

 symmetry-15-01635

symmetry-15-01635

Symmetry 2023, 15(9), 1635; doi:10.3390/sym15091635

Article

Development of a Higher-Order 𝒜-Stable Block Approach with Symmetric Hybrid Points and an Adaptive Step-Size Strategy for Integrating Differential Systems Efficiently

Rajat Singla 1,2,†,‡, Gurjinder Singh 1,‡, Higinio Ramos 3,4,* and Vinay Kanwar 5

1

Department of Mathematics, I. K. Gujral Punjab Technical University Jalandhar, Main Campus, Kapurthala 144603, Punjab, India

2

Department of Mathematics, Akal University, Raman Road, Talwandi Sabo 151302, Punjab, India

3

Scientific Computing Group, Universidad de Salamanca, Plaza de la Merced, 37008 Salamanca, Spain

4

Department of Mathematics, Escuela Politécnica Superior de Zamora, Campus Viriato, 49022 Zamora, Spain

5

University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh 160025, Chandigarh, India

*

Correspondence: higra@usal.es

†

Current address: Department of Engineering, Plaksha University, Alpha City, Sector-101, Mohali 140306, Punjab, India.

‡

These authors contributed equally to this work.

Citation: Singla, R.; Singh, G.; Ramos, H.; Kanwar, V. Development of a Higher-Order 𝒜-Stable Block Approach with Symmetric Hybrid Points and an Adaptive Step-Size Strategy for Integrating Differential Systems Efficiently. Symmetry 2023, 15, 1635. https://doi.org/10.3390/sym15091635

Academic Editor: Serkan Araci

Received: 27 July 2023 / Revised: 18 August 2023 / Accepted: 21 August 2023 / Published: 24 August 2023

Abstract

:

This article introduces a computational hybrid one-step technique designed for solving initial value differential systems of a first order, which utilizes second derivative function evaluations. The method incorporates three intra-step symmetric points that are calculated to provide an optimum version of the suggested scheme. By combining the hybrid and block methodologies, an efficient numerical method is achieved. The hybrid nature of the algorithm determines that the first Dahlquist barrier is overcome, ensuring its effectiveness. The proposed technique exhibits an eighth order of convergence and demonstrates A -stability characteristics, making it particularly well suited for handling stiff problems. Additionally, an adjustable step size variant of the algorithm is developed using an embedded-type technique. Through numerical experiments, it is shown that the suggested approach outperforms some other well-known methods with similar properties when applied to initial-value ordinary differential problems.

Keywords:

ODEs; initial-value problems; hybrid methods; adaptive step size; 𝒜-stability; optimization strategy

MSC:

65LXX; 65L04; 65L05; 65L06; 65L20

1. Introduction

In this article, our aim is to construct an efficient algorithm for integrating initial-value differential problems given by

 z ′ (x) = f (x , z) ; z (x 0) = z 0 ,

(1)

with x ∈ [x 0 , x N] , z : [x 0 , x N] → R m , f : [x 0 , x N] × R m → R m , assuming that all prerequisites for the existence of a unique solution are fulfilled.

Differential equations are used to model continuous phenomena that frequently occur in real-world situations. Unfortunately, very few of such equations can be tackled analytically. In this scenario, usually the problem of interest is dealt with numerically, that is, an approximate solution is obtained on a discrete set of points. The classes of Runge–Kutta and linear multi-steps techniques have usually been to obtain reliable approximations of the true solution of (1). For more details, one can see the monographs written by Butcher [1], Hairer [2,3], Lambert [4], Brugnano [5], Rosser [6] and Milne [7]. In Matlab and Mathematica, many ODE solvers are incorporated with the purpose of carrying out the task efficiently. For a detailed description of the codes, one can see the references by Shampine et al. [8,9] and Dormand and Prince [10]. Some of these built-in codes are specifically designed for solving stiff and non-stiff systems, for instance, the ODE23s solver is an integrated function explicitly crafted to manage stiff systems, as noted by Shampine et al. [11]. It excels particularly when dealing with coarse tolerances. This solver relies on an adapted Rosenbrock approach of a second order, employing a variable step size methodology through a blend of precise second and third-order formulas, effectively estimating the solution. The development of efficient algorithms with good stability characteristics is a major problem of interest in the numerical analysis of differential systems.

The first Dahlquist’s barrier, as is well known, limits the order that can be achieved in the class of zero-stable linear multi-step methods. Dahlquist established that the order of accuracy, say p, of a linear m-step method is as follows:

 p ≤ m + 1 , when m is odd , p ≤ m + 2 , when m is even .

To overcome the limitations of linear multi-step methods, numerous researchers have proposed hybrid approaches which include information from the solution at off-step points within the required interval of interest. These hybrid methods have also been referred to as linear multi-step methods of a modified type [1]. For a more comprehensive understanding of these techniques, Lambert’s book [4] serves as a valuable resource. Block methods were initially designed to obtain starting guesses for implicit multi-step methods, but they have evolved to be used in general-purpose codes [12]. These block methods aim to provide the approximate solution at various grid points at once (see [13]). For an extensive list of references on these methods, interested readers may refer to Lambert’s book and Brugnano’s work [4,5].

Here, we have used both approaches, namely hybrid and block, to develop a new method using interpolation and collocation techniques. An optimized version of the method can be obtained by following an appropriate optimization strategy. The obtained algorithm can be considered an extended version of the one presented in [14]. Additionally, the technique is devised in an adaptive step size version, employing an embedded-type technique.

The article’s content is organized into the following sections: Section 2 contains the derivation of the new algorithm. In Section 3, the primary characteristics of the proposed method are examined. The formulation of the new method in adaptive step size mode is elaborated on in Section 4. The performance of the proposed method, compared to some existing methods in the literature, is demonstrated through numerical experiments in Section 5. In Section 6, the efficiency curves have been plotted, which reflects the better performance of the proposed scheme. Finally, Section 7 shows some conclusions drawn from the study.

2. Construction of the Proposed Scheme

For the sake of simplicity, the method is derived for solving the differential system (1) with m = 1 , and then, by using the component-wise strategy it could be applied for solving problems with m > 1 . Let us consider a fixed step size h = x j + 1 − x j on a discrete grid with N + 1 points, x 0 < x 1 < ⋯ < x N . To derive the method, begin by considering the theoretical solution of (1) in the form of an interpolating polynomial expressed as:

 z (x) ≈ R (x) = ∑ i = 0 η 1 + η 2 − 1 Ψ i Θ i (x) , x ∈ [x j , x j + k] .

(2)

Consider η 1 as the numbers of interpolation points and η 2 as that of collocation points, satisfying 0 ≤ η 1 ≤ k and η 2 > 0 , with k denoting the number of steps in the block, with k > 0 . The terms Ψ i are unknown constants to be calculated, and Θ i (x) = (x − x j) i represents the polynomial basis functions. To introduce a hybrid nature to the proposed method, three values, r 1 , r 2 = 1 / 2 , and r 3 ∈ [0 , 1] , are chosen such that x j + r 1 = x j + r 1 · h , x j + r 2 = x j + r 2 · h , and x j + r 3 = x j + r 3 · h represent three intra-step points. The development of the present method involves specifying the parameters η 1 = 1 , η 2 = 8 , and k = 1 . The derivation of the method is detailed below:

	Step 1:

	
The unknown coefficients Ψ i in (2) are determined by imposing the following conditions:

	(i)

	
 z (x j) = R (x j)

	(ii)

	
 z ′ (x j + v) = R ′ (x j + v) , v = 0 , r 1 , r 2 , r 3 , 1

	(iii)

	
 z ″ (x j + v) = R ″ (x j + v) , v = 0 , r 2 , 1

Hence, a system of nine equations in nine unknowns Ψ i , i = 0 (1) 8 is obtained. This system can be solved by using a computer algebra system (CAS). After substituting the obtained Ψ i ′ s into (2), we get

 z (x) ≈ R (x) = λ (x) z j + h ∑ i = 0 1 μ i (x) f j + i + ∑ i = 1 3 μ r i (x) f j + r i + h 2 σ 0 (x) f j ′ + σ r 2 (x) f j + r 2 ′ + σ 1 (x) f j + 1 ′

(3)

where

 f j + m = f (x j + m , z j + m) , m = 0 , r 1 , r 2 , r 3 , 1 , f j + m ′ = f ′ (x j + m , z j + m) , m = 0 , r 2 , 1 and z j + m ≃ z (x j + m) .

	Step 2:

	
In order to obtain optimized values for r 1 and r 3 , we evaluate expression (3) at x = x j + 1 and x = x j + r 2 . This allows us to approximate the true solution at the final point and at the midpoint of the interval [x j , x j + 1] , denoted as x j + 1 and x j + r 2 , respectively, in terms of r 1 and r 3 , as shown in [15]. The evaluation of z (x j + 1) and z (x j + r 2) can be readily obtained through a CAS, although the resulting expressions can be quite lengthy, and so they are not presented here. To determine the appropriate values of the unknown parameters r 1 and r 3 , the following optimization strategy is employed:

	(i)

	
By expanding the formulas for z (x j + 1) and z (x j + r 2) using the Taylor series around x j , we obtain the local truncation errors of these formulas, which are given by

 L (z (x j + 1) , h) = (− 2 + r 1 (3 − 6 r 3) + 3 r 3) z (9) (x j) h 9 203 , 212 , 800 + O (h 10)

(4)

and

 L (z (x j + r 2) , h) = (− 23 + r 1 (87 − 384 r 3) + 87 r 3) z (9) (x j) h 9 26 , 011 , 238 , 400 + O (h 10) .

(5)

	(ii)

	
By setting the leading terms of the truncation errors in (4) and (5) equal to zero, we arrive at the following system of nonlinear equations:

 − 2 + r 1 (3 − 6 r 3) + 3 r 3 = 0 − 23 + r 1 (87 − 384 r 3) + 87 r 3 = 0 .

	(iii)

	
The implicit system of equations above represents two curves in the r 1 r 3 -plane, exhibiting symmetry with respect to the diagonal r 1 = r 3 . A unique solution satisfying the condition 0 < r 1 < r 2 < r 3 < 1 is obtained, and it is given by:

 r 1 = 1 6 3 − 3 ≃ 0.211325 , r 3 = 1 6 3 + 3 ≃ 0.788675 .

Substituting the optimal values of r 1 and r 3 in the expressions (4) and (5), we get

 L (z (x j + 1) , h) = − z (11) (x j) h 11 1 , 207 , 084 , 032 , 000 + O (h 12) ,

(6)

 L (z (x j + r 2) , h) = z (10) (x j) h 10 133 , 772 , 083 , 200 + O (h 11) .

(7)

Note that using the optimized values of r 1 and r 3 , we gain at least an order of accuracy in the formulas to approximate z j + 1 and z j + r 2 .

	Step 3:

	
Finally, we require approximations of the true solution at the remaining intra-step points, that is, at x = x j + r 1 , x j + r 3 . These are obtained by substituting the optimized values of r 1 , r 3 and x = x j + r 1 h , x j + r 3 h in the expression in (3). The proposed hybrid method provides four approximations of the true solution at x j + r 1 , x j + r 2 , x j + r 3 , x j + 1 . The coefficients of each of the formulas of the block method are listed in Table 1.

This proposed method is implicit in nature, requiring the solution of a system of four equations at each iteration. The commonly employed approach to solve this system is Newton’s method or its variants, as outlined in [12].

3. Method Analysis: Examining Its Characteristics

Now, we discuss some basic characteristics of the method presented in Table 1, as the order of accuracy, zero-stability, and the analysis of linear stability.

3.1. Order of Accuracy and Consistency

To address the convergence analysis, we rewrite the method whose coefficients are given in Table 1 as

 A Z J = h B F J + h 2 C G J ,

(8)

where A , B , and C are matrices of dimension 4 × 5 , given by

 A = − 1 1 0 0 0 − 1 0 1 0 0 − 1 0 0 1 0 − 1 0 0 0 1 ,

 B = 727 + 44 3 7560 108 + 3 840 − 4 − 36 + 23 3 945 36 − 23 3 280 − 43 + 44 3 7560 619 6720 9 70 + 9 3 128 16 105 9 70 − 9 3 128 − 11 6720 727 − 44 3 7560 36 + 23 3 280 4 36 + 23 3 945 108 − 3 840 − 43 − 44 3 7560 19 210 9 35 32 105 9 35 19 210 ,

 C = 62 + 9 3 22 , 680 0 1 162 0 8 − 9 3 22 , 680 67 26 , 880 0 − 1 96 0 1 8960 62 − 9 3 22 , 680 0 1 162 0 8 + 9 3 22 , 680 1 420 0 0 0 − 1 420

and

 Z J = (z j , z j + r 1 , z j + r 2 , z j + r 3 , z j + 1) T , F J = (f j , f j + r 1 , f j + r 2 , f j + r 3 , f j + 1) T , G J = (f j ′ , f j + r 1 ′ , f j + r 2 ′ , f j + r 3 ′ , f j + 1 ′) T .

The linear difference operator L ¯ related to the difference block given in (8) can be expressed as follows:

 L ¯ [z (x) , h] = ∑ j ρ ¯ j z (x + j h) − h ∑ j δ ¯ j z ′ (x + j h) − h 2 ∑ j γ ¯ j z ″ (x + j h) , j = 0 , r 1 , r 2 , r 3 , 1

(9)

where ρ ¯ j , δ ¯ j , and γ ¯ j are precisely the column vectors of matrices A , B and C. We make the assumption that z (x) is sufficiently differentiable to expand z (x + j h) , z ′ (x + j h) , and z ″ (x + j h) in Taylor series around x. In this way we get

 L ¯ [z (x) , h] = τ ¯ 0 z (x) + τ ¯ 1 h z ′ (x) + τ ¯ 2 h 2 z ″ (x) + ⋯ + τ ¯ p h p z (p) (x) + ⋯

(10)

Definition 1.

The linear operator in (9) and the method whose coefficients are given in Table 1 are regarded as being of order p when the condition stated in (10) produces

 τ ¯ 0 = τ ¯ 1 = τ ¯ 2 = ⋯ = τ ¯ p = 0 and τ ¯ p + 1 ≠ 0 .

We note that the τ ¯ i ′ s are vectors and τ ¯ p + 1 is known as the vector of error constants, being

 L ¯ [z (x) , h] = − τ ¯ p + 1 h p + 1 z (p + 1) (x) + O (h p + 2) .

Concerning the obtained method, it is τ ¯ 0 = τ ¯ 1 = τ ¯ 2 = ⋯ = τ ¯ 8 = 0 and

 τ ¯ 9 = − 1 1 , 881 , 169 , 920 3 , 0 , 1 1 , 881 , 169 , 920 3 , 0 T

with

 L ¯ [z (x) , h] = − 1 1 , 881 , 169 , 920 3 h 9 z 9 (x) + O (h 10) 1 133 , 772 , 083 , 200 h 10 z 10 (x) + O (h 11) 1 1 , 881 , 169 , 920 3 h 9 z 9 (x) + O (h 10) − 1 1 , 207 , 084 , 032 , 000 h 11 z 11 (x) + O (h 12) .

This indicates that the proposed method in Table 1 has order p = 8 . Since p ≥ 1 , this characteristic serves as a sufficient condition for ensuring the consistency of the corresponding block method.

3.2. Zero-Stability Analysis

The primary focus of this subsection lies in analyzing the stability of the difference Equation (8) when h tends to zero. In this case, the method in Table 1 reduces to z j + r 1 = z j , z j + r 2 = z j , z j + r 3 = z j , z j + 1 = z j , which can further be rewritten in a more convenient way as

 W ^ ζ = A ¯ W ^ ζ − 1 ,

(11)

where

 A ¯ = 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

and

 W ^ ζ = (z j + r 1 , z j + r 2 , z j + r 3 , z j + 1) T , W ^ ζ − 1 = (z j + r 1 − 1 , z j + r 2 − 1 , z j + r 3 − 1 , z j) T .

(12)

The first characteristic polynomial of the proposed block method is

 ρ (η) = d e t [I 4 η − A ¯] = η 3 (η − 1) .

(13)

Since the roots of the equation ρ (η) = 0 fulfill η j ≤ 1 , and the root with a modulus of one is simple, the proposed method is considered to be zero-stable according to [2].

3.3. Convergence

As per the Lax equivalence theorem, a method is deemed to be convergent if and only if it satisfies both consistency and zero-stability. In the preceding sections, we have demonstrated the consistency and zero-stability of the newly developed method, leading to the conclusion that the method presented in Table 1 is convergent.

3.4. Linear Stability Analysis

The notion of linear stability differs from zero stability since zero stability analysis involves considering the step size h → 0 . In practical applications, we always work with finite step sizes, i.e., h > 0 .

Let us consider the well-known Dahlquist’s test equation:

 z ′ (x) = γ z (x) , R e (γ) < 0 .

(14)

The theoretical solution to this problem is represented by z (x) = e γ x , exhibiting a tendency to approach zero as x approaches infinity. It is anticipated that when employing the proposed method to solve the test problem (14), the resulting numerical solution will exhibit a similar behavior to the analytical solution. To ascertain the region in which the numerical method reproduces the true behavior of the test problem’s solutions, we apply the proposed method to the problem described in (14), thereby obtaining a system of equations.

 M W ^ ζ = N W ^ ζ − 1

(15)

where

 M = B 11 B 12 B 21 B 22

with

 B 11 = 840 − 108 + 3 H 840 − 864 + 552 3 − 35 H H 5670 − 9 64 + 35 3 H 4480 1 − 16 H 105 + H 2 96 ,

 B 12 = − 36 + 23 3 H 280 H − 3 89 + 3 + 19 + 3 H 22 , 680 1 + 3 − 576 + 315 3 H 4480 (44 − 3 H) H 26 , 880 ,

 B 21 = − 36 + 23 3 H 280 − H 864 + 552 3 + 35 H 5670 − 9 H 35 − 32 H 105 ,

 B 22 = 840 + − 108 + 3 H 840 H 129 + 132 3 − 8 H − 9 3 H 22 , 680 − 9 H 35 (420 + (− 38 + H) H) 420

and

 N = 0 0 0 22 , 680 + H 2181 + 132 3 + 62 H + 9 3 H 22 , 680 0 0 0 26 , 880 + H (2476 + 67 H) 26 , 880 0 0 0 22 , 680 + H 2181 − 132 3 + 62 − 9 3 H 22 , 680 0 0 0 (420 + H (38 + H)) 420 ,

with H = γ h and W ^ ζ , W ^ ζ − 1 as in (12).

In order to understand the stability characteristics of the proposed hybrid block method, (15) is rewritten as

 W ^ ζ = G (H) W ^ ζ − 1

(16)

where G (H) = M − 1 N is known as the stability matrix. The stability properties of the derived method rely on evaluating the magnitude of the eigenvalues of the stability matrix, with particular emphasis on the spectral radius, denoted as ρ [G (H)] . The region of absolute stability, denoted as S, is defined as explained in [3].

 S = { H ∈ C : | ρ [G (H)] | < 1 } .

If the region of absolute stability contains the entire left-half complex plane, i.e., C − ⊆ S , then the method is considered to be A -stable. The spectral radius of the stability matrix G (H) is given by

 ρ [G (H)] = R (H) S (H) ,

(17)

where

 R (H) = 483 , 840 + 241 , 920 H + 55 , 440 H 2 + 7560 H 3 + 660 H 4 + 36 H 5 + H 6 , S (H) = 483 , 840 − 241 , 920 H + 55 , 440 H 2 − 7560 H 3 + 660 H 4 − 36 H 5 + H 6 .

The absolute value of the spectral radius given in (17) is less than unity on the left-half complex plane. This establishes the conclusion that the method whose coefficients are given in Table 1 is A -stable. Hence, the interval of absolute stability for the proposed method is (− ∞ , 0) .

4. Adaptive Step-Size Formulation

The proposed method (8) can be transformed into an adaptive step-size algorithm by adopting a procedure similar to the one described in [11]. This procedure involves executing two approaches of different orders, denoted as p and q, with p > q , simultaneously. The combination of formulas involves using the lower-order formula to estimate the local error at each integration step, while the higher-order method advances the solution. The careful selection of this pair is crucial. To maintain the computational cost at the same level, the formula of the lower order is chosen in a manner that it does not need new function evaluations. In this way, there will be no increase in the computational cost in terms of the number of function evaluations.

The detailed procedure is as follows:

In the present case, the following implicit block formula of a lower order (q = 7) with local truncation error L T E = − 19 z (8) (x j) h 8 304 , 819 , 200 + O (h 9) is considered

 z j + 1 * = z j + h 19 105 f j + 36 − 19 3 140 f j + r 1 + 32 105 f j + r 2 + 36 + 19 3 140 f j + r 3 + h 2 5 504 f j ′ − 19 315 f j + r 2 ′ + 13 2520 f j + 1 ′ .

The considered lower-order formula is firstly used to compute the approximate solution of the system at the final point of the block interval, x j + 1 , denoted as z j + 1 * . It is worth noting that this computation will not involve any additional computational efforts concerning new function evaluations. We have established that the local error L T E 1 obtained for the approximation z j + 1 * is

 L T E 1 = z (x j + h) − z j + 1 * = O (h q + 1)

(18)

where z (x) represents the continuous solution of the problem.

Secondly, the solution of the problem is also approximated at the same block interval with the proposed higher-order block method (p = 8) of interest. The obtained numerical solution at the final point is denoted as z j + 1 and the local error L T E 2 obtained in this case is

 L T E 2 = z (x j + h) − z j + 1 = O (h p + 1) .

(19)

In the next step, the unknown exact solution z (x j + h) can be eliminated by differencing Equation (18) from (19), and the obtained expression is denoted as E e s t

 E e s t = z j + 1 − z j + 1 * = L T E 1 + O (h p + 1) .

(20)

For sufficiently small values of h, the term O (h q + 1) dominates in expression (20), hence it gets the computable estimate of the local error of the lower-order formula. The advancing of the integration process can be carried out with the more accurate available higher-order solution z j + 1 . Therefore, it can be said that the procedure uses the lower-order formula to estimate the local error at each step of the integration, while the higher-order method advances the computation.

This local error estimate E e s t helps in predicting the suitable step size for the forthcoming block. The solver will change the step size from h o l d to h n e w until the magnitude of the local error estimate E e s t is less than the predefined user tolerance T o l . The value of new step size is given by

 h n e w = ξ h o l d T O L | | E s t | | 1 / (q + 1) ,

(21)

where q denotes the order of the lower-order formula (q = 7) and the introduced ξ represents a safety factor lying in (0 , 1) to avoid the failure of the integration steps.

To initiate the strategy, an initial step size h i n i is needed, which can be selected using existing techniques from the literature (refer to [9,16]), or simply by choosing a very small starting step size as described in Sedgwick [17]. Subsequently, the algorithm will adjust this value if required, based on the chosen step size modification strategy. The entire process yields an embedded-type approach, which can be summarized in the following steps:

	
Firstly, assume the step size h = h i n i and solve the IVP (1) numerically, using the developed method with that step size and denote the approximate solution as z j + 1 .

	
Secondly, use the lower-order formula to obtain a different approximate solution z j + 1 * .

	
As a next step, obtain the local error estimate E e s t by considering the difference of the obtained approximate solutions in Step 1 and Step 2, which is defined as E e s t = z j + 1 − z j + 1 * .

	
Here, the user has to predefine the tolerance level T o l such that

	(i)

	
If | | E e s t | | ≤ T o l then the new step size can be taken as h n e w = 2 × h o l d which makes the computation more efficient and it will reach the final stage in fewer steps and keep the obtained values and proceed the computations.

	(ii)

	
If | | E e s t | | > T o l , then the current step size is revised to new step size, as in (21), until it reaches | | E e s t | | ≤ T o l and carries out the computations using the new step size.

5. Numerical Experimentation

This section focuses on the application of the adaptive step size version of the algorithm presented in (8) to various well-known problems in the literature. Some of these differential systems model different chemical reactions, where certain variables undergo rapid changes while others vary slowly, indicating stiffness. The abbreviations presented in the tables are identified as follows:

	(i)

	
 h i n i (initial step size): This denotes the initial step size used with the variable step-size algorithm for conducting the integration procedure. The initial step size in adaptive step-size solvers is crucial, as it sets the starting point for the dynamic adjustments. In this paper, we conduct numerical experiments employing identical initial step sizes for all solvers.

	(ii)

	
TOL (tolerance): This represents the error tolerance set by the user, signifying the predetermined tolerance of error for numerical integration using the chosen step size. Error tolerance is a key parameter in adaptive step-size solvers for numerical integration of differential equations. It defines the acceptable level of error between the numerical solution and the true solution of the differential equation. Adaptive solvers adjust their step sizes dynamically to ensure that the computed solution remains within this error tolerance. Likewise, in this context, we conduct experiments with all solvers, maintaining the same error tolerance.

	(iii)

	
MaxErr (maximum error): This refers to the highest magnitude of error observed among all the absolute errors computed for the numerical solution z k j at the calculated grid points.

 MaxErr = max 1 ≤ k ≤ m { max 0 ≤ j ≤ N { | z k (x j) − z k j | } } ,

and Δ z k (maximum absolute errors in computing the numerical solution z k j on the grid points) is given by

 Δ z k = max 0 ≤ j ≤ N { | z k (x j) − z k j | } ,

where N + 1 is the number of grid points, z k (x j) and z k j represent the exact value and approximate k t h -component of the solution of an m-system at the point x j

	(iv)

	
N (no. of steps): In this context, it indicates the count of integration steps executed by the solver to reach the final step of the interval.

	(v)

	
FEVALs (number of function evaluations): Here, this represents the overall count of function evaluations (including derivatives) performed by the solver to reach the final integration step.

	(vi)

	
 C t i m e (computational time): It refers to the CPU time in seconds. The computational time taken by a solver to integrate a differential equation numerically is influenced by algorithm complexity, problem characteristics, step size, hardware resources, parallelization, and various other factors. Choosing an appropriate algorithm, adjusting parameters wisely, and utilizing available hardware effectively can help balance accuracy and computational efficiency.

	(vii)

	
J.Eval (Jacobi evaluations): It denotes the total count of Jacobian evaluations taken by the solver throughout the numerical integration. In the context of numerical methods for solving ordinary differential equations (ODEs), particularly implicit methods or methods that involve solving systems of equations, “Jacobi evaluations” refer to the number of times the Jacobian matrix is computed and evaluated during the integration process. The Jacobian matrix captures the partial derivatives of the system of equations with respect to the variables involved. It plays a crucial role in implicit methods where a system of equations is solved at each integration step.

The following well-studied methods were used for comparison purposes:

	
Lob-IIIC: This is a Runge–Kutta implicit approach, utilizing a Lobatto quadrature technique. Specifically, it is a five-stage eighth-order method of Lobatto type. To facilitate adaptive step size integration, the same approach is adapted using the strategy outlined in Section 4. In the adaptive step-size formulation, a three-stage Lobatto-type method is employed as a lower-order approach. This lower-order method necessitates eight function evaluations at each integration step.

	
RKGauss: This is a ‘Gaussian quadrature’-based implicit Runge–Kutta method following an A -stable characteristic. Here, the method is also formulated in a variable step-size mode using the same strategy. In this approach, the lower-order method used employs the same function evaluations as in the main method. This method evaluates six functions at each integration step. The method chosen is a five-stage method of order ten [1].

	
RADAU: The solver utilized in the experiments is designed with variable orders (1,5,9,13) and incorporates step-size control. It uses implicit Runge–Kutta approaches, specifically Radau–IIa. In the experiments, we employed the Matlab code provided by Hairer. The code can be found in the Matlab Stiff package at http://www.unige.ch/~hairer/software.html (accessed on 10 July 2023).

	
EMOHB: This refers to the new hybrid scheme in (8), incorporating the variable step-size strategy elucidated in Section 4. As the method is implicit, solving a system of equations is required at each iteration. The code for this method has been formulated using Mathematica. In order to tackle the resulting algebraic systems, the FindRoot command was utilized.

Remark 1.

Both solvers, that is, RADAU and the new scheme, change the step size using different strategies. RADAU considers both variable-step and variable-order methods, while the proposed scheme, RKGauss, and Lob-IIIC methods have been formulated in variable step-size versions, following the technique outlined in Section 4. We considered T O L = A b s T O L = R e l T O L , where A b s T O L and R e l T O L represent the abbreviations for absolute error tolerance and relative error tolerance, respectively. RADAU utilizes A b s T O L and R e l T O L , while the hybrid scheme in Table 1 uses T O L to get an estimate of the error on each iteration. For the implementation, we used MATLAB R2009b for the RADAU solver, while the derived method, Lob-IIIC and RKGauss codes were implemented in Wolfram Mathematicaversion 11.0.1.0. The computations were performed on a laptop with a processor i3-4030U CPU @ 1.90 GHz, running on Windows 10.

5.1. The Oregonator

The origin of this stiff system can be traced back to the renowned Belousov–Zhabotinskii reaction. The problem is given by

 z 1 ′ (x) = a (z 2 (x) + z 1 (x) (1 − b z 1 (x) − z 2 (x))) z 2 ′ (x) = (z 3 (x) − (1 + z 1 (x)) z 2 (x)) / a z 3 ′ (x) = c (z 1 (x) − z 3 (x))

(22)

For the computation, the constants are assumed as follows: a = 77.27 , b = 8.375 × 10 − 6 , and c = 0.161 , with initial values z (0) = (1 , 2 , 3) T and integration interval [0 , 360] . The reference values at x N are as follows:

 z 1 (x N) = 0.1000814870318523 × 10 1 , z 2 (x N) = 0.1228178521549917 × 10 4 , z 3 (x N) = 0.1320554942846706 × 10 3 .

(23)

The problem is tackled numerically using two solvers: Lob-IIIC and EMOHB. A comparison of their results is presented in Table 2, carried out over the same number of steps and function evaluations. To ensure an equal number of steps, a varied initial step size h i n i and predefined tolerances T o l were employed. The data presented in Table 2 demonstrate the superior performance of the proposed algorithm in comparison to Lob-IIIC. The discrete solutions of the problem are depicted in Figure 1. Additionally, efficiency curves for this problem are plotted in Figure 2, further illustrating the improved accuracy and fewer Jacobian computations achieved by the new method.

5.2. The Robertson Chemistry Problem

We now turn our attention to a classical stiff problem from chemical sciences, which models the kinetics of an autocatalytic reaction [3]. This problem has been extensively studied by Cash [18,19] and has also been addressed in [14,20]. The problem is

 z 1 ′ (x) = − 0.04 z 1 (x) + 10 4 z 2 (x) z 3 (x) , z 1 (0) = 1 , z 2 ′ (x) = 0.04 z 1 (x) − 10 4 z 2 (x) z 3 (x) − 3 × 10 7 z 2 2 (x) , z 2 (0) = 0 , z 3 ′ (x) = 3 × 10 7 z 2 (x) 2 , z 3 (0) = 0 .

(24)

The numerical solution to the problem is computed over the integration interval [0 , 40] , following [18]. Here, the NDSolve Mathematica command incorporated with a 12th order Runge–Kutta implicit method has been used to compute the reference solutions at x N = 40 , which helps to compare the efficiency of proposed scheme in terms of errors.

 z 1 (40) = 0.71582706871940509022276063873209 , z 2 (40) = 9.185534764557763892160044740155 × 10 − 6 , z 3 (40) = 0.28416374574583035201334720122317 .

(25)

The computational data in Table 3 are presented considering different initial step sizes h i n i , tolerances T O L , which compares the proposed method to other solvers: RKGauss, RADAU. By examining these data, it becomes evident that the proposed method outperforms the other methods. The efficiency curves were plotted taking

 (h i n i , T O L) = (10 − a , 10 − (a + 4)) , a = 3 (1) 6 ,

which are represented in Figure 3.

5.3. The Brusselator System

Let us consider the “Brusselator system” [2], which has also been studied in previous works such as [14]. The problem is given by

 z 1 ′ (x) = L + z 1 2 (x) z 2 (x) − (M + 1) z 1 (x) , z 1 (0) = z 1 0 , z 2 ′ (x) = M z 1 (x) − z 1 2 (x) z 2 (x) , z 2 (0) = z 2 0 .

(26)

The positive real constants L and M are involved in the system [21]. The points (z 1 * , z 2 *) = (L , M / L) can be showed as the critical points of the system. The values for constants L and M are assumed to be L = 1 , M = 3 , with z 1 0 = 1.5 and z 2 0 = 3 for numerical purposes. The numerical integration is spanned over the interval [0 , 20] . The reference solution at x N = 20 was obtained using Mathematica by employing NDSolve with a 12th order Runge–Kutta implicit approach. Hence, the obtained values are

 z 1 (x N) = 0.498637071268347848635481287883 , z 2 (x N) = 4.596780349452011183183066998636 .

In the numerical experiments, we used the combinations

 (h i n i , T O L) = (10 − a , 10 − (a + 3)) , a = 1 , 2 , 3 .

The data presented in Table 4 indicate that the new method outperforms other methods. Figure 4 illustrates the plot of the obtained solution components z 1 j and z 2 j on [0,20], using T O L = 10 − 9 and h i n i = 10 − 7 . The adaptive step size scheme discussed in Section 4 demonstrates effectiveness with the proposed method, as larger step sizes are employed for smoother portions in the curves, effectively reducing computation time and the number of function evaluations.

5.4. A Mildly Stiff Linear System

As a next test problem, we consider a mildly stiff problem, which is a well-known classical system with a stiffness ratio 1:1000. The problem was also discussed in [13]. The problem composed of two first-order equations is

 z 1 ′ (x) = 998 z 1 (x) + 1998 z 2 (x) , z 1 (0) = 1 , z 2 ′ (x) = − 999 z 1 (x) − 1999 z 2 (x) , z 2 (0) = 1 .

(27)

The results are computed over the interval [0,10] taking (h i n i , T O L) = (10 − ξ , 10 − (ξ + 1)) , ξ = 2 , 3 , 4 . The exact solution for the given system, with decaying exponential components, is

 z 1 (x) = 4 e − x − 3 e − 1000 x , z 2 (x) = − 2 e − x + 3 e − 1000 x .

The numerical results in Table 5 reveal the good performance of the derived method compared with the considered solvers. The exact and discrete solutions are presented in Figure 5 on the time interval [0,10].

5.5. Jacobi Elliptic Functions

Next, we explore a well-known system associated with Jacobi elliptic functions s n , c n , and d n , which is commonly employed as a numerical test [22]. It is given by

 s n ′ (x) = c n (x) d n (x) , s n (0) = 0 , c n ′ (x) = − s n (x) d n (x) , c n (0) = 1 , d n ′ (x) = − m s n (x) c n (x) , d n (0) = 1 ,

(28)

with m = 1 2 . The exact solution can be expressed as follows:

 s n (x) = 2 π 1 2 K ∑ n = 0 ∞ q n + 1 2 1 − q 2 n + 1 sin ((2 n + 1) v) , c n (x) = 2 π 1 2 K ∑ n = 0 ∞ q n + 1 2 1 + q 2 n + 1 cos ((2 n + 1) v) , d n (x) = π 2 K + 2 π K ∑ n = 1 ∞ q n 1 + q 2 n cos (2 n v) .

(29)

The values of the parameters appearing in the analytical solution are

 q = e − π , v = π t 2 K , and K = ∫ 0 π 2 d θ 1 − 1 2 sin 2 θ ≈ 1.85 .

We solved this problem over the integration interval [0 , 50] . The computations were carried out for

 (h i n i , T O L) = (10 − a , 10 − (a + 3)) , a = 1 , 2 , 3 .

The collected data in Table 6 show the excellent performance of the proposed scheme.

5.6. Van der Pol System

The well-known Van der Pol system described in [23] is considered. The system is given by

 z 1 ′ (x) = z 2 (x) , z 1 (0) = 2 , z 2 ′ (x) = (1 − z 1 2 (x)) z 2 (x) − z 1 (x) ϵ , z 2 (0) = − 2 3 + 10 81 ϵ − 292 2187 ϵ 2 − 1814 19 , 683 ϵ 3 .

(30)

We have integrate this system on [0 , 0.55139] , using ϵ = 10 − 1 , which aligns with the approach in [23]. We have considered the combinations

 (h i n i , T O L) = (10 − a , 10 − (a + 3)) , a = 3 , 4 , 5 .

The reference solution for the problem

 z 1 (x N) = 1.563373944230092 , z 2 (x N) = − 1.000020831854273 ,

was provided using a 12th order Runge–Kutta implicit method. The data presented in Table 7 strongly support the excellent performance of the new scheme.

5.7. Test Problem

Finally, we have considered a challenging first-order differential equation given by

 z ′ (x) = − 20 z (x) (z (x) − 1) cos x , z (0) = 0.5 ,

(31)

whose exact solution is z (x) = 1 1 + e − 20 sin x . From the plot of the exact solution shown in Figure 6, one can guess that this problem is a demanding one to be solved numerically with solvers using a constant step size. We have considered h i n i = 10 − 4 with various tolerances T O L = 10 − k , k = 11 , 12 , 13 , 14 . We have compared the proposed method only with the solver RADAU. We have not considered the RKGauss and Lob-IIIC methods as they are not performing well for this problem, needing a high number of function evaluations to get acceptable accuracy. The data in Table 8 show the good performance of the method. Figure 6 presents the plot of the exact and discrete solutions for h i n i = 10 − 5 , T O L = 10 − 11 with the EMOHB approach.

6. About the Efficiency Curves

Here, we examine the efficiency curves that compare the performance of the new hybrid method (EMOHB) with the RADAU one, based on the maximum absolute errors (EMAX) versus the total number of function evaluations (FEvals). The curves presented in Figure 7 illustrate the comparison for problems Section 5.3, Section 5.4, Section 5.5, Section 5.6 and Section 5.7. Notably, we have excluded the plots for methods LOBIIIC and RKGauss, as the tabular data already indicate their higher number of function evaluations compared to the other methods under consideration. Upon analyzing the efficiency curves, it becomes evident that the new proposed method stands out as the most efficient approach for solving the type of problems considered.

7. Conclusions

This paper introduces an optimized hybrid technique specially crafted for the integration of first-order initial value problems (IVPs), employing three intra-step points. To heighten accuracy, the method integrates using second-order derivatives in its formulas. The approach’s genesis lies in a fusion of two techniques: the hybrid and block approaches. This hybrid nature enables the method to surmount the Dahlquist barriers, while the embedded block approach concurrently evaluates the numerical solution at diverse grid points, including off-step points, yielding computational efficiency. The hybrid point values are computed using an optimization strategy, culminating in an accurate scheme. Moreover, an enhanced iteration of the proposed approach is presented, incorporating an adaptive step size capability. This adaptive approach allows the method to dynamically adjust the step size as required. Numerical experiments are conducted to evaluate the new scheme’s performance, revealing its potential as a promising and efficient solution for the addressed problem.

Author Contributions

The proposed method was conceived and analyzed by R.S., G.S. and H.R., who also took charge of writing the main manuscript text. The experiment section and figure plotting were carried out by H.R. and V.K. Conceptualization, R.S., G.S. and H.R.; methodology, R.S., G.S. and H.R.; software, R.S., G.S. and H.R.; validation, R.S., G.S. and H.R.; formal analysis, R.S. and G.S.; investigation, H.R. and V.K.; resources, H.R.; data curation, V.K.; writing—original draft preparation, R.S. and G.S.; writing—review and editing, R.S., G.S. and H.R.; visualization, R.S., G.S. and H.R.; supervision, G.S., H.R. and V.K.; project administration, H.R. and V.K. All authors have read and agreed to the published version of the manuscript.

Funding

No specific grant from funding agencies in the public, commercial, or not-for-profit sectors was received for this research.

Data Availability Statement

The numerical data used to support the findings of this study are available from Rajat Singla upon request.

Acknowledgments

We would like to thank the anonymous reviewers for their constructive comments that have greatly contributed to improving the manuscript. Further, Rajat Singla would like to thank I.K. Gujral Punjab Technical University Jalandhar, Punajb (India), for providing research facilities for the present work.

Conflicts of Interest

The authors declare that they have no conflicts of interest in this section.

Abbreviations

The following abbreviations are used in this manuscript:

	IVP
	 Initial value problem

	ODEs
	 Ordinary differential systems

	TOL
	 Tolerance

	FEVAL’s
	 Number of fucntion evaluations

	 h i n i
	 Intial step size

	MaxErr
	 Maximum absolute errors along the integration interval

	 Δ z k
	 Maximum absolute errors in computing the numerical solution z k j along the integration interval

	N
	 Number of integration steps

	 C t i m e
	 CPU time in seconds

	J.Eval
	 Number of Jacobian evaluations

References

	

Butcher, J.C. Numerical Methods for Ordinary Differential Equations; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar]

	

Hairer, E.; Nörsett, S.P.; Wanner, G. Solving Ordinary Differential Equations-I; Springer: Berlin, Germany, 1993. [Google Scholar]

	

Hairer, E.; Wanner, G. Solving Ordinary Differential Equations-II; Springer: Berlin, Germany, 1996. [Google Scholar]

	

Lambert, J.D. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]

	

Brugnano, L.; Trigiante, D. Solving Differential Problems by Multi-Step Initial and Boundary Value Methods; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1998. [Google Scholar]

	

Rosser, J.B. A Runge–Kutta for all seasons. SIAM Rev. 1967, 9, 417–452. [Google Scholar] [CrossRef]

	

Milne, W.E. Numerical Solution of Differential Equations; John Wiley and Sons: New York, NY, USA, 1953. [Google Scholar]

	

Shampine, L.F.; Reichelt, M.W. The MATLAB ODE suite. SIAM J. Sci. Comput. 1997, 18, 1–22. [Google Scholar]

	

Shampine, L.F.; Gordon, M.K. Computer Solution of Ordinary Differential Equations: The Initial Value Problem; Freeman: San Francisco, CA, USA, 1975. [Google Scholar]

	

Dormand, J.R.; Prince, P.R. A family of embedded Runge–Kutta formuale. J. Comput. Appl. Math. 1980, 6, 19–26. [Google Scholar]

	

Shampine, L.F.; Gladwell, I.; Thompson, S. Solving ODEs with MATLAB; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]

	

Brugnano, L.; Trigiante, D. Block Implicit Methods for ODEs. In Recent Trends in Numerical Analysis; Trigiante, D., Ed.; Nova Science Publ. Inc.: New York, NY, USA, 2001; pp. 81–105. [Google Scholar]

	

Ramos, H.; Singh, G. A tenth order A–stable two–step hybrid block method for solving initial value problems of ODEs. Appl. Math. Comput. 2017, 310, 75–88. [Google Scholar] [CrossRef]

	

Singh, G.; Garg, A.; Kanwar, V.; Ramos, H. An efficient optimized adaptive step size hybrid block method for integrating differential systems. Appl. Math. Comput. 2019, 362, 124567. [Google Scholar] [CrossRef]

	

Singh, G.; Garg, A.; Singla, R.; Kanwar, V. A novel two-parameter class of optimized hybrid block methods for integrating differential systems numerically. Comput. Math. Methods 2021, 3, e1214. [Google Scholar] [CrossRef]

	

Watts, H.A. Starting step–size for an ODE solver. J. Comput. Appl. Math. 1983, 9, 177–191. [Google Scholar] [CrossRef]

	

Sedgwick, A.E. An Effective Variable Order Variable Step Adams Method; Deptartment of Computer Science, Reptort 53; University of Toronto: Toronto, ON, Canada, 1973. [Google Scholar]

	

Cash, J.R. Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM. J. Numer. Anal. 1981, 18, 21–36. [Google Scholar] [CrossRef]

	

Cash, J.R. On the integration of stiff systems of ODEs using extended backward differentiation formulae. Numer. Math. 1980, 34, 235–246. [Google Scholar] [CrossRef]

	

Ramos, H.; Singh, G. A note on variable step–size formulation of a Simpson’s–type second derivative block method for solving stiff systems. Appl. Math. Lett. 2017, 64, 101–107. [Google Scholar] [CrossRef]

	

Twizell, E.H.; Gumel, A.B.; Cao, Q. A second order scheme for Brusselator reaction diffusion system. J. Math. Chem. 1999, 26, 333–344. [Google Scholar] [CrossRef]

	

Glaser, A.; Rokhlin, V. A new class of highly accurate solvers for ordinary differential equations. J. Sci. Comput. 2009, 38, 368–399. [Google Scholar] [CrossRef]

	

Bras, M.; Izzo, G.; Jackiewicz, Z. Accurate implicit–explicit general linear methods with inherent Runge–Kutta stability. J. Sci. Comput. 2016, 70, 1105–1143. [Google Scholar] [CrossRef]

[image: Symmetry 15 01635 g001]

Figure 1. Discrete solutions of problem in Section 5.1 using EMOHB with h i n i = 10 − 2 , T O L = 10 − 3 .

Figure 1. Discrete solutions of problem in Section 5.1 using EMOHB with h i n i = 10 − 2 , T O L = 10 − 3 .

[image: Symmetry 15 01635 g001]

[image: Symmetry 15 01635 g002]

Figure 2. Efficiency curves for problem in Section 5.1.

Figure 2. Efficiency curves for problem in Section 5.1.

[image: Symmetry 15 01635 g002]

[image: Symmetry 15 01635 g003]

Figure 3. Efficiency curves for problem in Section 5.2.

Figure 3. Efficiency curves for problem in Section 5.2.

[image: Symmetry 15 01635 g003]

[image: Symmetry 15 01635 g004]

Figure 4. Plot of discrete solution components z 1 j and z 2 j of problem in Section 5.3, 1 ≤ j ≤ 20 with h i n i = 10 − 7 , T O L = 10 − 9 .

Figure 4. Plot of discrete solution components z 1 j and z 2 j of problem in Section 5.3, 1 ≤ j ≤ 20 with h i n i = 10 − 7 , T O L = 10 − 9 .

[image: Symmetry 15 01635 g004]

[image: Symmetry 15 01635 g005]

Figure 5. Exact and discrete solutions of problem in Section 5.4 using the proposed method EMOHB with h i n i = 10 − 6 , T O L = 10 − 10 . (a) Plot of solution z 1 (x) of problem in Section 5.4; (b) plot of solution z 2 (x) of problem in Section 5.4.

Figure 5. Exact and discrete solutions of problem in Section 5.4 using the proposed method EMOHB with h i n i = 10 − 6 , T O L = 10 − 10 . (a) Plot of solution z 1 (x) of problem in Section 5.4; (b) plot of solution z 2 (x) of problem in Section 5.4.

[image: Symmetry 15 01635 g005]

[image: Symmetry 15 01635 g006]

Figure 6. Plot of exact (blue line) and discrete (red dots) solutions of problem in Section 5.7 with h i n i = 10 − 5 , T O L = 10 − 11 .

Figure 6. Plot of exact (blue line) and discrete (red dots) solutions of problem in Section 5.7 with h i n i = 10 − 5 , T O L = 10 − 11 .

[image: Symmetry 15 01635 g006]

[image: Symmetry 15 01635 g007a][image: Symmetry 15 01635 g007b]

Figure 7. Efficiency curves. (a) Efficiency curves for problem in Section 5.3; (b) Efficiency curves for problem in Section 5.4; (c) Efficiency curves for problem in Section 5.5; (d) Efficiency curves for problem in Section 5.6; (e) Efficiency curves for problem in Section 5.7.

Figure 7. Efficiency curves. (a) Efficiency curves for problem in Section 5.3; (b) Efficiency curves for problem in Section 5.4; (c) Efficiency curves for problem in Section 5.5; (d) Efficiency curves for problem in Section 5.6; (e) Efficiency curves for problem in Section 5.7.

[image: Symmetry 15 01635 g007a][image: Symmetry 15 01635 g007b]

Table 1. Coefficients of the method.

Table 1. Coefficients of the method.

	z
	 λ
	 μ 0
	 μ r 1
	 μ r 2
	 μ r 3
	 μ 1
	 σ 0
	 σ r 2
	 σ 1

	 z j + r 1
	1
	 727 + 44 3 7560
	 108 + 3 840
	 − 4 − 36 + 23 3 945
	 36 − 23 3 280
	 − 43 + 44 3 7560
	 62 + 9 3 22 , 680
	 1 162
	 8 − 9 3 22 , 680

	 z j + r 2
	1
	 619 6720
	 9 70 + 9 3 128
	 16 105
	 9 70 − 9 3 128
	 − 11 6720
	 67 26 , 880
	 − 1 96
	 1 8960

	 z j + r 3
	1
	 727 − 44 3 7560
	 36 + 23 3 280
	 4 36 + 23 3 945
	 108 − 3 840
	 − 43 − 44 3 7560
	 62 − 9 3 22 , 680
	 1 162
	 8 + 9 3 22 , 680

	 z j + 1
	1
	 19 210
	 9 35
	 32 105
	 9 35
	 19 210
	 1 420
	0
	 − 1 420

Table 2. Data for problem in Section 5.1.

Table 2. Data for problem in Section 5.1.

	
N

	
FEVAL’s

	
Method

	
MaxErr

	
J.Eval

	
808

	
6464

	
Lob-IIIC

	
 5.22381 × 10 − 0

	
5652

	
EMOHB

	
 8.71751 × 10 − 10

	
4862

	
1712

	
13,696

	
Lob-IIIC

	
 2.12699 × 10 − 4

	
10,421

	
EMOHB

	
 6.32099 × 10 − 11

	
8874

	
1865

	
14,920

	
Lob-IIIC

	
 8.45584 × 10 − 5

	
11,082

	
EMOHB

	
 3.93356 × 10 − 11

	
9476

	
3852

	
30,816

	
Lob-IIIC

	
 8.09143 × 10 − 7

	
20,826

	
EMOHB

	
 2.04636 × 10 − 12

	
17,909

Table 3. Data for problem in Section 5.2.

Table 3. Data for problem in Section 5.2.

	
Method

	
 h ini

	
TOL

	
 Δ z 1

	
 Δ z 2

	
 Δ z 3

	
N

	
FEVALs

	
J.Eval

	
 C time

	
EMOHB

	
 10 − 10

	
 10 − 12

	
 1.5 × 10 − 17

	
 6.0 × 10 − 20

	
 1.5 × 10 − 17

	
49

	
392

	
225

	
1.17

	
 10 − 10

	
 10 − 13

	
 1.4 × 10 − 18

	
 2.0 × 10 − 21

	
 1.4 × 10 − 18

	
60

	
480

	
255

	
1.43

	
 10 − 10

	
 10 − 14

	
 6.4 × 10 − 18

	
 2.7 × 10 − 22

	
 6.4 × 10 − 18

	
75

	
600

	
260

	
1.32

	
RKGauss

	
 10 − 6

	
 10 − 9

	
 1.0 × 10 − 7

	
 4.1 × 10 − 12

	
 1.0 × 10 − 7

	
250

	
1500

	
1465

	
4.16

	
 10 − 6

	
 10 − 10

	
 3.5 × 10 − 8

	
 1.3 × 10 − 12

	
 3.5 × 10 − 8

	
712

	
4272

	
3951

	
12.82

	
RADAU

	
 10 − 6

	
 10 − 9

	
 5.1 × 10 − 10

	
 0.0 × 10 − 10

	
 5.1 × 10 − 10

	
55

	
467

	
43

	
0.5470

	
 10 − 6

	
 10 − 10

	
 2.4 × 10 − 12

	
 0.0 × 10 − 12

	
 2.4 × 10 − 12

	
53

	
736

	
28

	
0.6148

	
 10 − 10

	
 10 − 13

	
 1.7 × 10 − 13

	
 0.0 × 10 − 13

	
 1.7 × 10 − 13

	
102

	
1213

	
41

	
0.8941

	
 10 − 10

	
 10 − 14

	
 5.0 × 10 − 14

	
 0.1 × 10 − 16

	
 5.0 × 10 − 14

	
131

	
1437

	
43

	
0.7285

Table 4. Data for problem in Section 5.3.

Table 4. Data for problem in Section 5.3.

	
 h ini

	
TOL

	
Method

	
MaxErr

	
N

	
FEVALs

	
 10 − 1

	
 10 − 4

	
RADAU

	
 8.2435 × 10 − 6

	
113

	
957

	
RKGauss

	
 4.03571 × 10 − 5

	
64

	
384

	
EMOHB

	
 1.972285 × 10 − 7

	
36

	
288

	
 10 − 2

	
 10 − 5

	
RADAU

	
 1.8202 × 10 − 7

	
156

	
1296

	
RKGauss

	
 2.37942 × 10 − 5

	
101

	
606

	
EMOHB

	
 2.358920 × 10 − 8

	
45

	
360

	
 10 − 3

	
 10 − 6

	
RADAU

	
 4.0993 × 10 − 7

	
173

	
1692

	
RKGauss

	
 1.43751 × 10 − 5

	
197

	
1182

	
EMOHB

	
 1.53089 × 10 − 9

	
56

	
448

Table 5. Data for problem in Section 5.4.

Table 5. Data for problem in Section 5.4.

	
 h ini

	
TOL

	
Method

	
MaxErr

	
N

	
FEVALs

	
 10 − 2

	
 10 − 3

	
RADAU

	
 2.0618 × 10 − 5

	
24

	
110

	
RKGauss

	
 2.3902 × 10 − 4

	
22

	
132

	
EMOHB

	
 4.12974 × 10 − 6

	
12

	
96

	
 10 − 3

	
 10 − 4

	
RADAU

	
 1.8942 × 10 − 6

	
30

	
143

	
RKGauss

	
 1.0263 × 10 − 4

	
30

	
180

	
EMOHB

	
 9.46409 × 10 − 8

	
14

	
112

	
 10 − 4

	
 10 − 5

	
RADAU

	
 3.6773 × 10 − 7

	
35

	
173

	
RKGauss

	
 2.0540 × 10 − 5

	
52

	
312

	
EMOHB

	
 9.82063 × 10 − 9

	
16

	
128

Table 6. Data for problem in Section 5.5.

Table 6. Data for problem in Section 5.5.

	
 h ini

	
TOL

	
Method

	
MaxErr

	
N

	
FEVALs

	
 10 − 1

	
 10 − 4

	
RADAU

	
 1.0737 × 10 − 3

	
145

	
1115

	
RKGauss

	
 2.20187 × 10 − 3

	
89

	
534

	
EMOHB

	
 1.73727 × 10 − 6

	
42

	
336

	
 10 − 2

	
 10 − 5

	
RADAU

	
 2.6296 × 10 − 4

	
185

	
1323

	
RKGauss

	
 1.48977 × 10 − 3

	
145

	
870

	
EMOHB

	
 8.56278 × 10 − 8

	
56

	
448

	
 10 − 3

	
 10 − 6

	
RADAU

	
 2.7531 × 10 − 5

	
254

	
1764

	
RKGauss

	
 5.42132 × 10 − 4

	
326

	
1956

	
EMOHB

	
 2.41961 × 10 − 8

	
74

	
592

Table 7. Data for problem in Section 5.6.

Table 7. Data for problem in Section 5.6.

	
 h ini

	
TOL

	
Method

	
MaxErr

	
N

	
FEVALs

	
 10 − 3

	
 10 − 6

	
RADAU

	
 1.5397 × 10 − 6

	
13

	
119

	
RKGauss

	
 5.7954 × 10 − 6

	
13

	
78

	
EMOHB

	
 1.93659 × 10 − 9

	
4

	
32

	
 10 − 4

	
 10 − 7

	
RADAU

	
 1.8324 × 10 − 7

	
16

	
148

	
RKGauss

	
 2.4281 × 10 − 6

	
23

	
138

	
EMOHB

	
 6.75444 × 10 − 11

	
5

	
40

	
 10 − 5

	
 10 − 8

	
RADAU

	
 2.0754 × 10 − 8

	
18

	
154

	
RKGauss

	
 6.64973 × 10 − 7

	
56

	
336

	
EMOHB

	
 1.84577 × 10 − 11

	
8

	
48

Table 8. Data for problem in Section 5.7.

Table 8. Data for problem in Section 5.7.

	
TOL

	
Method

	
MaxErr

	
N

	
FEVALs

	
 10 − 11

	
RADAU

	
 4.6038 × 10 − 5

	
1651

	
35,131

	
EMOHB

	
 4.83376 × 10 − 6

	
876

	
7008

	
 10 − 12

	
RADAU

	
 2.7569 × 10 − 5

	
2067

	
42,622

	
EMOHB

	
 1.84514 × 10 − 7

	
1142

	
9136

	
 10 − 13

	
RADAU

	
 8.1137 × 10 − 6

	
2572

	
50,018

	
EMOHB

	
 9.48677 × 10 − 9

	
1499

	
11,992

	
 10 − 14

	
RADAU

	
 3.3542 × 10 − 7

	
2628

	
55,925

	
EMOHB

	
 1.36784 × 10 − 9

	
1971

	
15,768

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Check ACS Ref Order

Check CrossRef

media/file13.jpg
i

media/file4.png
Log1 0 [EMAX]

EMOHB

LOBIIIC

1 1 1 1 1 1 1 1 1 1 1 1 1 I 1
3.7 3.8 3.9 4.0
Log1p[J.Eval]

4.1

4.2

4.3

nav.xhtml

 symmetry-15-01635

 		
 symmetry-15-01635

media/file16.png
EMAX

1072

EMAX

10-12

1015

—e— EMOHB

—u— RADAU

200 250 300 350
FEvals

(d)

—e— EMOHB
—a=— RADAU
1 1 1 | 1 1 1 1 | 1 1 1 1 | 1
3000 4000 5000
FEvals
()
T T T T T T T T T
10_5 .
10_6 .
>
<
i
10_7 .
10_8 .
10_9 |
1 | 1 1 1 1 1 1 1
10000 20000

30000
FEvals

(e)

40000

media/file2.png
120000_
100000_
80000:
60000:
40000_

20000

56 160 150 260 5§b
(a) Plot of solution zy;

30000 |-
25000 |-

20000 |-

15000

10000

5000

300

1500
1000

500

350

50 100 150 200 250 300

(b) Plot of solution zy;

4

1y

50

! | | *
100 150 200 250

300 350

(c) Plot of solution z3;

350

media/file5.jpg
MaxErr

1078

10-11

101

—e— EMOHB

—— RKGAUSS

—+— RADAU
200 500 1000 2000

FEvals

media/file3.jpg
Log1o[EMAX]

-10]

37

38

39

a0
Logigld Evall

a3

media/file14.jpg

media/file1.jpg
(@) Plot of solution z);

(b) Plot of solution z,;

(¢) Plot of solution z3;
