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Abstract: Graph embedding transforms high-dimensional graphs into a lower-dimensional vector
space while preserving their structural information and properties. Context-sensitive graph embed-
ding, in particular, performs well in tasks such as link prediction and ranking recommendations.
However, existing context-sensitive graph embeddings have limitations: they require additional
information, depend on community algorithms to capture multiple contexts, or fail to capture suffi-
cient structural information. In this paper, we propose a novel Graph Embedding with Similarity
Metric Learning (GESML). The core of GESML is to learn the optimal graph structure using an
attention-based symmetric similarity metric function and establish association relationships between
nodes through top-k pooling. Its primary advantage lies in not requiring additional features or
multiple contexts, only using the symmetric similarity metric function and pooling operations to
encode sufficient topological information for each node. Experimental results on three datasets
involving link prediction and node-clustering tasks demonstrate that GESML significantly improves
learning for all challenging tasks relative to a state-of-the-art (SOTA) baseline.

Keywords: similarity metric learning; graph embedding; similarity metric; top-k pooling

1. Introduction

Graph embedding is a powerful technique for representing graphs with a wide range
of applications in various domains. For instance, node-clustering tasks group together
similar news articles [1], link prediction tasks anticipate associations between users in social
networks [2], and product recommendation tasks reveal users’ preferences on shopping
platforms [3]. However, most current research on graph embedding focuses on context-free
methods that rely solely on node representations based on local or global features [4–6].
For example, Perozzi et al. [7] introduced the DeepWalk method, which employs random
walks to capture neighborhood structures and maximizes the probability of neighboring
nodes appearing in the walk sequence. Sheikh et al. [8] investigated using attributes
and structures to learn node representations. Pan et al. [9] proposed a method for jointly
learning optimal node representations by leveraging network structure, node content,
and node labels. Importantly, in numerous cases, particularly for sparse graphs, context-
free graph-embedding methods may result in the omission of crucial details, consequently
diminishing the performance of network analysis tasks.

Incomplete representations of a node’s single context have prompted researchers to
propose a context-sensitive method known as context-sensitive graph embedding. This
method captures the contexts where the nodes exist and learns distinct representations
of the nodes in various scenarios, i.e., the representations of the node change according
to the target task. Existing context-sensitive representation methods depend on addi-
tional textual information, the graph structure itself, and the information of the neighbors.
For example, Tu et al. [10] were the first to propose a mutual attention mechanism based
on textual embedding. This mechanism emphasizes the interactions between a node

Symmetry 2023, 15, 1618. https://doi.org/10.3390/sym15081618 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15081618
https://doi.org/10.3390/sym15081618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/ 0000-0002-5630-2070
https://doi.org/10.3390/sym15081618
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15081618?type=check_update&version=2


Symmetry 2023, 15, 1618 2 of 15

and its neighbors and advocates for separate embeddings for nodes during these inter-
actions. Gracious et al. [11] combined mutual and topological attention mechanisms and
proposed a diffusion graph for text graph embedding. This graph captures the semantic
relatedness between texts by leveraging the global structural information of the graph.
Epasto et al. [12] encoded multiple representations of a node by leveraging its roles in
distinct local communities through ego-network decomposition. Kefato et al. [13] utilized
an attentional pooling network to determine the personalized importance of a node’s
neighbors. Qin et al. [14] proposed using GCN to assist in obtaining high-quality node rep-
resentations.

We aim to generate high-quality context-sensitive node representations by focusing
solely on the structural information of nodes. Our work is based on the Graph Attentional
Pooling network (GAP) [13], which could view as a generalization of it. The model suggests
the source node’s representation using a mutual attention mechanism that responds to
changes in the target node, thereby achieving context sensitivity. To describe more clearly
how GAP works, we use a graph with some points and edges to illustrate how it works.
For example, in Figure 1, node 5 and node 6 have first-order neighbor sets of {3, 4, 6, 8, 9}
and {3, 4, 5, 7}, respectively. During interactions between nodes 5 and 6, the model pri-
marily focuses on the same neighbors {3, 4} while ignoring or paying little attention to
other neighbors. Although the relationship between node 6’s neighbor {7} and node 5’s
neighbors {8, 9} exists, it is not considered during the model training process. Therefore,
the mutual attention mechanism between nodes could result in the model missing impor-
tant information necessary for achieving accurate node representation, such as implicit
topological structure information.

3 4

5 6

8 7

9

Figure 1. A graph with some edges and nodes.

We propose a novel Graph Embedding with Similarity Metric Learning (GESML),
a more expressive mutual attention method to obtain more topological information about
node neighborhoods. GESML employs an attention-based symmetric similarity measure-
ment function in metric learning that can learn the similarity matrix between pairs of
nodes. This method can capture the optimal graph structure and establish the relationship
between node representation and the target task. GESML consists of three modules: a
graph structure learning module, a graph representation module, and a prediction module.
The graph structure learning module aims to obtain embedding representations of the
source and target nodes by sampling from the graph and then generating the similarity ma-
trix based on the attention-based symmetric similarity measurement function. The graph
representation module encodes from the perspectives of the source node and the target
node to generate the embedding representation of pairs of nodes. The prediction module
calculates the soft alignment score using the embedding representation of the source and
target nodes.
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We achieved state-of-the-art performance in link prediction and node clustering tasks
on three datasets. Furthermore, the results illustrated that introducing attention-based sym-
metric similarity measurement functions and the top-k pooling operation can significantly
enhance the embedding ability. In summary, our contributions are two-fold:

• We propose a simple embedding representation method that combines an attention-
based symmetric similarity measurement function and top-k pooling.

• Experimental results on three datasets illustrate that GESML is significantly better
than SOTA methods.

2. Related Work

Most existing research on graph embedding still focuses on context-free graph-embedding
methods, i.e., using only local or global features to accomplish node representation. For exam-
ple, Perozzi et al. [7] introduced the DeepWalk method to address the challenge of defining
neighborhood structures. This method utilizes random walks to capture neighbors’ structures
and enhances the likelihood of neighboring nodes appearing in each random walk sequence
by implementing the Skip-Gram approach. Building upon the foundations of DeepWalk,
Grover et al. [15] introduced the Node2Vec method, which establishes a versatile notion of
node graph neighborhoods. Node2Vec formulates a second-order random walk strategy to
sample neighboring nodes, enabling a seamless transition between breadth-first sampling
(BFS) and depth-first sampling (DFS). In addition to addressing neighborhood structures,
Tang et al. [16] proposed LINE, a large-scale network embedding model that preserves first-
order and second-order proximities. To overcome the limitation of the expressive power of
LINE, Wang et al. [17] presented a deep model called SDNE for graph embedding. It also
endeavors to capture both first-order and second-order proximities. Additionally, numerous
works concentrate on the fusion of graph embedding with topological structure. For example,
Yang et al. [18] introduced TADW, which incorporates much information (such as text) from
nodes while acquiring low-dimensional representations. Pan et al. [9] devised a coupled
deep model encompassing graph structure, node attributes, and node labels within graph-
embedding techniques. Huang et al. [19] put forth attribute graph embedding (for both nodes
and features) with matrix factorization subject to joint constraints. Kipf et al. [4] developed a
graph autoencoder that naturally integrates graphs’ node attributes and structural information.

The accuracy of a single representation of context-free graph embeddings has been
debated among recent works, leading to the proposal of context-sensitive approaches.
Context-sensitive graph embedding captures different scenarios a node is in and learns the
node’s representation in that scenario. It means that for the same node, the representation
changes as the goal task changes. For example, Epasto et al. [12] devised a method for
acquiring multiple representations of nodes through self-network decomposition, which
enables the encoding of node roles within distinct local communities. Kefato et al. [13] em-
ployed an attentional pooling network to learn the personalized importance of neighboring
nodes. It allows the model to concentrate exclusively on relevant neighbor information
and ignore irrelevant neighbor information during interaction processes. Li et al. [20] intro-
duced a personalized PageRank method to acquire larger receptive fields and higher-quality
representations of text embeddings. Several works employ side information to aid in the
learning of node representations. Tu et al. [10] proposed a mutual attention mechanism
that integrates both structural and textual information of nodes. This mechanism takes
into account contextual information and interaction relationships in node representations.
Zhang et al. [21] introduced a diffusion graph model for text graph embedding that utilizes
the global structural information of the graph to capture semantic correlations between
texts. Wang et al. [22] put forth an embedding graph form that concentrates on text. This
form encompasses the modeling of text information and network topology. Expanding
upon the research by Kefato et al. [13], we propose a novel graph-embedding model that
employs a symmetric similarity measurement function that enables encoding a more signif-
icant amount of topological structural information of nodes, thereby obtaining high-quality
node embedding representations.
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3. Preliminaries

We first briefly overview the essential components of the prior work GAP [13] before
delving into GESML detail. A graph G can be represented as G = (V , E), where V represents
the set of nodes and E denotes the set of edges. The first step in the GAP method involves
defining a neighborhood sampling function f : V → 2V . Here, f maps each node u ∈ V
in the graph to a set of nodes fu ⊆ V . One straightforward way of implementing fu is by
sampling the first-order neighbors of node u ( fu = [v : (u, v) ∈ E ∨ (v, u) ∈ E ]). Given the
neighbors’ sequences Nsource = (u1, · · · , um) and Ntarget = (v1, · · · , vm) corresponding
to node pairs (us, vt) ∈ E , where m denotes the number of sampled neighbors. Applying
word embedding techniques, we can generate the embedding vectors. S = (u1, · · · , um)
and T = (v1, · · · , vm) for each ui ∈ Nsource and vi ∈ Ntarget . Figure 2 illustrates the model
architecture of GAP.

sourceN targetN

Embed Embed

Attend

Predit

S

[ : ]iiu sourceE u NS [ : ]iiv targetE v NT

( )T

attention tanhA S P T

attentionA

P T

Column-wise

max-pooling

Row-wise

max-pooling

S = t

( )Tsoftmaxs S sr ( )Tsoftmaxt T tr

sr tr

( )Ts tr r

Figure 2. GAP.

The processing of GAP can be described as follows:



Symmetry 2023, 15, 1618 5 of 15

1. Utilize the sampling function f : V → 2V to perform first-order neighbor sampling
and employ graph embedding to obtain representations for the source node and target
node, denoted as S = (u1, · · · , um) and T = (v1, · · · , vm).

2. Employ a trainable parameter matrix P ∈ Rd×d to compute the attention matrix
Aattention between node pairs (us, vt) . The attention matrix is calculated as Aattention =

tanh
(

ST · P · T
)

.

3. Perform pooling operations on Aattention separately to obtain the unnormalized atten-
tion vectors: s′i = max(Aattention(i, :)), t′j = max(Aattention(:, j)).

4. Use the so f tmax(·) to normalize the attention vector and then apply
rs = S · softmax ·(s′)T and rt = T · softmax ·(t′)T to obtain the node representations
for the source node us and the target node vt.

5. Compute rs · (rt)
T to obtain the score of the node pair (us, vt).

Applying GAP reveals that the mutual attention mechanism between nodes solely
focuses on their common neighbors. This method could overlook crucial information
essential for node representations, such as implicit topological and structural information.

4. Graph Embedding with Similarity Metric Learning

Figure 3 illustrates the model architecture of the GESML. It comprises three modules:
the graph structure learning module, the graph representation learning module, and the
prediction module. The graph structure learning module aims to sample and obtain
embedded representations of the source and target nodes from the graph and generate a
similarity matrix using an attention-based symmetric similarity metric function. The graph
representation learning module encodes the source and target nodes separately to generate
embedded representations for node pairs. The prediction module utilizes the embedded
representations of the source and target nodes to compute soft alignment scores.

4.1. The Graph Structure Learning Module

The primary objective of the graph structure learning module is to sample and
obtain embedded representations of the source and target nodes from the graph and
then generate a similarity matrix using an attention-based symmetric similarity metric
function. Similar to GAP [13], the model initially defines a neighbor-sampling func-
tion f : V → 2V that maps each node u ∈ V in the graph to a set of nodes fu ⊆ V .
One simple method to implement fu is by sampling the first-order neighbors of node
u ( fu = [v : (u, v) ∈ E ∨ (v, u) ∈ E ]). Secondly, the neighbor set for the node pair
(us, vt) ∈ E is obtained by applying the first-order neighbor-sampling function f , result-
ing in Nsource = (u1, . . . , um) and Ntarget = (v1, . . . , vm), where m denotes the number
of sampled neighbor nodes. Furthermore, for each ui ∈ Nsource and vi ∈ Ntarget, we can
generate the embedding vectors S = (u1, . . . , um) and T = (v1, . . . , vm). Finally, a trainable
parameter matrix P ∈ Rd×d and an attention-based symmetric similarity metric function
are introduced to calculate the similarity matrix Asimilarity between node pairs (us, vt) using
Asimilarity = softmax

(
ReLU(P · S)T ReLU(P · T)

)
. In this case, ReLU(x) = max(0, x) refers

to a rectified linear unit function employed to enforce sparsity in the output similarity
matrix, while softmax(·) is applied to obtain a row-normalized similarity matrix.

The similarity matrix Asimilarity ∈ Rm×m represents the degree of association between
node pairs. The i-th row vector Ai: ∈ Rm in Asimilarity is associated with the source node
ui ∈ Nsource. The element Aij of Ai: encodes the similarity between the global embedding

ST
ui
= Eui of source node ui ∈ Nsource and the neighbors (

[
Evj : vj ∈ Ntarget

]
) of the target

node vj ∈ Ntarget. Similarly, The j-th column vector A:j ∈ Rm in Asimilarity is associated with
the target node vj ∈ Ntarget. The element Aij of A:j encodes the similarity between the global
embedding Tvj = Evj of target node vj ∈ Ntarget and the neighbors ([Eui : ui ∈ Nsource]) of
the source node ui ∈ Nsource. Thus, Asimilarity can be interpreted as a weighted adjacency
matrix among the nodes. Additionally, using ReLU(·) to enforce sparsity in the output
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similarity matrix is beneficial due to the high computational costs and potential noise
introduced by fully connected graphs, such as irrelevant edges. Enhancing the sparsity of
the learned graph structure in this manner is advantageous. Furthermore, the application
of so f tmax(·) for row normalization of Asimilarity satisfies the input requirement of the
asymmetric encoder in the graph representation learning module.
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Figure 3. GESML.

4.2. The Graph Representation Learning Module

The goal of the graph representation learning module is to independently encode the
source and target nodes and generate embedded representations for node pairs. Firstly,
for each row (or column) of the similarity matrix Asimilarity ∈ Rm×m, we compute the
unnormalized attention matrices s′i = poolk(Ai,:) and t′j = poolk

(
A:,j
)

using top-k pooling
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operations. These operations identify the top-k target nodes vinNtarget with the highest
similarity scores captured by each neighbor u ∈ Nsource of the source node s. The same
method is also applied to the target nodes v ∈ Ntarget. This method allows the neighborhood
sequences of the source and target nodes to influence each other mutually, facilitating the
learning of context-sensitive representations for both. Following, the so f tmax(·) function
is applied to obtain s = softmax(s′) and t = softmax(t′). Finally, the context-sensitive
representations for the source and target nodes are computed as rs = S · sT and rt = T · tT .

4.3. The Prediction Module

The model aims to predict edge similarity by leveraging the dot product of the repre-
sentations for the source node and the target node, denoted as rs · rt, to assess the probability
of a connection. The model utilizes the edge margin loss function:

L(s, t) = max
(
0, 1−mean

(
rs · rt − rs · r−t

))
where r−t denotes the representation of the target node acquired through negative sampling
((s, t−) /∈ E), and mean(·) computes the average of the results. The model strives to learn
context-sensitive node embeddings in an unsupervised manner, where the ranking of
positive edges (s, t) ∈ E surpasses negative edges (s, t−) /∈ E. Finally, the computational
complexity of GESML is proportional to the number of edges in the graph since we consider
each edge as a pair of inputs.

5. Experiments

We will conduct extensive experiments on three datasets to evaluate the model perfor-
mance of GESML. Additionally, we will employ visualizations to supplement the explana-
tion of experimental results.

5.1. Datasets and Benchmarking Methods

Following a similar method to the work by Kefato et al. [13], GESML will be evaluated
using three datasets: Cora [23], Zhihu [11], and Email [24]. Cora is a citation network
dataset that papers relationships through citations. Nodes represent papers, and labels
represent topics. Node features correspond to the words in the papers, and edges between
nodes represent citation relationships. Zhihu, China’s largest online question-and-answer
community, focuses on modeling relationships among registered users, with user identi-
fication based on their posts. Email represents the communication network system of a
prominent European research institution, primarily focused on modeling communication
relationships among users within the institution. Table 1 presents the primary statistical
information for these three benchmark datasets.

Table 1. The basic statistical information for three datasets.

Dataset Nodes Edges Feature

Cora 2277 5214 Abstract of Paper
Zhihu 10,000 43,894 Posts of the User
Email 1005 25,571

We aim to facilitate method comparison by initially categorizing all benchmark meth-
ods. Table 2 illustrates the division of 16 benchmark methods into four categories based
on two criteria: context sensitivity and the utilization of structural information. Moreover,
the models’ performance evaluation primarily involves two types of experiments: link
prediction and node clustering. Lastly, all results represent the average of 20 model runs to
ensure experimental fairness.
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Table 2. Classification results of the benchmark methods.

Context-Free Context-Sensitive

Structure Structure and Feature Structure Structure and Feature

DeepWalk [7] TRIDNR [9] SPLITTER [12] CANE [10]
Node2Vec [15] TADW [18] GAP [13] DMTE [11]
WalkLets [25] CENE [26] PPR [20] VHE [22]

Attentive Walk [27] GOAT [24] ACNE [11]
Line [16]

The following is a brief introduction to the benchmark methods:

• DeepWalk [7] captures the neighborhood structure by performing random walks and
maximizes the probability of neighboring nodes appearing in the walk sequences
using the Skip-Gram approach.

• Node2Vec [15] employs second-order random walk strategies to sample neighboring
nodes in the graph, smoothly interpolating between breadth-first and depth-first
sampling. Nodes are treated as words, and the Word2Vec algorithm from NLP is used
to train the nodes.

• WalkLets [25] is a multi-scale representation learning method for network nodes,
which generates multi-scale relationships by performing secondary sampling of short
random hashes on the nodes in the graph.

• Attentive Walk [27] learns the network parameters by treating the network parameters
as the probability distribution of neighbors in a random walk.

• Line [16] embeds large-scale information networks into low-dimensional vector spaces
and designs a method that preserves both local (first-order similarity) and global
(second-order similarity) network structures.

• TRIDNR [9] proposes a coupled neural network algorithm that utilizes the relation-
ships between nodes, the relevance of node content, and label content to obtain the
optimal representation for each node.

• TADW [18] demonstrates the equivalence of deep walk to matrix factorization and
proposes a network learning method that combines text information.

• CENE [26] treats text content as a specific node type and performs node embedding
using both node links and node content links.

• SPLITTER [12] introduces Splitter, a novel technique that learns multiple embeddings
for individual nodes, enabling a better description of networks with overlapping com-
munities.

• GAP [13] presents a novel context-aware graph-embedding algorithm that utilizes
attention pooling networks to focus on different parts of the node neighborhood.

• PPR [20] introduces personalized PageRank methods to obtain larger receptive fields
and higher quality text embedding representations.

• GOAT [24] proposes GOAT, a context-aware algorithm inspired by node information
propagation and mutual attention mechanisms, which can obtain high-quality context-
aware node representations relying solely on graph structure.

• CANE [10] introduces CANE, a mutual attention mechanism that combines node
structural information and text information, and the representation of nodes considers
contextual information and different interaction relationships.

• DMTE [11] learns low-dimensional vector representations for nodes that contain rich
text information relevant to the network.

• VHE [22] considers VHE an embedding graph form that explicitly focuses on text and
models text information and network topology.

• ACNE [11] proposes ACNE, an adversarial mechanism that utilizes text-embedding
discriminators and structure-embedding generators to learn effective representations.
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5.2. Link Prediction

This section presents an evaluation of the performance of GESML on three datasets
for link-prediction experiments. Link prediction is a fundamental task in graph embedding
that aims to predict missing or future links between pairs of nodes. We use part of the
edges for training the model parameters and the rest of the edges to test the effect of the
model. The training set encompasses edge proportions ranging from 0.15 to 0.95, with gaps
of 0.2. A fixed number of neighbor samples is employed across the three datasets. Each
node is represented by a 200-dimensional vector, and Table 3 provides comprehensive
information on other experimental parameters. Notably, the results of this experiment are
quantified with the AUC score, which indicates the probability of randomly selected node
pairs

(
ui, vj

)
∈ E obtaining higher similarity scores compared to node pairs (ui, vk) /∈ E .

In addition, numbers marked in bold indicate state-of-the-art results.

Table 3. Experimental parameters statistics.

Dataset Neighbors Dropout Learning Rate

Cora 100 0.50 0.0001
Zhihu 250 0.65 0.0001
Email 100 0.80 0.0001

From Tables 4–6, we can conclude the following observations:

• In general, GESML outperforms the baseline methods on the three datasets.
• A notable improvement in link prediction results is observed when the proportion of

edges in the training set is relatively small on the three datasets. This phenomenon
means the attention-based similarity measurement function can learn more effective
graph structures.

• GESML exhibits a significant variation in its impact on link prediction results on
three datasets. The performance improvement is relatively modest on the Cora.
This result can reason by the varying nodes and edges among the three datasets
(Cora: 2.29; Zhihu: 4.39; Email: 25.44). The Cora dataset contains relatively less
structural information.

Table 4. Linking prediction task scores on the Cora dataset (%).

Methods
The Percentage of the Training Set

15% 35% 55% 75% 95%

DeepWalk [7] 56.0 70.2 80.1 85.3 90.3
Node2Vec [15] 55.9 66.1 78.7 85.9 88.2
Line [16] 55.0 66.4 77.6 85.6 89.3
Attentive Walk [27] 64.2 81.0 87.1 91.4 93.0
WalkLets [25] 69.8 82.8 86.6 90.9 93.3
CENE [26] 72.1 84.6 89.4 93.9 95.9
TRIDNR [9] 85.9 90.5 91.3 93.0 93.7
TADW [18] 86.6 90.2 90.0 91.0 92.7
CANE [10] 86.8 92.2 94.6 95.6 97.7
DMTE [11] 91.3 93.7 96.0 97.4 98.8
SPLITTER [12] 65.4 73.7 80.1 83.9 87.2
GOAT [24] 96.7 97.1 97.6 97.8 98.8
GAP [13] 95.8 97.1 97.6 97.8 98.2
PPR [20] 86.0 91.3 92.4 95.8 98.1
VHE [22] 94.4 97.6 98.3 99.0 99.4
ACNE [11] 95.8 97.6 98.5 99.0 99.5

GESML 96.7 98.1 98.7 99.1 99.4
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Table 5. Linking prediction task scores on the Zhihu dataset (%).

Methods
The Percentage of the Training Set

15% 35% 55% 75% 95%

DeepWalk [7] 56.6 60.1 61.8 63.3 67.8
Node2Vec [15] 52.3 59.9 64.3 67.7 71.1
Line [16] 54.2 57.3 58.7 66.2 68.5
Attentive Walk [27] 50.7 52.6 55.5 57.9 58.1
WalkLets [25] 69.4 74.0 76.4 74.7 66.8
CENE [26] 52.3 55.6 60.8 65.2 69.0
TRIDNR [9] 53.8 57.9 63.0 66.0 70.3
TADW [18] 56.2 60.3 66.3 70.2 73.8
CANE [10] 56.8 62.9 68.9 71.4 75.4
DMTE [11] 58.4 67.5 74.0 78.7 82.2
SPLITTER [12] 59.8 61.8 62.1 61.0 58.6
GOAT [24] 82.2 82.3 85.1 84.5 83.7
GAP [13] 72.6 81.2 81.4 82.0 86.3
PPR [20] 66.3 76.4 78.7 83.9 87.2
VHE [22] 66.8 74.1 81.6 84.7 86.4
ACNE [11] 73.4 82.4 88.6 91.1 93.2

GESML 77.8 84.5 89.0 91.1 92.9

Table 6. Linking prediction task scores on the Email dataset (%).

Methods
The Percentage of the Training Set

15% 35% 55% 75% 95%

DeepWalk [7] 69.2 74.1 76.6 78.7 79.0
Line [16] 65.6 73.8 76.7 78.5 78.8
Node2Vec [15] 66.4 71.2 72.7 74.5 76.1
WalkLets [25] 70.3 75.2 78.2 78.9 78.5
Attentive Walk [27] 68.8 73.5 74.1 73.0 68.6
SPLITTER [12] 69.2 69.1 70.6 73.3 75.2
GOAT [24] 78.9 81.2 81.7 82.3 83.1
GAP [13] 77.6 81.9 83.1 84.5 84.8

GESML 82.7 83.7 85.4 87.1 87.7

5.3. Node Clustering

Node clustering is the process of categorizing samples into predefined classes based
on their similarities. This section evaluates the model’s performance on the Email dataset,
specifically comparing it with baseline methods that leverage structural information. Like
the link prediction experiments, we train the model parameters using a subset of edges
and test them on the remaining edges. The training set encompasses edge proportions
ranging from 0.35 to 0.95 with an interval of 0.2 while keeping other settings constant.
To evaluate the experimental results, we measure the consistency between the given actual
labels y and the predicted labels ŷ using the NMI(y, ŷ) and AMI(y, ŷ) metrics. NMI
represents the normalized mutual information (I(y, ŷ)), and AMI indicates the adjusted
mutual information [28].

Table 7 reveals that GESML outperforms the baseline methods. Thus, the results rein-
force the idea that the model initially learns optimal graph structures through an attention-
based similarity measurement function. It then leverages top-k pools to simultaneously
capture the topological information of nodes and their neighborhoods. Consequently, this
method enables encoding decadent topological information from node neighborhoods,
leading to enhanced performance.
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Table 7. Node clustering results on the Email dataset (%).

Methods

The Percentage of the Training Set

35% 55% 75% 95%

NMI AMI NMI AMI NMI AMI NMI AMI

DeepWalk [7] 41.3 28.6 53.6 44.8 50.6 42.4 57.6 49.9
Line [16] 44.0 30.3 49.9 38.2 53.3 42.6 56.3 46.5
Node2Vec [15] 46.6 35.3 45.9 35.3 47.8 38.5 53.8 45.5
WalkLets [25] 47.5 39.9 55.3 47.4 54.0 45.4 50.1 41.6
Attentive Walk [27] 42.9 30.0 45.7 36.5 44.3 35.7 47.4 38.5
SPLITTER [12] 38.9 23.8 43.2 30.3 45.2 33.6 48.4 37.6
GOAT [24] 66.5 57.2 65.6 56.7 66.4 57.9 65.5 57.0
GAP [13] 67.8 58.8 64.7 55.7 65.6 57.6 65.4 58.7

GESML 73.9 64.2 70.9 59.8 73.5 65.2 70.8 64.1

5.4. Hyperparameter Analysis

In this section, we first analyze the influence of the number of sampled neighbors on
the performance of GESML. We conduct link prediction experiments on three datasets to
evaluate how the number of sampled neighbors affects the model’s performance. The ex-
perimental results are illustrated in Figures 4–6.
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Figure 4. Effect of the number of neighbors sampled on the Cora dataset.
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Figure 5. Effect of the number of neighbors sampled on the Email dataset.
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Figure 6. Effect of the number of neighbors sampled on the Zhihu dataset.

Observing Figures 4–6 reveals that the model’s performance remains unaffected mainly
by the variation in the number of sampled neighbors, irrespective of changes in the per-
centage of edges in training set across the three datasets.

This section conducts clustering task experiments on the Email dataset to ensure exper-
imental comprehensiveness. These experiments aim to investigate the effect of the number
of sampled neighbors on the model’s performance. Figure 7 illustrates the relationship
between the number of sampled neighbors and the model’s performance, with a fixed
proportion of 55% of edges in the training set.
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Figure 7. The effect of the number of sampled neighbors on the model’s performance.

The analysis of Figure 7 indicates that variations in the number of sampled neighbors
have a negligible impact on the NMI and AMI consistency metrics in the node clustering
task. Based on the results of the link prediction and node clustering experiments regarding
the influence of the number of sampled neighbors on model performance, we can infer that
the model exhibits insensitivity to this hyperparameter.

Furthermore, we explored the influence of different values of k in top-k pooling.
Specifically, we utilized the Cora dataset, with 15% of the edges used for training, to examine
various values of k.

Observing Figure 8 reveals that:
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• The model’s performance improves as k increases within the range of k ∈ [1, 5]. This
suggests that encoding topological structural information can enhance the model’s
performance.

• The model shows insensitivity to k when k > 5.
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Figure 8. The effect of various k on the model’s performance.

5.5. Model Limitations Analysis

This section aims to identify several limitations inherent in the current model.
Global Structure of Nodes: The current model primarily emphasizes the first-order

neighborhood structure of nodes while neglecting the broader global structure. By incor-
porating the global network, the model’s receptive field would expand, enabling a more
comprehensive acquisition of structural information.

Selection of Metric Learning Methods: The current model incorporates an attention-
based similarity measurement function that promotes mutual attention among nodes.
However, this approach should align optimally with the model’s primary objective of maxi-
mizing the preservation of structural information. We can use an alternative metric learning
approach that integrates structural awareness to address this concern. This alternative
technique would facilitate the extraction of implicit graph structures from the data, leading
to more effective capture of intricate structural patterns.

6. Conclusions

Achieving context-sensitive graph embeddings has been the subject of numerous
attempts, yet they have limitations. Some methods need supplementary information,
while others use community algorithms to capture multiple contexts. Moreover, some
methods require capturing sufficient structural information effectively. This paper presents
GESML, a novel graph embedding with a similarity metric learning model incorporating a
metric learning method that relieves these limitations. GESML leverages an attention-based
symmetric similarity metric function and a TOP-K pooling operation to acquire high-
quality node representations, integrating node and structural information from the graph
neighborhood as input features. Finally, we assess the effectiveness of GESML through
extensive experimentation on three datasets, focusing on its performance in link prediction
and node-clustering tasks. The experimental results conclusively demonstrate that GESML
outperforms baseline methods in both tasks, firmly establishing its superiority. In the
future, our research endeavors will explore cross-fusion among neighboring nodes. These
will enhance the capabilities of GESML further and unlock even more promising results.
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