φ, t) = Dα

(
∂2U(r, φ, t)

∂r2 +
1
r2

∂2U(r, φ, t)
∂φ2 +

1
r

∂U(r, φ, t)
∂r

)
,

1
2
< r < 1, 0 ≤ φ < 2π, t > 0,

(14)

U(1, φ, t) = Ub, 0 ≤ φ < 2π, t > 0, (15)

U
(

1
2

, φ, t
)
= 0, 0 ≤ φ < 2π, t > 0, (16)

U(r, φ, 0) = 0,
1
2
≤ r ≤ 1, 0 ≤ φ < 2π. (17)

The assumptions made about symmetry allow us to reduce the dimension of the problem
under consideration. Let us note that for a fixed radius r and arbitrary angle φ, the diffusion
flux in the direction normal to the edge takes the constant values. Thus, the function U does
not depend on φ, and the second differential term on the right hand side of Equation (14) is
equal to zero. As a result, the two-dimensional equation is immediately reduced to the
one-dimensional one:

CDα
0+,tU(r, t) = Dα

(
∂2U(r, t)

∂r2 +
1
r

∂U(r, t)
∂r

)
,

1
2
< r < 1, t > 0, (18)

U(1, t) = Ub, t > 0, (19)

U
(

1
2

, t
)
= 0, t > 0, (20)

U(r, 0) = 0,
1
2
≤ r ≤ 1. (21)

It should be mentioned that in addition to symmetry, there are other ways to reduce the
dimensions of differential problems, such as scaling [54,55] and integral transforms [51],
which will be shown in the next section.
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3.1. A Numerical Approach

In the paper [30], a generalized Crank–Nicolson method was proposed for the one-
dimensional subdiffusion equation. The obtained results were further extended to the
more general case, to the equation with a source term [31]. In both cases, obtained results
confirmed the accuracy of the proposed methods. Therefore, an analogous approach will
be applied to the problem defined by Equations (18)–(21).

For some technical reasons, the numerical approximation of the left-sided Caputo
derivative is much simpler compared to the approximation of the left-sided Riemann–
Liouville integral. Therefore, we apply Property 1 to the Equation (18), which yields an
integro-differential equation in the following form:

U(r, t) = U(r, 0) +
Dα

Γ(α)

∫ t

0

1
(t− τ)1−α

∂2U(r, τ)

∂r2 dτ

+
Dα

rΓ(α)

∫ t

0

1
(t− τ)1−α

∂U(r, τ)

∂r
dτ.

(22)

The solution U of the initial boundary value problem considered in the paper fulfills the
assumptions of Property 1, and its existence and the uniqueness was proven in the more
general case in the paper [56]. Further consideration will be conducted with reference to the
mesh of nodes given in Definition 6. For each node of the grid, we determine the discrete
form of the integral kernel in the integrals on the right-hand side of Equation (22). For this
purpose, we approximate the solution U using a linear function between two consecutive
nodes with respect to the variable t:

Ū(r, t) = U(r, tj)
t− tj+1

tj − tj+1
+ U(r, tj+1)

t− tj

tj+1 − tj
, (23)

for tj ≤ t ≤ tj+1, j = 0, . . . , n− 1. The first integral term of Equation (22) on the interval
[0, tk] can be approximated by the formula:

Dα

Γ(α)

∫ tk

0

1
(tk − τ)1−α

∂2U(r, τ)

∂r2 dτ ≈ Dα

Γ(α)

∫ tk

0

1
(tk − τ)1−α

∂2Ū(r, τ)

∂r2 dτ. (24)

From the theorem on additivity of an integral with respect to the integration interval,
we obtain:

Dα

Γ(α)

∫ tk

0

1
(tk − τ)1−α

∂2Ū(r, τ)

∂r2 dτ =
Dα

Γ(α)

k−1

∑
j=0

∫ tj+1

tj

1
(tk − τ)1−α

(
∂2U(r, tj)

∂r2

τ − tj+1

tj − tj+1
+

∂2U(r, tj+1)

∂r2

τ − tj

tj+1 − tj

)
dτ =

Dα

Γ(α)
∂2U(r, t0)

∂r2

∫ t1

0

1
(tk − τ)1−α

τ − t1

t0 − t1
dτ+

Dα

Γ(α)

k−1

∑
j=1

∂2U(r, tj)

∂r2

(∫ tj

tj−1

1
(tk − τ)1−α

τ − tj−1

tj − tj−1
dτ +

∫ tj+1

tj

1
(tk − τ)1−α

τ − tj+1

tj − tj+1
dτ

)
+

Dα

Γ(α)
∂2U(r, tk)

∂r2

∫ tk

tk−1

1
(tk − τ)1−α

τ − tk−1
tk − tk−1

dτ.

The second integral term of Equation (22) on the interval [0, tk] can be approximated by
the formula:

Dα

rΓ(α)

∫ tk

0

1
(tk − τ)1−α

∂U(r, τ)

∂r
dτ ≈ Dα

rΓ(α)

∫ tk

0

1
(tk − τ)1−α

∂Ū(r, τ)

∂r
dτ. (25)



Symmetry 2023, 15, 1642 6 of 15

Applying again the theorem on additivity of an integral with respect to the integration
interval, we obtain:

Dα

rΓ(α)

∫ tk

0

1
(tk − τ)1−α

∂Ū(r, τ)

∂r
dτ =

Dα

rΓ(α)

k−1

∑
j=0

∫ tj+1

tj

1
(tk − τ)1−α

(
∂U(r, tj)

∂r
τ − tj+1

tj − tj+1
+

∂U(r, tj+1)

∂r
τ − tj

tj+1 − tj

)
dτ =

Dα

rΓ(α)
∂U(r, t0)

∂r

∫ t1

0

1
(tk − τ)1−α

τ − t1

t0 − t1
dτ+

Dα

rΓ(α)

k−1

∑
j=1

∂U(r, tj)

∂r

(∫ tj

tj−1

1
(tk − τ)1−α

τ − tj−1

tj − tj−1
dτ +

∫ tj+1

tj

1
(tk − τ)1−α

τ − tj+1

tj − tj+1
dτ

)
+

Dα

rΓ(α)
∂U(r, tk)

∂r

∫ tk

tk−1

1
(tk − τ)1−α

τ − tk−1
tk − tk−1

dτ.

Calculating the following integrals:

w0,k =
1

Γ(α)

∫ t1

0

1
(tk − τ)1−α

τ − t1

t0 − t1
dτ =

(∆t)α

Γ(2 + α)

(
(α + 1− k)kα + (k− 1)α+1

)
, (26)

wj,k =
1

Γ(α)

(∫ tj

tj−1

1
(tk − τ)1−α

τ − tj−1

tj − tj−1
dτ+

∫ tj+1

tj

1
(tk − τ)1−α

τ − tj+1

tj − tj+1
dτ

)
=

(∆t)α

Γ(2 + α)

(
(k− j + 1)α+1− 2(k− j)α+1 + (k− j− 1)α+1

)
, for 0 < j < k,

(27)

wk,k =
1

Γ(α)

∫ tk

tk−1

1
(tk − τ)1−α

τ − tk−1
tk − tk−1

dτ =
(∆t)α

Γ(2 + α)
, (28)

where tj = j∆t, and 0 ≤ j ≤ k, we receive the values of the integral kernel of the left-sided
Riemann–Liouville integral, determined for the suitable grid nodes corresponding to the
time variable t.

Subsequently, we discretize the first- and second-order derivatives of the right-hand
side of the integro-differential Equation (22) using differential quotients approximating
the first (

∂U(r, t)
∂r

)
i,j
=

Ui+1,j −Ui−1,j

2∆r
+ O((∆r)2), (29)

and second derivative(
∂2U(r, t)

∂r2

)
i,j
=

Ui−1,j − 2Ui,j + Ui+1,j

(∆r)2 + O((∆r)2), (30)

with respect to the spatial variable r.
Using approximations of the corresponding derivatives and the left-sided Riemann–

Liouville integrals, we obtain the discrete form of integro-differential Equation (22)
as follows:

Ui,k = Ui,0 + Dα

k

∑
j=0

wj,k
Ui−1,j − 2Ui,j + Ui+1,j

(∆r)2 +
Dα

ri

k

∑
j=0

wj,k
Ui+1,j −Ui−1,j

2∆r
, (31)

where the weights corresponding to the integral kernel of the left-sided Riemann–Liouville
integrals are of the form:

wj,k :=
(∆t)α

Γ(2 + α)


(α + 1− k)kα + (k− 1)α+1, j = 0
(k− j + 1)α+1 − 2(k− j)α+1+
(k− j− 1)α+1, 0 < j < k
1, j = k

(32)
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We transform Equation (31) in such a way that the unknown values of the U function in the
k-th time layer are on its left side. Finally, we obtain an implicit numerical scheme, which
in node

(
1
2 + i∆r, k∆t

)
takes the form:

−
Dα(2ri − ∆r)wk,k

2ri(∆r)2 Ui−1,k +

(
1 +

2Dαwk,k

(∆r)2

)
Ui,k −

Dα(2ri + ∆r)wk,k

2ri(∆r)2 Ui+1,k =

Ui,0 +
k−1

∑
j=0

Dαwj,k

(∆r)2

(
2ri − ∆r

2ri
Ui−1,j − 2Ui,j +

2ri + ∆r
2ri

Ui+1,j

)
.

(33)

Applying the above relationship to each of the m− 2 nodes of the k-th time layer, we obtain
a system of linear equations with m− 2 unknown values of the U-function, which can be
written in matrix form:

AUk = B, (34)

where matrix A is defined by

A =



1 + 2δ − (2r1+∆r)δ
2r1

0 0 · · · 0 0 0

− (2r2−∆r)δ
2r2

1 + 2δ − (2r2+∆r)δ
2r2

0 · · · 0 0 0

0 − (2r3−∆r)δ
2r3

1 + 2δ − (2r3+∆r)δ
2r3

· · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 − (2ri−∆r)δ

2ri
1 + 2δ − (2ri+∆r)δ

2ri
0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · − (2rm−2−∆r)δ
2rm−2

1 + 2δ − (2rm−2+∆r)δ
2rm−2

0 0 0 0 · · · 0 − (2rm−1−∆r)δ
2rm−1

1 + 2δ


,

where δ := Dαwk,k
(∆r)2 . The elements of vector B are defined by

B =



b1 +
(2r1−∆r)δ

2r1
U0,k

b2
b3
...
bi
...

bm−2

bm−1 +
(2rm−1+∆r)δ

2rm−1
Um,k


,

where

bi := Ui,0 +
k−1

∑
j=0

Dαwj,k

(∆r)2

(
2ri − ∆r

2ri
Ui−1,j − 2Ui,j +

2ri + ∆r
2ri

Ui+1,j

)
.

3.2. A Semi-Analytical Approach

The application of the Laplace transform and Property 2 to subdiffusion Equation (18)
removes the time variable, thus reducing the considered equation to the form of an ordinary
differential equation, which is solved in terms of the space variable r. As a consequence of
this treatment, we obtain the equation:

sαÛ(r, s) = Dα

(
∂2Û(r, s)

∂r2 +
1
r

∂Û(r, s)
∂r

)
,

1
2
< r < 1, (35)

supplemented with boundary conditions

Û(1, s) =
Ub
s

, (36)
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U
(

1
2

, s
)
= 0. (37)

We can write the boundary value problem (35)–(37) as follows, using the notation for
ordinary differential equations:

Û
′′
(r) +

1
r

Û
′
(r)− sα

Dα
Û(r) = 0, (38)

Û(1) =
Ub
s

, (39)

Û
(

1
2

)
= 0. (40)

The differential Equation (38) is the so-called Bessel differential equation, whose general
solution is well known in the form of Bessel functions of the first and second kind [53]:

Û(r) = c1 J0

(
irsα/2
√

Dα

)
+ c2Y0

(
− irsα/2
√

Dα

)
. (41)

Applying the boundary conditions (39) and (40) to Equation (41), we obtain a system of
equations:  c1 J0

(
isα/2
√

Dα

)
+ c2Y0

(
− isα/2
√

Dα

)
= Ub

s

c1 J0

(
isα/2

2
√

Dα

)
+ c2Y0

(
− isα/2

2
√

Dα

)
= 0

. (42)

Solving the system of Equations (42), we obtain a constant c1 in the form of:

c1 =
UbY0

(
− isα/2

2
√

Dα

)
s
(

J0

(
isα/2√

Dα

)
Y0

(
− isα/2

2
√

Dα

)
− J0

(
isα/2

2
√

Dα

)
Y0

(
− isα/2√

Dα

)) , (43)

and a constant c2 in the form of:

c2 = −
Ub J0

(
isα/2

2
√

Dα

)
s
(

J0

(
isα/2√

Dα

)
Y0

(
− isα/2

2
√

Dα

)
− J0

(
isα/2

2
√

Dα

)
Y0

(
− isα/2√

Dα

)) . (44)

Obtaining the original U(r, t) via analytical transformations is problematic, and therefore,
this task will be realized in the next section using the Gaver–Wynn–Rho algorithm [21–23].

4. Numerical Examples

The numerical results presented in the following section assume the following values
for the parameters of the initial boundary value problem (18)–(21): Ub = 1, Dα = 1, t ∈ [0, 1],
α ∈ {0.25, 0.5, 0.75, 1}. Numerical simulations were performed for seventeen mesh variants,
which adopted (∆r, ∆t) ∈

{
1

50 , 1
100 , 1

200 , 1
400

}
×
{

1
50 , 1

100 , 1
200 , 1

400

}
∪
{(

1
1600 , 1

1600

)}
.

The figures shown below illustrate the results of numerical calculations, which as-
sumed the following values of grid steps: ∆r = 1

100 and ∆t = 1
400 . This choice provides a

compromise between good readability of the graphs and accuracy of the presented results.
Figures 1–4 show the solutions of the subdiffusion Equation (18) depending on the

radius r at four different time instants. They clearly demonstrate the nature of the modeled
phenomenon. For very early time instants just after the initiation of the process t � 1,
the solution obtained for α = 0.25 reaches the largest values. The disproportion between
the solution for α = 0.25 and α = 1 decreases with the increase of time, and this results
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directly from the relation (1). Figure 4 shows that for t = 1, the solution obtained for α = 1
takes the largest values.

Figures 5–8, present the axial symmetry of solution of the subdiffusion Equation (10)
in the Cartesian coordinate system. Figures 1 and 5, 2 and 6, etc. should be interpreted
together, as they have been created based on the solution determined for the same time
variable value. The figure with a higher number depicts the complete solution, while
the figure with a lower number presents a segment of the complete solution for a fixed
value of the variable φ. The values of the variable φ were determined as follows: φ = πi

36 ,
i = 1, 2, . . . , 72. The x, y coordinates were determined using the relationship x = r cos φ,
y = r sin φ.

Figure 1. Plot of U(r, 1/400) determined numerically for ∆r = 1/100 and ∆t = 1/400.

Figure 2. Plot of U(r, 1/100) determined numerically for ∆r = 1/100 and ∆t = 1/400.

Figure 3. Plot of U(r, 1/20) determined numerically for ∆r = 1/100 and ∆t = 1/400.
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Figure 4. Plot of U(r, 1) determined numerically for ∆r = 1/100 and ∆t = 1/400.

Figure 5. Plot of function U(x, y, t) determined numerically for t = 1/400.

Figure 6. As in Figure 5, but for t = 1/100.

Figure 7. As in Figure 5, but for t = 1/20.
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Figure 8. As in Figure 5, but for t = 1.

In order to validate the numerical method proposed in Section 3.1, the results obtained
with it were compared with those received by the inverse Laplace transform of the im-
age (41) using the Gaver–Wynn–Rho algorithm implemented in Wolfram Mathematica.
The comparison was made at twenty points (r, t) ∈ {0.6, 0.7, 0.8, 0.9} × {0.2, 0.4, 0.6, 0.8, 1},
which are common to all tested mesh variants. Tables 1–4 collect the average absolute
difference between the solution obtained via the proposed numerical method U(r, t) and
that obtained via the inverse Laplace transform UGWR(r, t). The analysis of all the tables
leads to the observation that as the steps of the grid ∆r and ∆t are reduced, U(r, t) then
converges to UGWR(r, t) for all tested values of the order α.

Table 1. The value of
〈
|U(r, t)−UGWR(r, t)|

〉
for α = 1.

PPPPPPP∆t
∆r 1

50
1

100
1

200
1

400
1

50 2.394 × 10−4 2.538 × 10−4 2.581 × 10−4 2.592 × 10−4

1
100 2.162 × 10−5 1.897 × 10−5 1.863 × 10−5 1.855 × 10−5

1
200 1.404 × 10−5 7.29 × 10−6 5.843 × 10−6 5.491 × 10−6

1
400 1.189 × 10−5 4.56 × 10−6 2.733 × 10−6 2.278 × 10−6

Table 2. The value of
〈
|U(r, t)−UGWR(r, t)|

〉
for α = 0.75.

PPPPPPP∆t
∆r 1

50
1

100
1

200
1

400
1

50 1.943 × 10−4 1.873 × 10−4 1.855 × 10−4 1.851 × 10−4

1
100 1.026 × 10−4 9.565 × 10−5 9.39 × 10−5 9.346 × 10−5

1
200 5.609 × 10−5 4.91 × 10−5 4.734 × 10−5 4.691 × 10−5

1
400 3.273 × 10−5 2.574 × 10−5 2.399 × 10−5 2.355 × 10−5

Table 3. The value of
〈
|U(r, t)−UGWR(r, t)|

〉
for α = 0.5.

PPPPPPP∆t
∆r 1

50
1

100
1

200
1

400
1

50 1.71 × 10−4 1.647 × 10−4 1.632 × 10−4 1.628 × 10−4

1
100 8.98 × 10−5 8.352 × 10−5 8.195 × 10−5 8.156 × 10−5

1
200 4.91 × 10−5 4.282 × 10−5 4.125 × 10−5 4.085 × 10−5

1
400 2.874 × 10−5 2.246 × 10−5 2.089 × 10−5 2.049 × 10−5
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Table 4. The value of
〈
|U(r, t)−UGWR(r, t)|

〉
for α = 0.25.

PPPPPPP∆t
∆r 1

50
1

100
1

200
1

400
1

50 9.345 × 10−5 8.755 × 10−5 8.607 × 10−5 8.57 × 10−5

1
100 5.052 × 10−5 4.461 × 10−5 4.313 × 10−5 4.276 × 10−5

1
200 2.917 × 10−5 2.326 × 10−5 2.178 × 10−5 2.141 × 10−5

1
400 1.852 × 10−5 1.261 × 10−5 1.113 × 10−5 1.076 × 10−5

5. Convergence Analysis

The order of convergence of the proposed numerical scheme was estimated using
EOC (experimental order of the convergence) and calculated as follows [37]:

EOC = log2

〈
|U

1
1600 , 1

1600
i,j −U∆t,∆r

i,j |
〉

〈
|U

1
1600 , 1

1600
i,j −U∆t/2,∆r/2

i,j |
〉 = log2

(
∆U∆t,∆r

∆U∆t/2,∆r/2

)
, (45)

where by U∆t,∆r
i,j denoted the numerical solution of the considered equation at nodal points

common to all considered meshes ( 1
2 + i

50 , j
50 ) for i = 0, ..., 25, j = 0, ..., 50, with time step

∆t ∈
{

1
50 , 1

100 , 1
200

}
and spatial step ∆r ∈

{
1

50 , 1
100 , 1

200

}
. The reference numerical solution

obtained under the fine mesh is denoted by U
1

1600 , 1
1600

i,j . We use the Formula (45) only when the
closed analytical solution is not available. The calculation results shown in Tables 5 and 6
indicate that the order of convergence of the proposed method is approximately equal
to one.

Table 5. Convergence order of the proposed numerical scheme for α ∈ {1, 0.75}.

α = 1 α = 0.75

n m ∆t ∆r ∆U∆t,∆r EOC ∆U∆t,∆r EOC

50 25 1
50

1
50 4.721 × 10−3 - 2.759 × 10−3 -

100 50 1
100

1
100 1.781 × 10−3 1.406 6.509 × 10−4 2.084

200 100 1
200

1
200 7.416 × 10−4 1.264 2.857 × 10−4 1.188

400 200 1
400

1
400 2.939 × 10−4 1.3353 1.231 × 10−4 1.215

Table 6. Convergence order of the proposed numerical scheme for α ∈ {0.5, 0.25}.

α = 0.5 α = 0.25

n m ∆t ∆r ∆U∆t,∆r EOC ∆U∆t,∆r EOC

50 25 1
50

1
50 1.15 × 10−3 - 2.836 × 10−4 -

100 50 1
100

1
100 1.788 × 10−4 2.684 7.505 × 10−5 1.918

200 100 1
200

1
200 1.117 × 10−4 0.679 4.03 × 10−5 0.897

400 200 1
400

1
400 4.913 × 10−5 1.186 1.715 × 10−5 1.233

The results presented at the end of the last section clearly show that the solutions
obtained with the Gaver–Wynn–Rho algorithm are more accurate than those obtained
with the generalized Crank–Nicolson method. Thus, we can use the following formula to
estimate the experimental order of convergence:
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EOC = log2

〈
|UGWR

i,j −U∆t,∆r
i,j |

〉
〈
|UGWR

i,j −U∆t/2,∆r/2
i,j |

〉 = log2

(
∆U∆t,∆r

∆U∆t/2,∆r/2

)
, (46)

where UGWR
i,j is a good approximation of the exact solution at the corresponding grid nodes.

The contents of Tables 7 and 8 clearly show that the experimental order of convergence
tends to zero very quickly (except for α = 1, where the observed trend is slower) as the
time and spatial step of the mesh decreases. These results are a direct consequence of the
fact that the solution obtained with the Gaver–Wynn–Rho algorithm is more accurate than
the reference numerical solution obtained for the steps ∆r = ∆t = 1

1600 .

Table 7. Convergence order of the proposed numerical scheme for α ∈ {1, 0.75}.

α = 1 α = 0.75

n m ∆t ∆r ∆U∆t,∆r EOC ∆U∆t,∆r EOC

50 25 1
50

1
50 2.394 × 10−4 - 1.943 × 10−4 -

100 50 1
100

1
100 1.897 × 10−5 3.658 9.565 × 10−5 1.022

200 100 1
200

1
200 5.843 × 10−6 1.699 4.734 × 10−5 1.015

400 200 1
400

1
400 2.278 × 10−6 1.359 2.355 × 10−5 1.007

Table 8. Convergence order of the proposed numerical scheme for α ∈ {0.5, 0.25}.

α = 0.5 α = 0.25

n m ∆t ∆r ∆U∆t,∆r EOC ∆U∆t,∆r EOC

50 25 1
50

1
50 1.71 × 10−4 - 9.345 × 10−5 -

100 50 1
100

1
100 8.352 × 10−5 1.034 4.461 × 10−5 1.067

200 100 1
200

1
200 4.125 × 10−5 1.018 2.178 × 10−5 1.034

400 200 1
400

1
400 2.049 × 10−5 1.009 1.076 × 10−5 1.017

6. Conclusions

The method proposed in the article is a generalization of the fractional Crank–Nicolson
method to a two-dimensional subdiffusion equation in the polar coordinate system, taking
into account the assumed symmetry of the area and boundary conditions. To validate the
method, the obtained results were compared with those received using the semi-analytical
approach, where the analytical solution in the Laplace transform domain was numerically
inverted. It was observed that the method based on the discretization of the integro-
differential equation generates solutions that converge to those obtained by the Gaver–
Wynn–Rho algorithm. As the time and space steps are decreased, the average absolute
difference between the solutions decreases. The fully numerical approach seems to be
better, despite the lower accuracy of the generated solutions, due to the greater universality
of the method. In the semi-analytical approach, each change in the boundary or initial
conditions results in the need to determine a new solution, which is time consuming and,
in some cases, problematic.

In the schedule of further research, it is planned to further study the convergence
analysis of the proposed scheme and reduce its computational costs.
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7. Kosztołowicz, T.; Dworecki, K.; Mrówczyński, S. Measuring subdiffusion parameters. Phys. Rev. E 2005, 71, 041105. [CrossRef]
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