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Abstract: Superconductivity in highly pressurized hydrides has become the primary direction for
the exploration of the fundamental upper limit of the superconducting transition temperature, Tc,
after Drozdov et al. (Nature 2015, 525, 73) discovered a superconducting state with Tc = 203 K
in highly compressed sulfur hydride. To date, several dozen high-temperature superconducting
polyhydrides have been discovered and, in addition, it was recently reported that highly compressed
titanium and scandium exhibit record-high Tc (up to 36 K). This exceeded the Tc = 9.2 K value of
niobium many times over, which was the record-high Tc ambient pressure metallic superconductor.
Here, we analyzed the experimental data for the recently discovered high-pressure superconductors
(which exhibit high transition temperatures within their classes): elemental titanium (Zhang et al.,
Nature Communications 2022; Liu et al., Phys. Rev. B 2022), TaH3 (He et al., Chinese Phys. Lett. 2023),
LaBeH8 (Song et al., Phys. Rev. Lett. 2023), black phosphorous (Li et al., Proc. Natl. Acad. Sci. 2018;
Jin et al., arXiv 2023), and violet (Wu et al., arXiv 2023) phosphorous to reveal the nonadiabaticity
strength constant Tθ

TF
(where Tθ is the Debye temperature, and TF the Fermi temperature) in these

superconductors. The analysis showed that the δ-phase of titanium and black phosphorous exhibits
Tθ
TF

scores that are nearly identical to those associated with A15 superconductors, while the studied
hydrides and violet phosphorous exhibit constants in the same ballpark as those of H3S and LaH10.

Keywords: hydrogen-rich superconductors; highly compressed superconductors; electron–phonon
coupling constant; Debye temperature; nonadiabaticity

1. Introduction

The discovery of near-room-temperature superconductivity in highly compressed
sulfur hydride by Drozdov et al. [1] presented a new era in superconductivity. This re-
search field represents one of the most fascinating scientific and technological explorations
in modern condensed-matter physics. In this area of research, advanced first-principles
calculations [2–11] are essential parts of the experimental quest for the discovery of new
hydrides phases [12–21], and both of these directions drive the development of new experi-
mental techniques with which to study highly pressurized materials [22–31].

From 2015 until now, several dozen high-temperature superconducting polyhydride
phases have been discovered and studied [1,12–21,24,32–45]. At the same time, high-
pressure studies of superconductivity and high-pressure material synthesis [46–48] in non-
hydrides (including cuprates [49–52]) have also progressed [53–62], including the observa-
tion of Tc > 26 K in highly compressed elemental titanium [63,64] and scandium [65,66],
and the discovery that Tonset

c
∼= 78 K [67,68] and Tzero

c
∼= 45 K [69] in La3Ni2O7.

First-principles calculations [12–21,70–79] are essential tools in the quest for room-
temperature superconductivity (they were used [76] to explain the experimental results [80]
for one of the most difficult-to-explain hydride cases, AlH3), and the primary calculated
parameter in these calculations is the transition temperature, Tc. In addition, another
difficult-to-explain hydride should be mentioned, which is LiPdHx [46]. This hydride
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was synthesized at high pressure in a bulk form [46]; however, as was predicted by the
first-principles calculations, the high transition temperature [81] was not confirmed by the
experiment [46].

Thus, the experiment [1,3,25] remains the final criterion. Therefore, the confirma-
tion of the predicted Tc in order to determine the other fundamental ground-state pa-
rameters, including the upper critical field, Bc2(0); the lower critical field, Bc1(0) [12,22];
the self-field critical current density, Jc(s f , T) [24,82–84]; the London penetration depth,
λ(0) [22,23,85,86]; the superconducting energy gap amplitude, ∆(0) [87–89]; and gap
symmetry [90,91]; is the task of the experiment and the data analysis.

Another complication in understanding the superconductivity of highly-pressurized
materials is the phenomenon of nonadiabaticity, which originates from the fact that the
Migdal–Eliashberg theory of the electron–phonon-mediated superconductivity [92,93] is
based on the primary assumption/postulate that the superconductor obeys the inequality:

Tθ � TF (1)

where Tθ is the Debye temperature and TF is the Fermi temperature. In other words,
Equation (1) implies that the superconductor exhibits fast electric charge carriers and
slow ions. This assumption simplifies the theoretical model of electron–phonon-mediated
superconductivity; however, Equation (1) is not satisfied for many unconventional super-
conductors [94–102] (which was first pointed out by Pietronero and co-workers [103–106])
and many highly compressed superconductors [91,101,107–109].

While the theoretical aspects of the nonadiabatic effects can be found elsewhere [11,94,
100,103–107], in practice, the strength of the nonadiabatic effects can be quantified via the
Tθ
TF

ratio [101,102], for which, in Ref. [101], three characteristic ranges were proposed:
Tθ
TF

< 0.025→ adiabatic superconductor;

0.025 . Tθ
TF

. 0.4→ moderately strong nonadiabatic superconductor;

0.4 < Tθ
TF
→ nonadiabatic superconductor.

(2)

It was found in Ref. [101], and confirmed in Ref. [91], that superconductors with
Tc > 10 K (from a dataset of 46 superconductors from all major superconductor families)
exhibit the Tθ

TF
ratio in the range 0.025 . Tθ

TF
. 0.4.

This is an interesting and theoretically unexplained empirical observation.
In this study, we further extended the empirical Tθ

TF
database by deriving several

fundamental parameters:

(1) the Debye temperature, Tθ ;
(2) the electron–phonon coupling constant, λe−ph;
(3) the ground-state coherence length, ξ(0);
(4) the Fermi temperature, TF;
(5) the nonadiabaticity strength constant, Tθ

TF
;

(6) and the ratio, Tc
TF

;

for five recently discovered highly compressed superconductors for which the reported
raw experimental data are enough to deduce the above-mentioned parameters. These
superconductors represent materials with high or record-high Tc in their families:

(1) elemental titanium, δ− Ti [63,64];
(2) TaH3 [21];
(3) LaBeH8 [110];
(4) black phosphorous [111–114];
(5) violet phosphorous [62].
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In the result, we derived the nonadiabaticity strength constant, Tθ
TF

, for these supercon-

ductors. Derived Tθ
TF

values confirmed the previously reported empirical observation [91,101]

that the superconductors with Tc > 10 K obey the condition 0.025 . Tθ
TF

. 0.4.

2. Utilized Models and Data Analysis Tools
2.1. Debye Temperature

Within electron–phonon phenomenology, the Debye temperature, Tθ , is a fundamental
parameters that determines the superconducting transition temperature, Tc [93,115–119]. Tθ

can be deduced as a free-fitting parameter from a fit of temperature-dependent resistance,
R(T), to the Bloch–Grüneisen (BG) equation [120–123]:

R(T) =
1

1
Rsat

+ 1

R0+A
(

T
Tθ

)5∫ Tθ
T

0
x5

(ex−1)(1−e−x)
dx

, (3)

where Rsat, R0, Tθ , and A are free-fitting parameters.

2.2. The Electron–Phonon Coupling Constant

From the deduced Tθ , the electron–phonon coupling constant, λe−ph, can be calculated
as the root of advanced McMillan equation [116–119]:

Tc =

(
1

1.45

)
× Tθ × e

−
(

1.04(1+λe−ph)

λe−ph−µ∗(1+0.62λe−ph)

)
× f1 × f ∗2 , (4)

where

f1 =

(
1 +

(
λe−ph

2.46(1 + 3.8µ∗)

)3/2
)1/3

, (5)

f ∗2 = 1 + (0.0241− 0.0735× µ∗)× λ2
e−ph, (6)

where µ∗ is the Coulomb pseudopotential parameter, which we assumed to be µ∗ = 0.13
(which is the typical value utilized in the first-principles calculation for many electron–
phonon-mediated superconductors [63,124]). In Equations (4)–(6), we defined the Tc by a
strict resistance criterion of R(T)

Rnorm
→ 0 , where Rnorm is the sample resistance at the onset of

the transition.

2.3. Ground-State Coherence Length

We used a model proposed by Baumgartner et al. [125–127] to fit the upper critical
field dataset, Bc2(T), and determine the ground-state coherence length ξ(0):

Bc2(T) = 1
0.693 ×

φ0
2πξ2(0) ×

((
1− T

Tc

)
− 0.153×

(
1− T

Tc

)2
− 0.152×

(
1− T

Tc

)4
)

, (7)

where φ0 = h
2e is the superconducting flux quantum, h = 6.626× 10−34 J · s is Planck

constant, e = 1.602× 10−19 C, and ξ(0) and Tc ≡ Tc(B = 0) are free fitting parameters.

2.4. The Fermi Temperature

The Fermi temperature, TF, can be calculated by using a simple expression of the
free-electron model [128,129]:

TF =
εF
kB

=

(
3π2n}3) 3

2

2me

(
1 + λe−ph

)
kB

(8)
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where me = 9.109× 10−31 kg is bare electron mass, } = 1.055×10−34 J · s is reduced
Planck constant, kB = 1.381× 10−23 m2 · kg · s−2 · K−1 is Boltzmann constant, and n is the
charge carrier density per volume (m−3). Equation (8) can be used if the Hall resistance
experiments are performed, and the charge carrier density, n, is established.

If Hall resistance measurements do not perform, then TF can be calculated using the
equation [58,59]:

TF =
π2me

8kB
×
(

1 + λe−ph

)
× ξ2(0)×

(
αkBTc

}

)2
(9)

where α = 2∆(0)
kB ·Tc

is the gap-to-transition temperature ratio. This parameter is the only
unknown parameter in Equation (9).

2.5. The Gap-to-Transition Temperature Ratio

To calculate the Fermi temperature using Equation (9), there is a need to know
α = 2∆(0)

kB ·Tc
. To determine α = 2∆(0)

kB ·Tc
, we utilized the following approach. Carbotte [124] col-

lected various parameters for 32 electron–phonon-mediated superconductors that exhibit
0.43 ≤ λe−ph ≤ 3.0 and 3.53 ≤ 2∆(0)

kB ·Tc
≤ 5.19. In Figure 1, we presented the dataset reported

by Carbotte in Table IV [124]. The dependence 2∆(0)
kB ·Tc

vs.λe−ph can be approximated using a
linear function (Figure 1) [130]:

2∆(0)
kBTc

= C + D× λe−ph, (10)

where C = 3.26± 0.06, and D = 0.74± 0.04.
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Figure 1. The gap-to-transition temperature ratio, 2·∆(0)
kB ·Tc

, vs. the electron–phonon coupling constant,
λe−ph, dataset reported by Carbotte in Table IV of Ref. [124]. A linear fit is shown by the pink line.
Positions for some representative superconductors and superconductors studied in this report (where
bP stands for black phosphorus and vP stands for violet phosphorus) are shown. The pink shadow
area indicates 95% confidence bands for the linear fit.

Insofar as λe−ph is known, the 2∆(0)
kB ·Tc

ratio can be estimated from Equation (10).
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3. Results
3.1. Highly Compressed Titanium

Zhang et al. [63] and Liu et al. [64] reported record-high Tc in the δ− Ti phase com-
pressed at megabar pressures. In Figure 2, we show the fit of the R(T) dataset measured by
Zhang et al. [63] for the ω− Ti phase compressed at P = 18GPa to Equation (3).

1 

Figure 2. Temperature-dependent resistance data, R(T), for compressed titanium (ω − Ti-phase
at P = 18 GPa) and data fit to Equation (3) (raw data reported by Zhang et al. [63]). Green balls
indicate the bounds for which R(T) data were used for the fit to Equation (3). (a) Fit to Debye
model: p = 5 ( f ixed), Tθ = (361± 1) K, Tc,0.25 = 2.1 K, λe−ph = 0.49, fit quality is 0.99988. (b) Fit
to Equation (3): p = 3.15± 0.03, Tω = (421± 2) K, Tc,0.25 = 2.1 K, fit quality is 0.99995. The pink
shadow areas in both panels show 95% confidence bands.

The deduced Debye temperature (Figure 2a) for ω − Ti-phase (P = 18 GPa) is
Tθ = 361± 1 K. This value is within the ballpark value for Tθ(298 K) = 380 K for un-
compressed titanium, which exhibits a α− Ti phase [131].

To calculate the electron–phonon coupling strength constant, λe−ph, using
Equations (4)–(6), we defined the superconducting transition temperature, Tc = 2.1 K, with
the R(T)

Rnorm
= 0.25 criterion. This criterion was chosen based on the lowest temperature at

which experimental R(T) data measuring at P = 18 GPa were reported by Zhang et al. [63].
The deduced value λe−ph = 0.49 is very close to the λe−ph = 0.43 of pure elemental alu-
minum (Figure 1, and Ref. [124]).

We also confirmed the power-law exponent n = 3.1 (reported by Zhang et al. [63])
for the temperature-dependent R(T). Zhang et al. [63] extracted this power-law exponent
from the simple power-law fit of R(T) at the temperature range of 3 K ≤ T ≤ 70 K:

R(T) = R0 + X× Tn, (11)

where R0, X, and n are free-fitting parameters. As we showed earlier [132], Equation (11)
does not always return correct n-values. The reliable approach is to fit the R(T) data to
Equation (3), where p is a free-fitting parameter. For the given case, our fit to Equation (3)
(Figure 2b) returns the same power-law exponent, p = 3.15± 0.03, as the one reported by
Zhang et al. [63].

In Figure 3, we show R(T) data measured by Zhang et al. [63] and Liu et al. [64] and the
results of data fitting to Equations (3)–(7) for the δ− Ti phase compressed at P = 154 GPa
(Figure 3a), P = 180 GPa (Figure 3b), P = 183 GPa (Figure 3c), and P = 245 GPa (Figure 3d).
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1 

Figure 3. Temperature-dependent resistance data, R(T), for compressed titanium (δ− Ti-phase) and
fit to the Debye model (Equation (3), p = 5 ( f ixed)). Raw data were reported by Zhang et al. [63]
(Panels (a,b,d)) and Liu et al. [64] (Panel (c)). Green balls indicate the bounds for which R(T) data
were used for the fit to Equation (3). Deduced parameters are (a) Tθ = (337± 1) K, Tc,0.02 = 22.1 K,
λe−ph = 1.14, fit quality is 0.99992. (b) Tθ = (347± 2) K, Tc,0.02 = 21.4 K, λe−ph = 1.10, fit quality is
0.9998. (c) Tθ = (496± 3) K, Tc,0.07 = 21.7 K, λe−ph = 0.91, fit quality is 0.9996. (d) Tθ = (455± 5) K,
Tc,0.01 = 22.4 K, λe−ph = 0.967, fit quality is 0.9997. The pink shadow areas show 95% confidence bands.

Liu et al. [64] reported λe−ph and logarithmic frequency ωlog for highly compressed
titanium over a wide range of applied pressure calculated using first-principles calcula-
tions. In Figure 4, we present a comparison of the deduced λe−ph and Tθ values from
the experiment and show the calculation results [64]. To compare ωlog (calculated using
first-principles calculations) and Tθ deduced from the experiment, we used the theoretical
expression proposed by Semenok [133]:

1
0.827

× }
kB
×ωlog

∼= Tθ . (12)

In Figure 4c, we also show TF values calculated using Equation (8), where we
used derived λe−ph and bulk density of charge carriers in compressed titanium, n, mea-
sured by Zhang et al. [63]. Zhang et al. [63] reported the R(T) and n measured at
different pressures. For TF, calculations we assumed the following approximations:
n(P = 18 GPa) = n(P = 31 GPa) = 1.72× 1028 m−3; n(P = 154 GPa) = 2.39× 1028 m−3;
and n(P = 180 GPa) = n(P = 183 GPa) = n(P = 177 GPa) = 1.70× 1028 m−3.

The evolution of the adiabaticity strength constant Tθ
TF

vs. pressure is shown in
Figure 4c.

Figure 4 shows a very good agreement between values calculated using first-principles
calculations and extracted from experiment λe−ph and characteristic phonon temperatures,
Tθ and 1

0.827 ×
}
kB
×ω

log
, at low and high applied pressures. More experimental data are

required to perform detailed comparison.
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Figure 4. Evolution of (a) the electron–phonon coupling constant λe−ph; (b) characteristic phonon
temperatures Tθ and 1

0.827 ×
}
kB
×ωlog; and (c) Fermi temperature, TF, calculated using Equation (8)

and the used of carrier density reported by Zhang et al. [63] and deduced λe−ph (in Panel (a)) and the
nonadiabaticity strength constant, Tθ

TF
, for highly compressed titanium.

The derived TF, λe−ph, and Tθ
TF

, values for highly compressed titanium are shown in
Figures 5–7, together with values for the main superconducting families. It should be noted
that other global scaling laws utilize different variables [83,134–140].

It is interesting to mention that δ − Ti is located close to A15 superconductors in
all these plots (Figures 5–7). This proximity can be interpreted as a reflection that the
highest performance of the electron–phonon-mediated superconductivity is achieved for
these materials.
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Figure 5. Uemura plot, where highly compressed Ti, TaH3, LaBeH8, black, and violet phosphorous
(BP and VP, respectively) are shown together with several families of superconductors: metals,
iron-based superconductors, diborides, cuprates, Laves phases, hydrides, and others. References for
original data can be found in Refs. [91,101,141,142].
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Figure 6. The nonadiabaticity strength constant Tθ
TF

vs. λe−ph where several families of superconduc-
tors and highly compressed Ti, TaH3, LaBeH8, black, and violet phosphorous are shown. References
for original data can be found in Refs. [91,101,141,142].
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Figure 7. The nonadiabaticity strength constant Tθ
TF

vs.Tc for several families of superconductors
and highly compressed Ti, TaH3, LaBeH8, black, and violet phosphorous are shown. References for
original data can be found in Refs. [91,101,141,142].

3.2. Highly Compressed I-43d-Phase of TaH3

Recently, He et al. [21] reported on the observation of high-temperature superconduc-
tivity in the highly compressed I-43d-phase of TaH3. In Figure 8, we show the fit of the R(T)
dataset (measured by He et al. [21]) for the tantalum hydride compressed at P = 197 GPa.

2 

Figure 8. Analyzed experimental data for I-43d-phase of TaH3 at P = 197 GPa (raw data reported
by He et al. [21]). (a) Temperature-dependent resistance data, R(T), and data fit to Equation (3).
Green balls indicate the bounds for which R(T) data were used for the fit to Equation (3). Deduced
Tθ = (263.7± 0.3) K, Tc,zero = 25.6 K, λe−ph = 1.53, fit quality is 0.99998. (b) The upper critical

field data, Bc2(T), and data fit to Equation (7). Definition Bc2(T) criterion of R(T)
Rnorm

= 0.02 was used.
Deduced parameters are: ξ(0) = (2.33± 0.02) nm, Tc = (21.8± 0.2) K. Fit quality is 0.9943. The pink
shadow areas in both panels show 95% confidence bands.

We deduced λe−ph = 1.53 (Figure 8) by using Equations (4)–(6). The deduced value
was within the ballpark value for other highly compressed hydride superconductors [3,119].

He et al. [21] did not report the result of the Hall coefficient measurements. Based on
this, we determined the Fermi temperature using Equation (9). To do this, we deduced
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the Bc2(T) dataset from R(T,B) curves reported by He et al. [21] in their Figure 2a [21]. We
defined the Bc2(T) using the criterion of R(T)

Rnorm
= 0.02. Obtained Bc2(T) data and the data

fit are shown in Figure 8b. Deduced ξ(0) = (5.45± 0.10) nm.
To calculate the Fermi temperature in the I-43d-phase of TaH3 at P = 197 GPa, we sub-

stituted derived λe−ph = 1.53 and ξ(0) = 5.45 nm in Equation (9), where α = 2∆(0)
kB ·Tc

= 4.39
was obtained by substituting λe−ph = 1.53 in Equation (10) (Figure 1).

In the result, we determined the following fundamental parameters of the I-43d-phase
of TaH3 (P = 197 GPa):

(1) the Debye temperature, Tθ = 263 K;
(2) the electron–phonon coupling constant, λe−ph = 1.53± 0.13;
(3) the ground-state coherence length, ξ(0) = (1.53± 0.13) nm;
(4) the Fermi temperature, TF = (1324 ± 74) K;
(5) Tc

TF
= 0.019± 0.01, which implies that this phase falls in the unconventional supercon-

ductors band in the Uemura plot;
(6) the nonadiabaticity strength constant, Tθ

TF
= 0.20± 0.01.

In Figures 5–7, one can see the position of the I-43d-phase of TaH3 at P = 197 GPa. The
position of this hydride in Figures 5–7 confirmed that the TaH3 is typical superhydride,
exhibiting a similar strength of nonadiabatic effects to H3S and LaH10.

3.3. Highly Compressed Fm-3m-Phase of LaBeH8

Recently, Song et al. [110] reported on the observation of high-temperature supercon-
ductivity in highly compressed LaBeH8. The crystalline structure of this superhydride
at P = 120 GPa was identified as Fm3m. This crystalline structure was predicted by
Zhang et al. [143]. Figure 9a shows the fit of the R(T) dataset (measured by Song et al. [110])
in the LaBeH8 compressed at P = 120 GPa.

2 

Figure 9. Analyzed experimental data for Fm3m-phase of LaBeH8 at P = 120 GPa (raw data reported
by Song et al. [110]). (a) Temperature-dependent resistance data, R(T), and data fit to Equation (3).
Green balls indicate the bounds for which R(T) data were used for the fit to Equation (3). Deduced
Tθ = (752± 6) K, Tc,0.02 = 269 K, λe−ph = 1.46, fit quality is 0.9990. (b) The upper critical field data,

Bc2(T), and data fit to Equation (7). Definition Bc2(T) criterion of R(T)
Rnorm

= 0.25 was used. Deduced
parameters are: ξ(0) = 2.8 nm, Tc = 68.8 K. Fit quality is 0.9995. The pink areas in both panels show
95% confidence bands.

The Bc2(T) dataset was extracted from R(T,B) curves reported by Song et al. [110] in
their Figure 3a [110]. For the Bc2(T) definition, we utilized the criterion of R(T)

Rnorm
= 0.25.

The obtained Bc2(T) data and the data fit are shown in Figure 9b. Deduced ξ(0) = 2.8 nm.
Examining the results of the performed study, we determined that the Fm3m-phase of

LaBeH8 at P = 120 GPa exhibits the following parameters:

(1) the Debye temperature, Tθ = (752± 6) K;
(2) the electron–phonon coupling constant, λe−ph = 1.46;
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(3) the ground-state coherence length, ξ(0) = (2.80± 0.02) nm;
(4) the Fermi temperature, TF = 2413 K;
(5) Tc

TF
= 0.029, which implies that this phase falls in the unconventional superconductors

band in the Uemura plot;
(6) the nonadiabaticity strength constant, Tθ

TF
= 0.31± 0.01.

3.4. Highly Compressed Black Phosphorous

The impact of high pressure on the superconducting parameters of black phosphorous
has been studied over several decades [111–114]. Recent detailed studies in this field have
been reported by Guo et al. [112], Li et al. [111], and Jin et al. [114].

To show the reliability of high-pressure studies of superconductors (which was recently
questioned by non-experts in the field [144,145]), in Figure 10, we show raw R(T) datasets
measured at P = 15 GPa from the two independent research groups of Shirotani et al. [113]
and Li et al. [111]. It should be stressed that these reports have been published within a
timeframe of 24 years.

3 

Figure 10. Analysis of experimental ρ(T) datasets for black phosphorus compressed at P = 15 GPa
reported by (a) Shirotani et al. [113] and by (b) Li et al. [111]. Green balls indicate the bounds for
which ρ(T) data were used for the fit to Equation (3). Deduced parameters are: (a) Tθ = (563± 16) K,
Tc,zerp = 5.3 K, λe−ph = 0.546, fit quality is 0.9983; (b) Tθ = (611± 2) K, Tc,zerp = 5.9 K, λe−ph = 0.549,
fit quality is 0.9998. The pink shadow areas in both panels 95% confidence bands.

The agreement between deduced λe−ph (Figure 10) from two datasets [111,113] is
remarkable. It should be noted that the approach used for our analysis (Figure 10) was
developed to analyze data measured in highly compressed near-room-temperature su-
perconductors [119]. This feature implies that several concerns expressed by non-experts
in the field [144–147] with regard to highly compressed near-room-temperature hydride
superconductors do not have any scientific background.

Figure 11 shows Bc2(T) datasets extracted from raw R(T, B) datasets measured at very
close pressures, with values of P = 15.9 GPa [112] (panel a) and P = 15 GPa [111] (panel b).
These two datasets were reported by two independent groups. For the Bc2(T) definition,
we utilized the same strict criterion of R(T)

Rnorm
= 0.01 for both R(T, B) datasets in Figure 11.

The average deduced parameters for black phosphorus P = 15 GPa, which we derived
from experimental data analysis reported by three different research groups, are as follows:

(1) the Debye temperature, Tθ = 587 K;
(2) the electron–phonon coupling constant, λe−ph = 0.548;
(3) the ground-state coherence length, ξ(0) = 77 nm;
(4) the Fermi temperature, TF = 5200 K;
(5) Tc

TF
= 0.001, which implies that black phosphorus falls in the conventional supercon-

ductors band in the Uemura plot;
(6) the nonadiabaticity strength constant, Tθ

TF
= 0.11.
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The deduced parameters show that the black phosphorus at P = 15 GPa exhibits
low-strength nonadiabatic effects.
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Figure 11. Analysis of experimental Bc2(T) datasets for black phosphorus compressed at
(a) P = 15 GPa reported by Li et al. [111], and (b) P = 15.9 GPa reported by Guo et al. [112]. Deduced
parameters are: (a) ξ(0) = (67± 1) nm, Tc = 5.5± 0.1 K, fit quality is 0.9965; (b) ξ(0) = (86± 1) nm,
Tc = 5.5± 0.1 K, fit quality is 0.9981. Pink shadow areas in both panels show 95% confidence bands
are shown.

3.5. Highly Compressed Violet Phosphorous

Recently, Wu et al. [62] reported on the observation of the superconducting state in
compressed violet phosphorus (vP). This material exhibits Tc > 5 K at high pressure in the
range of 3.6 GPa ≤ P ≤ 40.2 GPa. In Figure 12a, we showed the R(T) dataset (measured
by Wu et al. [62]) and fitted data to Equation (3).

3 

Figure 12. Analysis of experimental data for violet phosphorus compressed at (a) P = 40.2 GPa
and (b) P = 34.8 GPa. Raw data reported by Wu et al. [62]. (a) Temperature-dependent resistance
data, R(T), and data fit to Equation (3). Green balls indicate the bounds for which R(T) data were
used for the fit to Equation (3). Deduced Tθ = (655± 4 )K, Tc,0.01 = 9.4 K, λe−ph = 0.607, fit
quality is 0.9991. (b) The upper critical field data, Bc2(T), and data fit to Equation (13). Definition
Bc2(T) criterion of R(T)

Rnorm
= 0.14 was used. The deduced parameters are: ξ(0)band1 = (50 ± 1) nm,

Tc,band1 = (9.0 ± 0.2) K, ξ(0)band1 = (53 ± 2) nm, Tc,band2 = (4.0 ± 0.1) K. Fit quality is 0.9977. The
pink areas in both panels show 95% confidence bands.

The Bc2(T) dataset was extracted from the only R(T,B) dataset reported by Wu et al. [62]
for material compressed at P = 34.8 GPa [62]. The Bc2(T) was defined by the criterion of
R(T)
Rnorm

= 0.14. The deduced Bc2(T) dataset is shown in Figure 12b. Equation (7) does not fit
the Bc2(T) data well because the Bc2(T) goes up at T . 4 K. We think this means a second
band opens up, so we used a two-band model to fit the data [141,148]:
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Bc2,total(T)= Bc2,band1(T) + Bc2,band2(T), (13)

where Bc2,band1(T), and Bc2,band2(T) exhibit their independent transition temperature and
the coherence length. We list deduced values in the figure caption to Figure 12. However,
for further analysis, we used Tc = Tc,band1 = 9.0 K, and ξ(0)total = (36± 1 )nm.

In the result, we derived the following parameters for violet phosphorus comrpessed
at P ∼ 40 GPa:

(1) the Debye temperature, Tθ = (665± 4) K;
(2) the electron–phonon coupling constant, λe−ph = 0.607;
(3) the ground-state coherence length, ξ(0) = (36± 1) nm;
(4) the Fermi temperature, TF = 3240 K;
(5) Tc

TF
= 0.003, which implies that this phase falls near the conventional superconductors

band in the Uemura plot;
(6) the nonadiabaticity strength constant, Tθ

TF
= 0.21.

We concluded, that nonadiabatic effects in violet phosphorus compressed at P ∼ 40 GPa
are like those in H3S and LaH10 near-room-temperature superconductors.

4. Discussion

As we mentioned, above superconductors can be classified by the ratio of maximum
phonon energy, }ωD (where ωD is Debye frequency) to the charge carrier energy at the
Fermi level, }ωD

kBTF
. For practical use, it is more convenient to replace the }ωD with kBTθ ,

where Tθ is the Debye temperature.
Thus, in the adiabatic regime, }ωD

kBTF
= Tθ

TF
. 10−3, superconductors have fast charge

carriers and slow phonons. This condition is satisfied for pure metals and some supercon-
ducting alloys (Figures 5–7).

However, as can be seen in Figures 6 and 7, more than 3
4 of superconductors (including

important for practical use Nb3Sn, MgB2, pnictides, cuprates, and record-high Tc near-
room-temperature superconducting hydrides) have the ratio in a different range [91,101]:

0.025 ≤ }ωD
kBTF

≤ 0.4, (14)

Our experimental data search [70,80] revealed that only six superconductors exhibit
(Figures 6 and 7):

}ωD
kBTF

> 0.4. (15)

These materials are [91,101]: Nb0.75Mo0.25B2 and Nb0.5Os0.5, which are highly com-
pressed metalized oxygen; magic-angle twisted bilayer graphene SrTiO3; and highly com-
pressed metalized ionic salt, CsI. It should be stressed that all these superconductors exhibit
low transition temperatures, Tc < 8 K.

The five recently discovered superconductors (Sections 3.1–3.5) studied in this report
confirmed the validity of Equation (14). And, thus, perhaps a deep physical origin related
to the strength of the nonadiabaticity }ωD

kBTF
= Tθ

TF
within the range indicated in Equation (14)

can be revealed.
Nonadiabatic effects are crucial in reducing the superconducting transition tempera-

ture to well below the value predicted by classical (BCS-Eliashberg) theories of electron–
phonon-mediated superconductivity [93,115]. This understanding was first reported by
Pietronero and co-workers [103–105,107]. It can be seen in Figure 7 that materials with
the highest strength of nonadiabaticity Tθ

TF
(for instance, SrTiO3 and magic-angle twisted

bilayer graphene) exhibit the superconducting transition temperature Tc . 1 K, while all
materials with Tc & 35 K exhibit Tθ

TF
within a range indicated by Equation (14).
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5. Conclusions

In this work, we analyzed experimental data for five new highly compressed super-
conductors: δ − Ti [63,64], TaH3 [21], LaBeH8 [110], black phosphorous [111–113], and
violet phosphorous [62]. We established several superconducting parameters for these
superconductors, including the strength of nonadiabaticity, }ωD

kBTF
= Tθ

TF
.
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