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Abstract: A significant addition to fuzzy set theory for expressing uncertain data is an n,m-th power
root fuzzy set. Compared to the nth power root, Fermatean, Pythagorean, and intuitionistic fuzzy
sets, n,m-th power root fuzzy sets can cover more uncertain situations due to their greater range of
displayed membership grades. When discussing the symmetry between two or more objects, the
innovative concept of an n,m-th power root fuzzy set over dual universes is more flexible than the
current notion of an intuitionistic fuzzy set, a Pythagorean fuzzy set, and a nth power root fuzzy set.
In this study, we demonstrate a number of additional operations on n,m-th power root fuzzy sets
along with a number of their special aspects. Additionally, to deal with choice information, we create
a novel weighted aggregated operator called the n,m-th power root fuzzy weighted power average
(FWPAn

m) across n,m-th power root fuzzy sets and demonstrate some of its fundamental features. To
rank n,m-th power root fuzzy sets, we also define the score and accuracy functions. Moreover, we use
this operator to identify the countries with the best standards of living and show how we can select
the best option by contrasting aggregate results using score values. Finally, we contrast the results of
the FWPAn

m operator with the square-root fuzzy weighted power average (SR-FWPA), the nth power
root fuzzy weighted power average (nPR-FWPA), the Fermatean fuzzy weighted power average
(FFWPA), and the n,m-rung orthopair fuzzy weighted power average (n,m-ROFWPA) operators.

Keywords: n,mPR-fuzzy sets; operations; score function; aggregation operator

1. Introduction

Decision-making is a procedure of resolving real issues by selecting the best option
from a set of appropriate alternatives. Throughout the span of a typical day, people make a
lot of decisions. When there is only one option, no decision must be made; nevertheless, if
there are two or more possibilities, choosing is advantageous. In the branch of operations
research known as multi-criteria decision-making (MCDM), the optimal solution is deter-
mined after considering all potential options in light of various criteria. There are lots of
applications of MCDM issues in various fields. Numerous issues with ambiguity and uncer-
tainty exist in real life. To deal with this ambiguous and uncertain information, Zadeh [1]
developed fuzzy set (FS) theory. This set garnered a lot of attention for representing data
with uncertainty shortly after it was introduced, and it is still in the spotlight. It has been
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utilized in numerous multi-criteria decision-making situations. Al-Husban et al. [2] used
the multi-fuzzy space to create a new algebraic system. Chen and Phuong [3] suggested
a new fuzzy time series forecasting approach based on optimal partitions of intervals in
the universe of discourse and optimal weighting vectors of two-factor second-order fuzzy-
trend logical relationship groups. Er and Jebril [4] advanced research based on the fuzzy
controller. Vovan [5] used the fuzzy clustering technique to develop a predictive model
for interval time series and used several benchmark data series to demonstrate practical
applications. Atanassov [6] expanded fuzzy sets to intuitionistic fuzzy sets (IFSs) by assign-
ing a degree of membership and non-membership to the items, meeting the requirement
Ω̂Γ(t) + ΩΓ(t) ≤ 1. In light of the inclusion of membership and non-membership grades,
IFSs became wider, more significant, and more usable. In order to manage complicated
ambiguity and uncertainty with the condition (Ω̂Γ(t))2 + (ΩΓ(t))2 ≤ 1, Yager [7] created
a new extension of IFSs called Pythagorean fuzzy sets (PFSs). Thereafter, the concept of
Pythagorean fuzzy numbers was proposed by Zhang and Xu [8]. There are numerous uses
for IFSs in various sectors, such as image fusion and reservoir flood control [9], optimiza-
tion problems, medical analysis [10], and decision-making [11,12]. PFSs are more strong
and practicable than IFSs, since they can accommodate greater unpredictability than IFSs.
Senapati et al. [13] established Fermatean fuzzy sets (FFSs) and fundamental operations on
them, along with a Fermatean fuzzy TOPSIS method for resolving multi-criteria decision-
making issues. Yager [14] proposed the notion of q-rung orthopair fuzzy sets (q-ROFSs) in
order to widen the range of member and non-membership degrees. Lately, many techniques
for handling the input data have been proposed, motivated by the observation that the
weights of membership and non-membership degrees may not always be equal in general
situations. These methods can be applied to characterize some real-world problems and
broaden the data sets being studied. In this light, Al-shami et al. [15] created a novel class of
fuzzy sets called SR-fuzzy sets and thoroughly investigated their properties. The n,m-rung
orthopair fuzzy sets were described by Ibrahim and Alshammari [16] as a different variety
of the generalized q-rung orthopair fuzzy set. Al-shami et al. [17] presented the idea of an
nth power root fuzzy set (nPR-FS) and offered its core set of operations.

In medical science, engineering, economics, the environment, artificial intelligence,
and other fields, the majority of situations are unknown in some way. Action-oriented
research has so far created a wide range of competing models for the representation of
vaguely defined scenarios, which include ambiguous situations like those connected to a
lack of comprehensive and accurate knowledge. Probability theory, fuzzy sets, rough sets,
and soft sets are a few examples of these models. The application of rough sets and soft
rough sets has proven to be a significant tool for managing uncertainty and vagueness in
data that has widespread use in the medical and economic domains [18–23].

The major issue with decision-making challenges is the combination of numerous
elements from different sources to produce results or conclusions. Researchers have used
a variety of strategies to achieve the best aggregation by taking rules into account and
employing diverse procedures. Therefore, aggregation operators were created for this
purpose. These aggregation operations are very significant, since they combine the input
data into a unified value. These operators for data aggregation are crucial for the develop-
ment of data analysis findings. Averaging operators such as intuitionistic fuzzy weighted,
ordered weighted, and hybrid ones were suggested by Xu [24] to handle intuitionistic fuzzy
information. Additionally, weighted, ordered weighted, and hybrid geometric operators
based on IFSs were described by Xu and Yager [25]. Zeng and Sua [26] combined aggrega-
tion operators and distance measures to create the intuitionistic fuzzy ordered weighted
distance operator. In the context of the Pythagorean fuzzy weighted, weighted power,
and ordered weighted operators, Yager [27] introduced various geometric aggregation and
averaging operations. In a further study, Peng and Yuan [28] looked at some fundamental
aspects of Pythagorean fuzzy aggregation operators. The correlation coefficients between
Pythagorean fuzzy sets, linguistic Pythagorean fuzzy sets, and generalized Pythagorean
fuzzy geometric interactive aggregation operators employing Einstein operations were
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all taken into consideration by Garg in [29–31]. Several decision-making techniques were
described by [32,33]. Regarding Fermatean fuzzy sets, Senapati et al. [34] created the
Fermatean fuzzy weighted power average operator. Al-shami et al. [15] suggested and ap-
plied the SR-fuzzy weighted power average operator to select the best university. Ibrahim
and Alshammari [16] proposed the n,m-rung orthopair fuzzy weighted power average.
Ibrahim et al. [35] developed a new weighted aggregated operator via nth power root
fuzzy sets.

The examination of livable urban environment modeling is of the highest significance
for successfully implementing the livable city idea at various spatial scales. The choice of
an appropriate MCDM model for assessing cities’ livable environments in China was inves-
tigated by Chen [36]. The TOPSIS technique and fuzzy-AHP approaches were suggested
by Rashmi et al. [37] to address the problem of choosing the best travel destination in India.
Genç and Filipe [38] created a methodology in order to have a multi-criteria approach
for choosing a tourist destination region or place in Portugal. Wu et al. [39] proposed a
decision-making model based on the combination of two fuzzy AHP and fuzzy TOPSIS
methods, which are capable of determining the optimal agritourism location for investors
in Vietnam.

The concept of the n,m-th power root fuzzy set (n,mPR-FS) was demonstrated by
Saeed and Ibrahim [40], who also provided its fundamental set of operations. It is more
likely to be used in uncertain situations than other types of fuzzy sets due to its wider
range of displayed membership grades. They also investigated the idea of topology for
n,m-th power root fuzzy sets. In this paper, we continue to look into several other concepts
motivated by this kind of fuzzy set extension and demonstrate how this class of fuzzy
set extension allows us to analyze information data of various significance for grades of
membership and non-membership, which is suitable for some real problems.

The motives of the current study are summarized as follows: When dealing with
two-dimensional uncertainty, n,mPR-FSs have a wider range of applications than IFSs,
PFSs, FFSs, and nPR-FSs. To better understand this argument, consider a pair con-
taining membership and non-membership degrees (0.99, 0.31); then, it is apparent that
0.99n + 0.31n > 1 for n < 4 and 0.99n + n

√
0.31 > 1, for example, n = 2, 3, 80, 112. But,

0.99n + m
√

0.31 ≤ 1, for example, n > 80 and m = 2, or n > 112 and m = 3.
Motivated by the above analysis, in this research paper, the notion of nPR-FS is

extended to n,mPR-FS, thus allowing more uncertainties to be handled easily, as the order
of uncertainty is increased from 1 to the nth power of the membership degree and 1 to the
mth power of the non-membership degree.

The aims of this study are (1) to offer a novel fundamental operational; (2) to provide
alternative score and accuracy functions for comparing n,mPR-fuzzy numbers; (3) to
introduce an n,mPR-fuzzy weighted power average aggregation operator and to discuss
some of its features; and (4) to present a multi-criteria decision-making technique based on
this aggregation operator, which depends on an n,mPR-fuzzy environment.

This research contributes the following:

1. A number of a fresh operations on n,mPR-FSs are provided and supported
with examples;

2. A real-life multi-criteria decision-making problem, including the choice of an adequate
best country for life, is solved using one more effective algorithm that operates in an
n,mPR-fuzzy environment;

3. A comparison of the developed group decision-making method under n,mPR-fuzzy
sets with few existing approaches is also given.

This manuscript is formatted as follows. In Section 2, we present some definitions and
results related to this article. In Section 3, we outline several operations for the n,m-th power
root fuzzy set and look into some of their key traits. In Section 4, we illustrate the idea of a
weighted power average operator that is defined across the category of n,m-th power root
fuzzy sets. Then, using an empirical example, we discuss the MADM problems that can
occur when utilizing this operator. It is clear that one of the n,m-th power root fuzzy set’s
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main advantages is that it can be used in a wide range of decision-making situations. In
Section 5, we provide a comparative analysis of the proposed FWPAn

m operator with other
popular operators such as the SR-FWPA operator [15], nPR-FWPA operator [35], FFWPA
operator [34], and n,m-ROFWPA operator [16]. In the final section, we summarize the
paper’s main achievements and make some recommendations for future research.

The objectives of this study are to provide a novel weighted aggregating operator and
analyze its salient features as well as to investigate the MCDM techniques that employ
this operator.

2. Preliminaries

In this section, we review a few definitions and results that are pertinent to this study.

Definition 1. Let θ be the universal set and N be a set of all natural numbers. Then,
Γ = {

〈
t, Ω̂Γ(t), ΩΓ(t)

〉
: t ∈ θ} is called

1. A q-rung orthopair fuzzy set (q-ROFS) [14] if 0 ≤ (Ω̂Γ(t))q + (ΩΓ(t))q ≤ 1 for q ≥ 1;
2. An n,m-rung orthopair fuzzy set (n,m-ROFS) [16] if 0 ≤ (Ω̂Γ(t))n + (ΩΓ(t)))m ≤ 1 for

n, m ∈ N;
3. An nth power root fuzzy set (nPR-FS) [17] if 0 ≤ (Ω̂Γ(t))n + n

√
ΩΓ(t) ≤ 1 for n ∈ N \ {1};

and
4. An n,m-th power root fuzzy set (n,mPR-FS) [40] if 0 ≤ (Ω̂Γ(t))n + m

√
ΩΓ(t) ≤ 1 for

n, m ∈ N \ {1},
where Ω̂Γ(t) (resp. ΩΓ(t)) : θ → [0, 1] is the degree of membership (resp. non-membership) of
t ∈ θ to Γ

To keep things simple, we denote the n,mPR-FS Γ = {
〈

t, Ω̂Γ(t), ΩΓ(t)
〉

: t ∈ θ} sign

as Γ = (Ω̂Γ, ΩΓ).

Definition 2 ([40]). Let Γ = (Ω̂Γ, ΩΓ), Γ1 = (Ω̂Γ1 , ΩΓ1) and Γ2 = (Ω̂Γ2 , ΩΓ2) be n,mPR-FSs.
Then,

1. Γ1 = Γ2 if and only if Ω̂Γ1 = Ω̂Γ2 and ΩΓ1 = ΩΓ2 .
2. Γ1 ≥ Γ2 if and only if Ω̂Γ1 ≥ Ω̂Γ2 and ΩΓ1 ≤ ΩΓ2 .
3. Γc = ( n.m

√
ΩΓ, (Ω̂Γ)

n.m).
4. Γ1 ∩ Γ2 = (min{Ω̂Γ1 , Ω̂Γ2}, max{ΩΓ1 , ΩΓ2}).
5. Γ1 ∪ Γ2 = (max{Ω̂Γ1 , Ω̂Γ2}, min{ΩΓ1 , ΩΓ2}).

Figure 1 shows different types of n,mPR-fuzzy membership grade spaces.

Figure 1. Several n,mPR-FS-type grade spaces.
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Remark 1 ([40]). For every n,mPR-FS Γ = (Ω̂Γ, ΩΓ), we have

1. Γ is both an n,m-ROFS and an n-ROFS, where m, n > 1.
2. Γ is an nPR-FS, where m > n > 1.

Remark 2 ([40]). If Γ = (Ω̂Γ, ΩΓ) is an nPR-FS and 1 < m < n, then Γ is an n,mPR-FS.

3. Several New Operations on n,mPR-FSs

In this section, we suggest a number of fresh operations on n,mPR-FSs and focus on a
few of their attributes. Exactly four decimal digits are used for the calculations throughout
the full document.

Definition 3. Let Γ = (Ω̂Γ, ΩΓ), Γ1 = (Ω̂Γ1 , ΩΓ1) and Γ2 = (Ω̂Γ2 , ΩΓ2) be n,mPR-FSs. Then,

1. Γ1 ⊕ Γ2 =
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
, ΩΓ1 ΩΓ2

)
,

2. Γ1 ⊗ Γ2 =
(

Ω̂Γ1 Ω̂Γ2 , ( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m
)

,

3. αΓ =

(
n
√

1− (1− Ω̂n
Γ)

α, Ωα
Γ

)
, and

4. Γα =
(

Ω̂α
Γ, (1− (1− m

√
ΩΓ)

α)m
)

,

where α is a positive real number.

Example 1. Consider the 3,2PR-FSs Γ1 = (0.53, 0.48) and Γ2 = (0.35, 0.71) for θ = {t}. Then,

1. Γ1 ⊕ Γ2 =
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
, ΩΓ1 ΩΓ2

)
=
(

3
√

0.533 + 0.353 − (0.53)3(0.35)3, (0.48)(0.71)
)
≈ (0.5702, 0.3408).

2. Γ1 ⊗ Γ2 =
(

Ω̂Γ1 Ω̂Γ2 , ( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m
)

=
(
(0.53)(0.35), (

√
0.48 +

√
0.71−

√
0.48
√

0.71)2
)
≈ (0.1855, 0.9056).

3. αΓ1 =
(

n
√

1− (1− Ω̂n
Γ1
)α, Ωα

Γ1

)
=
(

3
√

1− (1− 0.533)4, 0.484
)
≈ (0.7804, 0.0531), for

α = 4.
4. Γα

1 =
(

Ω̂α
Γ1

, (1− (1− m
√

ΩΓ1)
α)n
)
=
(

0.534, (1− (1−
√

0.48)4)2
)
≈ (0.0789, 0.9823),

for α = 4.

Theorem 1. If Γ1 = (Ω̂Γ1 , ΩΓ1) and Γ2 = (Ω̂Γ2 , ΩΓ2) are n,mPR-FSs, then Γ1⊕ Γ2 and Γ1⊗ Γ2
are also n,mPR-FSs.

Proof. For n,mPR-FSs Γ1 = (Ω̂Γ1 , ΩΓ1) and Γ2 = (Ω̂Γ2 , ΩΓ2), the relationships shown
below are clear:

0 ≤ Ω̂n
Γ1
≤ 1, 0 ≤ m

√
ΩΓ1 ≤ 1, 0 ≤ (Ω̂Γ1)

n + m
√

ΩΓ1 ≤ 1;

and

0 ≤ Ω̂n
Γ2
≤ 1, 0 ≤ m

√
ΩΓ2 ≤ 1, 0 ≤ (Ω̂Γ2)

n + m
√

ΩΓ2 ≤ 1.

Thus, we obtain

Ω̂n
Γ1
≥ Ω̂n

Γ1
Ω̂n

Γ2
, Ω̂n

Γ2
≥ Ω̂n

Γ1
Ω̂n

Γ2
, 1 ≥ Ω̂n

Γ1
Ω̂n

Γ2
≥ 0

and

m
√

ΩΓ1 ≥ m
√

ΩΓ1
m
√

ΩΓ2 , m
√

ΩΓ2 ≥ m
√

ΩΓ1
m
√

ΩΓ2 , 1 ≥ m
√

ΩΓ1
m
√

ΩΓ2 ≥ 0

which shows that
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Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
≥ 0 implies n

√
Ω̂n

Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
≥ 0,

and

m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2 ≥ 0 implies ( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m ≥ 0.

Since Ω̂n
Γ2
≤ 1 and 0 ≤ 1− Ω̂n

Γ1
, then Ω̂n

Γ2
(1− Ω̂n

Γ1
) ≤ (1− Ω̂n

Γ1
), we obtain Ω̂n

Γ1
+

Ω̂n
Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
≤ 1, and hence, n

√
Ω̂n

Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
≤ 1.

Similarly, we can acquire

( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m ≤ 1.

It is clear that

0 ≤ m
√

ΩΓ1 ≤ 1− Ω̂n
Γ1

and 0 ≤ m
√

ΩΓ2 ≤ 1− Ω̂n
Γ2

.

Thus, we can acquire

( n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
)n + m

√
ΩΓ1 ΩΓ2

≤ Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
+ (1− Ω̂n

Γ1
)(1− Ω̂n

Γ2
) = 1

Hence,

0 ≤ n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
≤ 1, 0 ≤ ΩΓ1 ΩΓ2 ≤ 1 and

0 ≤ ( n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
)n + m

√
ΩΓ1 ΩΓ2 ≤ 1.

Similarly, we have

0 ≤ Ω̂Γ1 Ω̂Γ2 ≤ 1, 0 ≤ ( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m ≤ 1 and

0 ≤ (Ω̂Γ1 Ω̂Γ2)
n + m

√
( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m ≤ 1.

Thus, Γ1 ⊕ Γ2 and Γ1 ⊗ Γ2 are n,mPR-FSs.

Theorem 2. Let Γ = (Ω̂Γ, ΩΓ) be a n,mPR-FS and α > 0. Then, αΓ and Γα are n,mPR-FSs.

Proof. Since 0 ≤ Ω̂n
Γ ≤ 1, 0 ≤ m

√
ΩΓ ≤ 1 and 0 ≤ (Ω̂Γ)

n + m
√

ΩΓ ≤ 1, then

0 ≤ m
√

ΩΓ ≤ 1− Ω̂n
Γ

⇒ 0 ≤ (1− Ω̂n
Γ)

α

⇒ 1− (1− Ω̂n
Γ)

α ≤ 1

⇒ 0 ≤ n
√

1− (1− Ω̂n
Γ)

α ≤ n
√

1 = 1.

It is clear that 0 ≤ Ωα
Γ ≤ 1. Then, we have

0 ≤ ( n
√

1− (1− Ω̂n
Γ)

α)n + m
√

Ωα
Γ ≤ 1− (1− Ω̂n

Γ)
α + (1− Ω̂n

Γ)
α = 1.

Similarly, we have

0 ≤ (Ω̂α
Γ)

n + m
√
(1− (1− m

√
ΩΓ)α)m ≤ 1.

Hence, αΓ and Γα are n,mPR-FSs.
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Theorem 3. Let Γ1 = (Ω̂Γ1 , ΩΓ1) and Γ2 = (Ω̂Γ2 , ΩΓ2) be n,mPR-FSs. Then,

1. Γ1 ⊕ Γ2 = Γ2 ⊕ Γ1.
2. Γ1 ⊗ Γ2 = Γ2 ⊗ Γ1.

Proof. 1. Γ1 ⊕ Γ2 =
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
, ΩΓ1 ΩΓ2

)
(

n
√

Ω̂n
Γ2
+ Ω̂n

Γ1
− Ω̂n

Γ2
Ω̂n

Γ1
, ΩΓ2 ΩΓ1

)
= Γ2 ⊕ Γ1.

2. Γ1 ⊗ Γ2 =
(

Ω̂Γ1 Ω̂Γ2 , ( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m
)

=
(

Ω̂Γ2 Ω̂Γ1 , ( m
√

ΩΓ2 +
m
√

ΩΓ1 − m
√

ΩΓ2
m
√

ΩΓ1)
m
)
= Γ2 ⊗ Γ1.

Theorem 4. Let Γ1 = (Ω̂Γ1 , ΩΓ1), Γ2 = (Ω̂Γ2 , ΩΓ2) and Γ3 = (Ω̂Γ3 , ΩΓ3) be n,mPR-FSs. Then,

1. Γ1 ⊕ Γ2 ⊕ Γ3 = Γ1 ⊕ Γ3 ⊕ Γ2.
2. Γ1 ⊗ Γ2 ⊗ Γ3 = Γ1 ⊗ Γ3 ⊗ Γ2.

Proof. 1. Γ1 ⊕ Γ2 ⊕ Γ3

= (Ω̂Γ1 , ΩΓ1)⊕ (Ω̂Γ2 , ΩΓ2)⊕ (Ω̂Γ3 , ΩΓ3)

=
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
, ΩΓ1 ΩΓ2

)
⊕ (Ω̂Γ3 , ΩΓ3)

=
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
+ Ω̂n

Γ3
− Ω̂n

Γ3
(Ω̂n

Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
), ΩΓ1 ΩΓ2 ΩΓ3

)
=
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
+ Ω̂n

Γ3
− Ω̂n

Γ1
Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ3
− Ω̂n

Γ2
Ω̂n

Γ3
+ Ω̂n

Γ1
Ω̂n

Γ2
Ω̂n

Γ3
, ΩΓ1 ΩΓ2 ΩΓ3

)
=
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ3
− Ω̂n

Γ1
Ω̂n

Γ3
+ Ω̂n

Γ2
− Ω̂n

Γ2
(Ω̂n

Γ1
+ Ω̂n

Γ3
− Ω̂n

Γ1
Ω̂n

Γ3
), ΩΓ1 ΩΓ2 ΩΓ3

)
=
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ3
− Ω̂n

Γ1
Ω̂n

Γ3
, ΩΓ1 ΩΓ3

)
⊕ (Ω̂Γ2 , ΩΓ2)

= Γ1 ⊕ Γ3 ⊕ Γ2.
2. We apply the same strategy as described in (1).

Theorem 5. Let Γ = (Ω̂Γ, ΩΓ), Γ1 = (Ω̂Γ1 , ΩΓ1) and Γ2 = (Ω̂Γ2 , ΩΓ2) be n,mPR-FSs. Then,

1. α(Γ1 ⊕ Γ2) = αΓ1 ⊕ αΓ2, for α > 0.
2. (α1 + α2)Γ = α1Γ⊕ α2Γ, for α1, α2 > 0.
3. (Γ1 ⊗ Γ2)

α = Γα
1 ⊗ Γα

2 , for α > 0.
4. Γα1 ⊗ Γα2 = Γ(α1+α2), for α1, α2 > 0.

Proof. 1. α(Γ1 ⊕ Γ2) = α
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
, ΩΓ1 ΩΓ2

)
=
(

n
√

1− (1− Ω̂n
Γ1
− Ω̂n

Γ2
+ Ω̂n

Γ1
Ω̂n

Γ2
)α, (ΩΓ1 ΩΓ2)

α
)

=
(

n
√

1− (1− Ω̂n
Γ1
)α(1− Ω̂n

Γ2
)α, Ωα

Γ1
Ωα

Γ2

)
.

And αΓ1 ⊕ αΓ2 =
(

n
√

1− (1− Ω̂n
Γ1
)α, Ωα

Γ1

)
⊕
(

n
√

1− (1− Ω̂n
Γ2
)α, Ωα

Γ2

)
=
(

n
√

1− (1− Ω̂n
Γ1
)α + 1− (1− Ω̂n

Γ2
)α − (1− (1− Ω̂n

Γ1
)α)(1− (1− Ω̂n

Γ2
)α), Ωα

Γ1
Ωα

Γ2

)
=
(

n
√

1− (1− Ω̂n
Γ1
)α(1− Ω̂n

Γ2
)α, Ωα

Γ1
Ωα

Γ2

)
= α(Γ1 ⊕ Γ2).

2. (α1 + α2)Γ = (α1 + α2)(Ω̂Γ, ΩΓ) =

(
n
√

1− (1− Ω̂n
Γ)

α1+α2 , Ωα1+α2
Γ

)
=

(
n
√

1− (1− Ω̂n
Γ)

α1(1− Ω̂n
Γ)

α2 , Ωα1+α2
Γ

)
=

(
n
√

1− (1− Ω̂n
Γ)

α1 + 1− (1− Ω̂n
Γ)

α2 − (1− (1− Ω̂n
Γ)

α1)(1− (1− Ω̂n
Γ)

α2), Ωα1
Γ Ωα2

Γ

)
=

(
n
√

1− (1− Ω̂n
Γ)

α1 , Ωα1
Γ

)
⊕
(

n
√

1− (1− Ω̂n
Γ)

α2 , Ωα2
Γ

)
= α1Γ⊕ α2Γ.
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3. (Γ1 ⊗ Γ2)
α =

(
Ω̂Γ1 Ω̂Γ2 , ( m

√
ΩΓ1 +

m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m
)α

=
(
(Ω̂Γ1 Ω̂Γ2)

α, (1− (1− m
√

ΩΓ1 − m
√

ΩΓ2 +
m
√

ΩΓ1
m
√

ΩΓ2)
α)m
)

=
(

Ω̂α
Γ1

Ω̂α
Γ2

, (1− (1− m
√

ΩΓ1)
α(1− m

√
ΩΓ2)

α)m
)

=
(

Ω̂α
Γ1

, (1− (1− m
√

ΩΓ1)
α)m
)
⊗
(

Ω̂α
Γ2

, (1− (1− m
√

ΩΓ2)
α)m
)

= Γα
1 ⊗ Γα

2 .

4. Γα1 ⊗ Γα2 =
(

Ω̂α1
Γ , (1− (1− m

√
ΩΓ)

α1)m
)
⊗
(

Ω̂α2
Γ , (1− (1− m

√
ΩΓ)

α2)m
)

= (Ω̂α1+α2
Γ , [1− (1− m

√
ΩΓ)

α1 + 1− (1− m
√

ΩΓ)
α2 − (1− (1− m

√
ΩΓ)

α1)
(1− (1− m

√
ΩΓ)

α2)]m)

=
(

Ω̂α1+α2
Γ , (1− (1− m

√
ΩΓ)

α1+α2)m
)

= Γ(α1+α2).

Theorem 6. Let Γ1 = (Ω̂Γ1 , ΩΓ1), Γ2 = (Ω̂Γ2 , ΩΓ2) and Γ3 = (Ω̂Γ3 , ΩΓ3) be n,mPR-FSs. Then,

1. (Γ1 ∩ Γ2)⊕ Γ3 = (Γ1 ⊕ Γ3) ∩ (Γ2 ⊕ Γ3).
2. (Γ1 ∪ Γ2)⊕ Γ3 = (Γ1 ⊕ Γ3) ∪ (Γ2 ⊕ Γ3).
3. (Γ1 ∩ Γ2)⊗ Γ3 = (Γ1 ⊗ Γ3) ∩ (Γ2 ⊗ Γ3).
4. (Γ1 ∪ Γ2)⊗ Γ3 = (Γ1 ⊗ Γ3) ∪ (Γ2 ⊗ Γ3).

Proof. Definitions 3 and 2 give us

1. (Γ1 ∩ Γ2)⊕ Γ3 = (min{Ω̂Γ1 , Ω̂Γ2}, max{ΩΓ1 , ΩΓ2})⊕ (Ω̂Γ3 , ΩΓ3)

=
(

n
√

min{Ω̂n
Γ1

, Ω̂n
Γ2
}+ Ω̂n

Γ3
− Ω̂n

Γ3
min{Ω̂n

Γ1
, Ω̂n

Γ2
}, max{ΩΓ1 , ΩΓ2}ΩΓ3

)
=
(

n
√
(1− Ω̂n

Γ3
)min{Ω̂n

Γ1
, Ω̂n

Γ2
}+ Ω̂n

Γ3
, max{ΩΓ1 ΩΓ3 , ΩΓ2 ΩΓ3}

)
.

And (Γ1 ⊕ Γ3) ∩ (Γ2 ⊕ Γ3)

=
(

n
√

Ω̂n
Γ1
+ Ω̂n

Γ3
− Ω̂n

Γ1
Ω̂n

Γ3
, ΩΓ1 ΩΓ3

)
∩
(

n
√

Ω̂n
Γ2
+ Ω̂n

Γ3
− Ω̂n

Γ2
Ω̂n

Γ3
, ΩΓ2 ΩΓ3

)
=
(

min{ n
√

Ω̂n
Γ1
+ Ω̂n

Γ3
− Ω̂n

Γ1
Ω̂n

Γ3
, n
√

Ω̂n
Γ2
+ Ω̂n

Γ3
− Ω̂n

Γ2
Ω̂n

Γ3
}, max{ΩΓ1 ΩΓ3 , ΩΓ2 ΩΓ3}

)
=
(

min{ n
√
(1− Ω̂n

Γ3
)Ω̂n

Γ1
+ Ω̂n

Γ3
, n
√
(1− Ω̂n

Γ3
)Ω̂n

Γ2
+ Ω̂n

Γ3
}, max{ΩΓ1 ΩΓ3 , ΩΓ2 ΩΓ3}

)
=
(

n
√
(1− Ω̂n

Γ3
)min{Ω̂n

Γ1
, Ω̂n

Γ2
}+ Ω̂n

Γ3
, max{ΩΓ1 ΩΓ3 , ΩΓ2 ΩΓ3}

)
.

Thus, (Γ1 ∩ Γ2)⊕ Γ3 = (Γ1 ⊕ Γ3) ∩ (Γ2 ⊕ Γ3).
2. We apply the same strategy as described in (1).
3. (Γ1 ∩ Γ2)⊗ Γ3 = (min{Ω̂Γ1 , Ω̂Γ2}, max{ΩΓ1 , ΩΓ2})⊗ Γ3

=
(

min{Ω̂Γ1 , Ω̂Γ2}Ω̂Γ3 , (max{ m
√

ΩΓ1 , m
√

ΩΓ2}+ m
√

ΩΓ3 − m
√

ΩΓ3 max{ m
√

ΩΓ1 , m
√

ΩΓ2})m
)

=
(

min{Ω̂Γ1 Ω̂Γ3 , Ω̂Γ2 Ω̂Γ3}, ((1− m
√

ΩΓ3 )max{ m
√

ΩΓ1 , m
√

ΩΓ2}+ m
√

ΩΓ3 )
m
)

.

And (Γ1 ⊗ Γ3) ∩ (Γ2 ⊗ Γ3) =
(

Ω̂Γ1 Ω̂Γ3 , ( m
√

ΩΓ1 +
m
√

ΩΓ3 − m
√

ΩΓ1
m
√

ΩΓ3 )
m
)

∩
(

Ω̂Γ2 Ω̂Γ3 , ( m
√

ΩΓ2 +
m
√

ΩΓ3 − m
√

ΩΓ2
m
√

ΩΓ3 )
m
)

=
(

Ω̂Γ1 Ω̂Γ3 , ((1− m
√

ΩΓ3 )
m
√

ΩΓ1 +
m
√

ΩΓ3 )
m
)
∩
(

Ω̂Γ2 Ω̂Γ3 , ((1− m
√

ΩΓ3 )
m
√

ΩΓ2 +
m
√

ΩΓ3 )
m
)

= (min{Ω̂Γ1 Ω̂Γ3 , Ω̂Γ2 Ω̂Γ3}, max{((1− m
√

ΩΓ3 )
m
√

ΩΓ1 +
m
√

ΩΓ3 )
m,

((1− m
√

ΩΓ3 )
m
√

ΩΓ2 +
m
√

ΩΓ3 )
m})

=
(

min{Ω̂Γ1 Ω̂Γ3 , Ω̂Γ2 Ω̂Γ3}, ((1− m
√

ΩΓ3 )max{ m
√

ΩΓ1 , m
√

ΩΓ2}+ m
√

ΩΓ3 )
m
)

.

Thus, (Γ1 ∩ Γ2)⊗ Γ3 = (Γ1 ⊗ Γ3) ∩ (Γ2 ⊗ Γ3).
4. We apply the same strategy as described in (3).

Theorem 7. Let Γ1 = (Ω̂Γ1 , ΩΓ1) and Γ2 = (Ω̂Γ2 , ΩΓ2) be n,mPR-FSs, and α > 0. Then,

1. α(Γ1 ∪ Γ2) = αΓ1 ∪ αΓ2.
2. (Γ1 ∪ Γ2)

α = Γα
1 ∪ Γα

2 .



Symmetry 2023, 15, 1617 9 of 20

Proof. Definitions 2 and 3 give us

1. α(Γ1 ∪ Γ2) = α(max{Ω̂Γ1 , Ω̂Γ2}, min{ΩΓ1 , ΩΓ2})
=
(

n
√

1− (1−max{Ω̂n
Γ1

, Ω̂n
Γ2
})α, min{Ωα

Γ1
, Ωα

Γ2
}
)

.

And αΓ1 ∪ αΓ2 =
(

n
√

1− (1− Ω̂n
Γ1
)α, Ωα

Γ1

)
∪
(

n
√

1− (1− Ω̂n
Γ2
)α, Ωα

Γ2

)
=
(

max{ n
√

1− (1− Ω̂n
Γ1
)α, n
√

1− (1− Ω̂n
Γ2
)α}, min{Ωα

Γ1
, Ωα

Γ2
}
)

=
(

n
√

1− (1−max{Ω̂n
Γ1

, Ω̂n
Γ2
})α, min{Ωα

Γ1
, Ωα

Γ2
}
)
= α(Γ1 ∪ Γ2).

2. This can be demonstrated similarly to (1).

Theorem 8. Let Γ = (Ω̂Γ, ΩΓ), Γ1 = (Ω̂Γ1 , ΩΓ1) and Γ2 = (Ω̂Γ2 , ΩΓ2) be n,mPR-FSs, and
α > 0. Then,

1. (Γ1 ⊕ Γ2)
c = Γc

1 ⊗ Γc
2.

2. (Γ1 ⊗ Γ2)
c = Γc

1 ⊕ Γc
2.

3. (Γc)α = (αΓ)c.
4. α(Γ)c = (Γα)c.

Proof. Definitions 2 and 3 (3) give us

1. (Γ1 ⊕ Γ2)
c =

(
n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
, ΩΓ1 ΩΓ2

)c

=
(

n.m
√

ΩΓ1 ΩΓ2 , ( n
√

Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
)n.m

)
=
(

n.m
√

ΩΓ1
n.m
√

ΩΓ2 , (Ω̂n
Γ1
+ Ω̂n

Γ2
− Ω̂n

Γ1
Ω̂n

Γ2
)m
)

= ( n.m
√

ΩΓ1 , (Ω̂Γ1)
n.m)⊗ ( n.m

√
ΩΓ2 , (Ω̂Γ2)

n.m)
= Γc

1 ⊗ Γc
2.

2. (Γ1 ⊗ Γ2)
c =

(
Ω̂Γ1 Ω̂Γ2 , ( m

√
ΩΓ1 +

m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m
)c

=
(

n.m
√
( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2)
m, (Ω̂Γ1 Ω̂Γ2)

n.m
)

=
(

n
√
( m
√

ΩΓ1 +
m
√

ΩΓ2 − m
√

ΩΓ1
m
√

ΩΓ2), (Ω̂Γ1)
n.m(Ω̂Γ2)

n.m
)

= ( n.m
√

ΩΓ1 , (Ω̂Γ1)
n.m)⊕ ( n.m

√
ΩΓ2 , (Ω̂Γ2)

n.m)
= Γc

1 ⊕ Γc
2.

3. (Γc)α = ( n.m
√

ΩΓ, (Ω̂Γ)
n.m)α

=
(
( n.m
√

ΩΓ)
α, (1− (1− Ω̂n

Γ)
α)m
)

=

(
n
√

1− (1− Ω̂n
Γ)

α, Ωα
Γ

)c

= (αΓ)c.

4. α(Γ)c = α( n.m
√

ΩΓ, (Ω̂Γ)
n.m) =

(
n
√

1− (1− m
√

ΩΓ)α, ((Ω̂Γ)
n.m)α

)
=
(

Ω̂α
Γ, (1− (1− m

√
ΩΓ)

α)m
)c

= (Γα)c.

4. n,mPR-Fuzzy Weighted Power Average Operator

Definition 4. Let Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r) be a value of n,mPR-FSs and λ = (λ1, λ2, ..., λr)T

be a weight vector of Γi with λi > 0, ∑r
i=1 λi = 1, and n, m > 1. Then, an n,mPR-fuzzy weighted

power average (FWPAn
m) operator is a function FWPAn

m: Γr → Γ, where

FWPAn
m(Γ1, Γ2, ..., Γr) = ((∑r

i=1 λiΩ̂n
Γi
)

1
n , (∑r

i=1 λiΩ
1
m
Γi
)m).
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Example 2. Let Γ1 = (0.4, 0.1), Γ2 = (0.3, 0.2) and Γ3 = (0.1, 0.8) be n,mPR-FSs. If λ =
(0.3, 0.5, 0.2)T is a weight vector of Γi (i= 1, 2, 3), then
FWPAn

m(Γ1, Γ2, Γ3) = ((0.3× 0.4n + 0.5× 0.3n + 0.2× 0.1n)
1
n , (0.3× 0.1

1
m + 0.5× 0.2

1
m +

0.2× 0.8
1
m )m)

≈



(0.3082, 0.2188) for n = 2 and m = 13,
(0.3508, 0.2192) for n = 8 and m = 12,
(0.3805, 0.2196) for n = 24 and m = 11,
(0.3865, 0.2202) for n = 35 and m = 10,
(0.3936, 0.2208) for n = 75 and m = 9,
(0.3992, 0.2217) for n = 567 and m = 8,
(0.3994, 0.2228) for n = 800 and m = 7,
(0.3995, 0.2242) for n = 885 and m = 6,
(0.3996, 0.2264) for n = 1100 and m = 5,
(0.3998, 0.2296) for n = 2000 and m = 4,
(0.3292, 0.2352) for n = 4 and m = 3,
(0.3204, 0.2474) for n = 3 and m = 2.

Theorem 9. Let Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r) be a value of n,mPR-FSs and λ = (λ1, λ2, ..., λr)T

be a weight vector of Γi with λi > 0 and ∑r
i=1 λi = 1. Then, FWPAn

m(Γ1, Γ2, ..., Γr) is an n,mPR-FS.

Proof. For any n,mPR-FS Γi = (Ω̂Γi , ΩΓi ), we have

0 ≤ Ω̂n
Γi
≤ 1

0 ≤ Ω
1
m
Γi
≤ 1

and

0 ≤ Ω̂n
Γi
+ Ω

1
m
Γi
≤ 1;

Hence,

0 ≤ λ1Ω̂n
Γ1
+ λ1Ω

1
m
Γ1
≤ λ1

0 ≤ λ2Ω̂n
Γ2
+ λ2Ω

1
m
Γ2
≤ λ2

.

.

.

0 ≤ λrΩ̂n
Γr
+ λrΩ

1
m
Γr
≤ λr

and then

0 ≤ (λ1Ω̂n
Γ1
+ λ1Ω

1
m
Γ1
) + (λ2Ω̂n

Γ2
+ λ2Ω

1
m
Γ2
) + ... + (λrΩ̂n

Γr
+ λrΩ

1
m
Γr
) ≤ λ1 + λ2 + ... + λr,

which implies that

0 ≤ ∑r
i=1 λiΩ̂n

Γi
+ ∑r

i=1 λiΩ
1
m
Γi
≤ ∑r

i=1 λi = 1.

Thus,

0 ≤ ((∑r
i=1 λiΩ̂n

Γi
)

1
n )n + ((∑r

i=1 λiΩ
1
m
Γi
)m)

1
m

= ∑r
i=1 λiΩ̂n

Γi
+ ∑r

i=1 λiΩ
1
m
Γi
≤ 1.
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It is clear that

0 ≤ (∑r
i=1 λiΩ̂n

Γi
)

1
n ≤ 1

and

0 ≤ (∑r
i=1 λiΩ

1
m
Γi
)m ≤ 1

Then, FWPAn
m(Γ1, Γ2, ..., Γr) is an n,mPR-FS.

Theorem 10. (Boundedness) Let Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r) be a number of n,mPR-FSs
and λ = (λ1, λ2, ..., λr)T be a weight vector of Γi with ∑r

i=1 λi = 1. Suppose that Ω̂◦Γ =

min1≤i≤r{Ω̂Γi}, Ω̂•Γ = max1≤i≤r{Ω̂Γi}, Ω◦Γ = min1≤i≤r{ΩΓi} and Ω•Γ = max1≤i≤r{ΩΓi}.
Then,

(Ω̂◦Γ, Ω•Γ) ≤ FWPAn
m(Γ1, Γ2, ..., Γr) ≤ (Ω̂•Γ, Ω◦Γ).

Proof. For any Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r), we can obtain Ω̂◦Γ ≤ Ω̂Γi ≤ Ω̂•Γ and Ω◦Γ ≤
ΩΓi ≤ Ω•Γ. Then, the inequalities for the membership value are

Ω̂◦Γ = (∑r
i=1 λiΩ̂◦nΓ )

1
n ≤ (∑r

i=1 λiΩ̂n
Γi
)

1
n ≤ (∑r

i=1 λiΩ̂•nΓ )
1
n = Ω̂•Γ.

Similarly, for the non-membership value

Ω◦Γ = (∑r
i=1 λiΩ◦Γ

1
m )m ≤ (∑r

i=1 λiΩ
1
m
Γi
)m ≤ (∑r

i=1 λiΩ•Γ
1
m )m = Ω•Γ.

Therefore, (Ω̂◦Γ, Ω•Γ) ≤ FWPAn
m(Γ1, Γ2, ..., Γr) ≤ (Ω̂•Γ, Ω◦Γ).

Theorem 11. (Monotonicity) Let Γi = (Ω̂Γi , ΩΓi ) and Li = (Ω̂Li , ΩLi ) (i = 1, 2, ..., r) be
numbers of n,mPR-FSs. If Ω̂Γi ≤ Ω̂Li and ΩΓi ≥ ΩLi ∀i, then

FWPAn
m(Γ1, Γ2, ..., Γr) ≤ FWPAn

m(L1, L2, ..., Lr).

Proof. Since for all i we have Ω̂Γi ≤ Ω̂Li and ΩΓi ≥ ΩLi , then (∑r
i=1 λiΩ̂n

Γi
)

1
n ≤ (∑r

i=1 λiΩ̂n
Li
)

1
n

and (∑r
i=1 λiΩ

1
m
Γi
)m ≥ (∑r

i=1 λiΩ
1
m
Li
)m. Therefore,

FWPAn
m(Γ1, Γ2, ..., Γr) = ((∑r

i=1 λiΩ̂n
Γi
)

1
n , (∑r

i=1 λiΩ
1
m
Γi
)m)

≤ ((∑r
i=1 λiΩ̂n

Li
)

1
n , (∑r

i=1 λiΩ
1
m
Li
)m) = FWPAn

m(L1, L2, ..., Lr).

Theorem 12. (Idempotency) Let Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r) be a number of n,mPR-FSs,
such that Γi = Γ = (Ω̂Γ, ΩΓ), and let λ = (λ1, λ2, ..., λr)T be a weight vector of Γi with
∑r

i=1 λi = 1. Then, FWPAn
m(Γ1, Γ2, ..., Γr) = Γ.

Proof. Since Γi = Γ = (Ω̂Γ, ΩΓ) (i = 1, 2, ..., r), then FWPAn
m(Γ1, Γ2, ..., Γr) =

((∑r
i=1 λiΩ̂n

Γi
)

1
n , (∑r

i=1 λiΩ
1
m
Γi
)m) = ((∑r

i=1 λiΩ̂n
Γ)

1
n , (∑r

i=1 λiΩ
1
m
Γ )m) = (Ω̂Γ, ΩΓ) = Γ.

Theorem 13. Let Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r) be a value of n,mPR-FSs, Γ = (Ω̂Γ, ΩΓ) be
n,mPR-FS, and λ = (λ1, λ2, ..., λr)T be a weight vector of Γi with ∑r

i=1 λi = 1. Then,

FWPAn
m(Γ1 ⊕ Γ, Γ2 ⊕ Γ, ..., Γr ⊕ Γ) ≥ FWPAn

m(Γ1 ⊗ Γ, Γ2 ⊗ Γ, ..., Γr ⊗ Γ).

Proof. For any Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r) and Γ = (Ω̂Γ, ΩΓ), we have

Ω̂n
Γi
+ Ω̂n

Γ − Ω̂n
Γi

Ω̂n
Γ ≥ 2Ω̂n

Γi
Ω̂n

Γ − Ω̂n
Γi

Ω̂n
Γ = Ω̂n

Γi
Ω̂n

Γ

and
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Ω
1
m
Γi
+ Ω

1
m
Γ −Ω

1
m
Γi

Ω
1
m
Γ ≥ 2Ω

1
m
Γi

Ω
1
n
Γ −Ω

1
m
Γi

Ω
1
m
Γ = Ω

1
m
Γi

Ω
1
m
Γ .

That is,

∑r
i=1 λi(Ω̂n

Γi
+ Ω̂n

Γ − Ω̂n
Γi

Ω̂n
Γ) ≥ ∑r

i=1 λiΩ̂n
Γi

Ω̂n
Γ

⇒ (∑r
i=1 λi(Ω̂n

Γi
+ Ω̂n

Γ − Ω̂n
Γi

Ω̂n
Γ))

1
n ≥ (∑r

i=1 λiΩ̂n
Γi

Ω̂n
Γ)

1
n ——(1)

and

∑r
i=1 λi(Ω

1
m
Γi
+ Ω

1
m
Γ −Ω

1
m
Γi

Ω
1
m
Γ ) ≥ ∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Γ

⇒ (∑r
i=1 λi(Ω

1
m
Γi
+ Ω

1
m
Γ −Ω

1
m
Γi

Ω
1
m
Γ ))m ≥ (∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Γ )m. ——(2)

Thus, we have

FWPAn
m(Γ1 ⊕ Γ, Γ2 ⊕ Γ, ..., Γr ⊕ Γ) = ((∑r

i=1 λi(Ω̂n
Γi
+ Ω̂n

Γ − Ω̂n
Γi

Ω̂n
Γ))

1
n , (∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Γ )m)

and

FWPAn
m(Γ1 ⊗ Γ, Γ2 ⊗ Γ, ..., Γr ⊗ Γ) = ((∑r

i=1 λiΩ̂n
Γi

Ω̂n
Γ)

1
n , (∑r

i=1 λi(Ω
1
m
Γi
+ Ω

1
m
Γ −Ω

1
m
Γi

Ω
1
m
Γ ))m).

Then, from (1) and (2), we obtain
FWPAn

m(Γ1 ⊕ Γ, Γ2 ⊕ Γ, ..., Γr ⊕ Γ) ≥ FWPAn
m(Γ1 ⊗ Γ, Γ2 ⊗ Γ, ..., Γr ⊗ Γ).

Theorem 14. Let Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r) be a value of n,mPR-FSs, Γ = (Ω̂Γ, ΩΓ) be
n,mPR-FS, and λ = (λ1, λ2, ..., λr)T be a weight vector of Γi with ∑r

i=1 λi = 1. Then,

1. FWPAn
m(Γ1 ⊕ Γ, Γ2 ⊕ Γ, ..., Γr ⊕ Γ) ≥ FWPAn

m(Γ1, Γ2, ..., Γr)⊗ Γ.
2. FWPAn

m(Γ1, Γ2, ..., Γr)⊕ Γ ≥ FWPAn
m(Γ1, Γ2, ..., Γr)⊗ Γ.

Proof. We provide proof of (1). The other assumption is verified in a similar way. Since for
any Γi = (Ω̂Γi , ΩΓi ) (i = 1, 2, ..., r) and Γ = (Ω̂Γ, ΩΓ), we have

(∑r
i=1 λi(Ω̂n

Γi
+ Ω̂n

Γ − Ω̂n
Γi

Ω̂n
Γ))

1
n ≥ (∑r

i=1 λiΩ̂n
Γi

Ω̂n
Γ)

1
n = (∑r

i=1 λiΩ̂n
Γi
)

1
n Ω̂Γ. —–(1)

Similarly,

(∑r
i=1 λi(Ω

1
m
Γi
+ Ω

1
m
Γ −Ω

1
m
Γi

Ω
1
m
Γ ))m ≥ (∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Γ )m = (∑r

i=1 λiΩ
1
m
Γi
)mΩΓ. —–(2)

Thus, we have

FWPAn
m(Γ1 ⊕ Γ, Γ2 ⊕ Γ, ..., Γr ⊕ Γ)

= ((∑r
i=1 λi(Ω̂n

Γi
+ Ω̂n

Γ − Ω̂n
Γi

Ω̂n
Γ))

1
n , (∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Γ )m)

and

FWPAn
m(Γ1, Γ2, ..., Γr)⊗ Γ

= ((∑r
i=1 λiΩ̂n

Γi
)

1
n , (∑r

i=1 λiΩ
1
m
Γi
)m)⊗ (Ω̂Γ, ΩΓ)

= ((∑r
i=1 λiΩ̂n

Γi
)

1
n Ω̂Γ, (∑r

i=1 λiΩ
1
m
Γi
+ Ω

1
m
Γ −∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Γ )m).

Therefore, from (1) and (2), we have

FWPAn
m(Γ1 ⊕ Γ, Γ2 ⊕ Γ, ..., Γr ⊕ Γ) ≥ FWPAn

m(Γ1, Γ2, ..., Γr)⊗ Γ.
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Theorem 15. Let Γi = (Ω̂Γi , ΩΓi ) and Li = (Ω̂Li , ΩLi ) (i = 1, 2, ..., r) be values of n,mPR-FSs
and λ = (λ1, λ2, ..., λr)T be a weight vector of them with ∑r

i=1 λi = 1. Then,

1. FWPAn
m(Γ1 ⊕ L1, Γ2 ⊕ L2, ..., Γr ⊕ Lr) ≥ FWPAn

m(Γ1 ⊗ L1, Γ2 ⊗ L2, ..., Γr ⊗ Lr).
2. FWPAn

m(Γ1, Γ2, ..., Γr)⊕ FWPAn
m(L1, L2, ..., Lr) ≥

FWPAn
m(Γ1, Γ2, ..., Γr)⊗ FWPAn

m(L1, L2, ..., Lr).

Proof. For any Γi = (Ω̂Γi , ΩΓi ) and Li = (Ω̂Li , ΩLi ) (i = 1, 2, ..., r), we have

1. Ω̂n
Γi
+ Ω̂n

Li
− Ω̂n

Γi
Ω̂n

Li
≥ 2Ω̂n

Γi
Ω̂n

Li
− Ω̂n

Γi
Ω̂n

Li
= Ω̂n

Γi
Ω̂n

Li
and

Ω
1
m
Γi
+ Ω

1
m
Li
−Ω

1
m
Γi

Ω
1
m
Li
≥ 2Ω

1
m
Γi

Ω
1
m
Li
−Ω

1
m
Γi

Ω
1
m
Li
= Ω

1
m
Γi

Ω
1
m
Li

.

That is,

∑r
i=1 λi(Ω̂n

Γi
+ Ω̂n

Li
− Ω̂n

Γi
Ω̂n

Li
) ≥ ∑r

i=1 λiΩ̂n
Γi

Ω̂n
Li

⇒ (∑r
i=1 λi(Ω̂n

Γi
+ Ω̂n

Li
− Ω̂n

Γi
Ω̂n

Li
))

1
n ≥ (∑r

i=1 λiΩ̂n
Γi

Ω̂n
Li
)

1
n ——(*)

and

∑r
i=1 λi(Ω

1
m
Γi
+ Ω

1
m
Li
−Ω

1
m
Γi

Ω
1
m
Li
) ≥ ∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Li

⇒ (∑r
i=1 λi(Ω

1
m
Γi
+ Ω

1
m
Li
−Ω

1
m
Γi

Ω
1
m
Li
))m ≥ (∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Γ )m. ——(**)

Hence, we have

FWPAn
m(Γ1 ⊕ L1, Γ2 ⊕ L2, ..., Γr ⊕ Lr)

= ((∑r
i=1 λi(Ω̂n

Γi
+ Ω̂n

Li
− Ω̂n

Γi
Ω̂n

Li
))

1
n , (∑r

i=1 λiΩ
1
m
Γi

Ω
1
m
Li
)m)

and

FWPAn
m(Γ1 ⊗ L1, Γ2 ⊗ L2, ..., Γr ⊗ Lr)

= ((∑r
i=1 λiΩ̂n

Γi
Ω̂n

Li
)

1
n , (∑r

i=1 λi(Ω
1
m
Γi
+ Ω

1
m
Li
−Ω

1
m
Γi

Ω
1
m
Li
))m)

Thus, from (*) and (**) we obtain

FWPAn
m(Γ1 ⊕ L1, Γ2 ⊕ L2, ..., Γr ⊕ Lr) ≥ FWPAn

m(Γ1 ⊗ L1, Γ2 ⊗ L2, ..., Γr ⊗ Lr).

2. Since

∑r
i=1 λiΩ̂n

Γi
≥ ∑r

i=1 λiΩ̂n
Γi

∑r
i=1 λiΩ̂n

Li

and

∑r
i=1 λiΩ̂n

Li
≥ ∑r

i=1 λiΩ̂n
Γi

∑r
i=1 λiΩ̂n

Li
,

∑r
i=1 λiΩ̂n

Γi
+ ∑r

i=1 λiΩ̂n
Li
≥ ∑r

i=1 λiΩ̂n
Γi

∑r
i=1 λiΩ̂n

Li
+ ∑r

i=1 λiΩ̂n
Γi

∑r
i=1 λiΩ̂n

Li
,

which implies that

∑r
i=1 λiΩ̂n

Γi
+ ∑r

i=1 λiΩ̂n
Li
−∑r

i=1 λiΩ̂n
Γi

∑r
i=1 λiΩ̂n

Li
≥ ∑r

i=1 λiΩ̂n
Γi

∑r
i=1 λiΩ̂n

Li
,

and hence

n
√

∑r
i=1 λiΩ̂n

Γi
+ ∑r

i=1 λiΩ̂n
Li
−∑r

i=1 λiΩ̂n
Γi

∑r
i=1 λiΩ̂n

Li
≥ n
√

∑r
i=1 λiΩ̂n

Γi
∑r

i=1 λiΩ̂n
Li

——(***)



Symmetry 2023, 15, 1617 14 of 20

Similarly,

(∑r
i=1 λiΩ

1
m
Γi
+ ∑r

i=1 λiΩ
1
m
Li
−∑r

i=1 λiΩ
1
m
Γi

∑r
i=1 λiΩ

1
m
Li
)m ≥ (∑r

i=1 λiΩ
1
m
Γi

∑r
i=1 λiΩ

1
m
Li
)m ——(****)

Hence, we have

FWPAn
m(Γ1, Γ2, ..., Γr)⊕ nPR-FWPA(L1, L2, ..., Lr)

= ((∑r
i=1 λiΩ̂n

Γi
)

1
n , (∑r

i=1 λiΩ
1
m
Γi
)m)⊕ ((∑r

i=1 λiΩ̂n
Li
)

1
n , (∑r

i=1 λiΩ
1
m
Li
)m)

= ( n
√

∑r
i=1 λiΩ̂n

Γi
+ ∑r

i=1 λiΩ̂n
Li
−∑r

i=1 λiΩ̂n
Γi

∑r
i=1 λiΩ̂n

Li
, (∑r

i=1 λiΩ
1
m
Γi
)m(∑r

i=1 λiΩ
1
m
Li
)m)

and

FWPAn
m(Γ1, Γ2, ..., Γr)⊗ nPR-FWPA(L1, L2, ..., Lr)

= ((∑r
i=1 λiΩ̂n

Γi
)

1
n , (∑r

i=1 λiΩ
1
m
Γi
)m)⊗ ((∑r

i=1 λiΩ̂n
Li
)

1
n , (∑r

i=1 λiΩ
1
m
Li
)m)

= ((∑r
i=1 λiΩ̂n

Γi
)

1
n (∑r

i=1 λiΩ̂n
Li
)

1
n , (∑r

i=1 λiΩ
1
m
Γi
+ ∑r

i=1 λiΩ
1
m
Li
−∑r

i=1 λiΩ
1
m
Γi

∑r
i=1 λiΩ

1
m
Li
)m).

Thus, from (***) and (****), we obtain

FWPAn
m(Γ1, Γ2, ..., Γr)⊕ nPR-FWPA(L1, L2, ..., Lr) ≥

FWPAn
m(Γ1, Γ2, ..., Γr)⊗ nPR-FWPA(L1, L2, ..., Lr).

For the purpose of ranking the n,mPR-FSs, we present the score and accuracy functions
of the n,mPR-FS.

Definition 5. Let Γ = (Ω̂Γ, ΩΓ) be an n,mPR-FS. Then,

1. the score of Γ is given as4(Γ) = Ω̂n
Γ −

m
√

ΩΓ, and
2. the accuracy of Γ is given as5(Γ) = Ω̂n

Γ +
m
√

ΩΓ.

Example 3. Consider that Γ = (0.7, 0.4) is an n,mPR-FS. Then,

4(Γ) ≈


−0.2895 for n = 3 and m = 2,
−0.4967 for n = 4 and m = 3,
−0.7149 for n = 6 and m = 5,

and

5(Γ) ≈


0.9755 for n = 3 and m = 2,
0.9769 for n = 4 and m = 3,
0.9502 for n = 6 and m = 5.

Theorem 16. Let Γ = (Ω̂Γ, ΩΓ) be any n,mPR-FS. Then,

1. 4(Γ) ∈ [−1, 1].
2. 5(Γ) ∈ [0, 1].

Proof. 1. For any n,mPR-FS Γ, we have Ω̂n
Γ + Ω

1
m
Γ ≤ 1. Hence, Ω̂n

Γ −Ω
1
m
Γ ≤ Ω̂n

Γ ≤ 1 and

Ω̂n
Γ −Ω

1
m
Γ ≥ −Ω

1
m
Γ ≥ −1 . Thus, −1 ≤ Ω̂n

Γ −Ω
1
m
Γ ≤ 1, namely 4(Γ) ∈ [−1, 1]. If

Γ = (0, 1), then4(Γ) = −1, and if Γ = (1, 0), then4(Γ) = 1.
2. The proof is clear.
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Definition 6. For any n,mPR-FSs Γi = (Ω̂Γi , ΩΓi ), the comparative approach is designed as
the following:

1. if4(Γ1) < 4(Γ2), then Γ1 ≺ Γ2,
2. if4(Γ1) > 4(Γ2), then Γ1 � Γ2,
3. if4(Γ1) = 4(Γ2), then

(a) if5(Γ1) < 5(Γ2), then Γ1 ≺ Γ2,
(b) if5(Γ1) > 5(Γ2), then Γ1 � Γ2,
(c) if5(Γ1) = 5(Γ2), then Γ1 ≈ Γ2.

Application of n,mPR-fuzzy sets:
The following involves the application of an FWPAn

m operator to MCDM problems
in order to evaluate alternatives using n,mPR-fuzzy information. The following steps are
generally incorporated within the suggested approach:

Step 1: For an MCDM problem, we build the n,mPR-fuzzy decision matrix R =
(aij)t2×t1 containing the values of n,mPR-FSs, where the elements aij (j = 1, 2, ..., t1, i =
1, 2, ..., t2) are the appraisals of the alternative Ci ∈ C regarding the criterion Gj ∈ G.

Step 2: Create a normalized n,mPR-fuzzy decision matrix from the n,mPR-fuzzy
decision matrix R = (aij)t2×t1 .

Step 3: The proposed FWPAn
m operator is used to calculate alternative choice values

with related weights.
Step 4: Determine the scores for the n,mPR-FSs values that were acquired in Step 3.
Step 5: The best option can be found by utilizing Definition 6 to establish the optimal

ranking order of the alternatives.
We use a real-world example of choosing a particular country utilizing n,mPR-fuzzy

data to illustrate the proposed approach. Based on statistical comparisons of each country’s
performance on a number of important business, economic, and quality of life variables,
the best countries for living can be determined. We can determine the best country for life
based on the ten criteria stated below:

1. Agility: is adaptable, dynamic, responsive, and so on.
2. Cultural Influence: is culturally significant in terms of entertainment, fashion, influ-

ential culture, prestige, and so on.
3. Open for Business: has cheap manufacturing costs, a favorable tax environment,

transparent government practices, and so on.
4. Social Purpose: cares about human rights, cares about the environment, gender

equality, religious freedom, respects property rights, and so on.
5. Power: a leader, economically influential, has strong exports, has strong international

alliances, has strong military services, and so on.
6. Movers: different, distinctive, dynamic, unique, and so on.
7. Adventure: friendly, good for tourism, pleasant climate, scenic, and so on.
8. Heritage: has a rich history, many cultural attractions, many geographical attractions,

and so on.
9. Entrepreneurship: has a skilled labor force, technological expertise, well-developed

infrastructure, and so on.
10. Quality of Life: has a good job market and income equality, is politically stable and

safe, and has a well-developed public education system, well-developed public health
system, and so on.

The aforementioned criteria were created by grouping country characteristics from
the study’s findings that showed comparable global tendencies.

Let C = {C1, C2, C3, C4, C5, C6, C7, C8} be a set of alternatives (countries), where
C1 = Japan,
C2 = Germany,
C3 = Sweden,
C4 = Switzerland,
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C5 = Australia,
C6 = Canada,
C7 = United States, and
C8 = United Kingdom.

And, let G = {G1, G2, G3, G4, G5, G6, G7, G8, G9, G10} be a set of criteria for the selection
of countries (category), where
G1 = Adventure,
G2 = Agility,
G3 = Cultural Influence,
G4 = Entrepreneurship,
G5 = Heritage,
G6 = Movers,
G7 = Open for Business,
G8 = Power,
G9 = Quality of Life, and
G10 = Social Purpose.

The construction of the n,mPR-fuzzy set decision-making matrix is shown in Table 1.
It is shown that the degree to which country Ci meets those requirements Gi is Ω̂Ci and the
degree to which country Ci fails to meet those requirements Gi is ΩCi , such that (Ω̂Ci )

n +

Ω
1
m
Ci
≤ 1 for Ω̂Ci , ΩCi ∈ [0, 1]. The following was decided upon as the weight vector for

the criteria: λ = (0.0548, 0.1396, 0.1036, 0.1417, 0.0309, 0.1057, 0.0935, 0.0502, 0.1452, 0.1348)T .
G9 is given more importance, while G5 is given a lower value.

Table 1. n,mPR-fuzzy values.

Countries/Category G1 G2 G3 G4 G5

Japan (0.45, 0.28) (0.83, 0.03) (0.81, 0.04) (0.96, 0) (0.76, 0.07)
Germany (0.26, 0.42) (0.85, 0.02) (0.60, 0.09) (1, 0) (0.49, 0.21)
Sweden (0.65, 0.09) (0.73, 0.06) (0.56, 0.08) (0.73, 0.09) (0.52, 0.02)

Switzerland (0.61, 0.14) (0.70, 0.13) (0.63, 0.08) (0.81, 0.04) (0.45, 0.24)
Australia (0.75, 0.08) (0.79, 0.05) (0.58, 0.10) (0.66, 0.14) (0.52, 0.19)
Canada (0.56, 0.17) (0.82, 0.03) (0.55, 0.15) (0.76, 0.07) (0.39, 0.28)

United States (0.42, 0.32) (1, 0) (0.85, 0.02) (0.99, 0) (0.51, 0.20)
United Kingdom (0.37, 0.37) (0.73, 0.10) (0.78, 0.06) (0.81, 0.04) (0.61, 0.14)

Countries/Category G6 G7 G8 G9 G10

Japan (0.63, 0.08) (0.55, 0.33) (0.63, 0.08) (0.71, 0.12) (0.25, 0.23)
Germany (0.18, 0.44) (0.62, 0.23) (0.81, 0.04) (0.86, 0.01) (0.70, 0.13)
Sweden (0.66, 0.17) (0.71, 0.07) (0.62, 0.22) (1, 0) (0.42, 0.08)

Switzerland (0.33, 0.26) (1, 0) (0.26, 0.20) (0.88, 0.01) (0.86, 0.01)
Australia (0.30, 0.29) (0.68, 0.15) (0.33, 0.16) (0.68, 0.06) (0.79, 0.05)
Canada (0.36, 0.63) (0.74, 0.01) (0.66, 0.05) (0.85, 0.02) (0.88, 0.01)

United States (0.32, 0.27) (0.43, 0.53) (1, 0) (0.53, 0.21) (0.46, 0.30)
United Kingdom (0.12, 0.65) (0.56, 0.32) (0.79, 0.05) (0.71, 0.12) (0.69, 0.13)

Now, using the weight vectors
λ = (0.0548, 0.1396, 0.1036, 0.1417, 0.0309, 0.1057, 0.0935, 0.0502, 0.1452, 0.1348)T , n = 2, 3, 4
and m = 2, 3, we use the FWPAn

m operator in Table 2, as follows:
Now, as stated in Table 3, we determine the score value for each option and the

rankings are presented in Table 4.
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Table 2. Aggregated n,mPR-fuzzy information matrix.

Countries/Operator FWPA2
3 FWPA3

2 FWPA4
2 FWPA4

3

Japan (0.7039, 0.0706) (0.7290, 0.0869) (0.7487, 0.0869) (0.7487, 0.0706)
Germany (0.7326, 0.0631) (0.7621, 0.0833) (0.7838, 0.0833) (0.7838, 0.0631)
Sweden (0.7038, 0.0554) (0.7231, 0.0660) (0.7418, 0.0660) (0.7418, 0.0554)

Switzerland (0.7414, 0.0501) (0.7647, 0.0615) (0.7828, 0.0615) (0.7828, 0.0501)
Australia (0.6575, 0.1024) (0.6720, 0.1056) (0.6830, 0.1056) (0.6830, 0.1024)
Canada (0.7246, 0.0665) (0.7406, 0.0780) (0.7533, 0.0780) (0.7533, 0.0665)

United States (0.7202, 0.0660) (0.7633, 0.1042) (0.7980, 0.1042) (0.7980, 0.0660)
United Kingdom (0.6700, 0.1432) (0.6884, 0.1529) (0.7003, 0.1529) (0.7003, 0.1432)

Table 3. Score values.

Scores/n,m 2,3 3,2 4,2 4,3

4(C1) 0.0821 0.0926 0.0195 −0.0991

4(C2) 0.1386 0.1540 0.0887 −0.0208

4(C3) 0.1141 0.1212 0.0459 −0.0785

4(C4) 0.1811 0.1993 0.1275 0.0069

4(C5) −0.0355 −0.0215 −0.1073 −0.2503

4(C6) 0.1199 0.1269 0.0427 −0.0832

4(C7) 0.1145 0.1219 0.0828 0.0014

4(C8) −0.0742 −0.0648 −0.1505 −0.2826

Table 4. Ranking using score values.

Operators Ranking Best Country

FWPA2
3 C4 � C2 � C6 � C7 � C3 � C1 � C5 � C8 C4

FWPA3
2 C4 � C2 � C6 � C7 � C3 � C1 � C5 � C8 C4

FWPA4
2 C4 � C2 � C7 � C3 � C6 � C1 � C5 � C8 C4

FWPA4
3 C4 � C7 � C2 � C3 � C6 � C1 � C5 � C8 C4

To show how the parameters n and m affected the final results of the MADM, we
utilized several values of n and m to rank the choices. The outcomes of the ranking of the
alternatives based on the FWPAn

m operator are displayed in Table 4, as follows:

1. When n = 2, 3 and m = 2, 3, as a result, we obtained a ranking of options as follows:
C4 � C2 � C6 � C7 � C3 � C1 � C5 � C8.

2. When n = 4 and m = 2, as a result, we obtained a ranking of options as follows:
C4 � C2 � C7 � C3 � C6 � C1 � C5 � C8.

3. When n = 4 and m = 3, as a result, we obtained a ranking of options as follows:
C4 � C7 � C2 � C3 � C6 � C1 � C5 � C8.

Thus, the finest option worldwide is Switzerland.

5. Comparison Analysis and Discussion

In order to illustrate the advantages of the suggested models, we compare the sug-
gested FWPAn

m operator with various well-known operators using n,mPR-fuzzy numbers.
Here, we use our data in accordance with the hybrid model by which we must compare

our proposed model in order to verify the accuracy and efficacy of our generated hybrid
model. Table 5 provides a summary of the computed results using the currently used
square-root fuzzy weighted power average (SR-FWPA) operator [15], the nth power root
fuzzy weighted power average (nPR-FWPA) operator [35], the Fermatean fuzzy weighted
power average (FFWPA) operator [34], and the n,m-rung orthopair fuzzy weighted power
average (n,m-ROFWPA) operator [16]. Therefore, the SR-FWPA, 3PR-FWPA, FFWPA, and
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n,m-ROFWPA operators are applied to our application and yield identical optimal results,
which are presented in Table 6. When we use the operator

1. SR-FWPA, the ultimate order is C4 � C2 � C6 � C3 � C1 � C7 � C5 � C8;
2. 3PR-FWPA, the ultimate order is C4 � C2 � C7 � C6 � C3 � C1 � C5 � C8;
3. FFWPA, the ultimate order is C4 � C2 � C7 � C1 � C6 � C3 � C5 � C8;
4. 3,4-ROFWPA, the ultimate order is C4 � C2 � C7 � C6 � C1 � C3 � C8 � C5.

In this regard, the optimum alternative is Switzerland, which is the same as the
indicated operator. As a consequence, our suggested technique is more flexible than the
existing methods.

Table 5. Comparison of final scores for our application.

SR-FWPA 3PR-FWPA FFWPA 3,4-ROFWPA

C1 (0.7039, 0.0869) (0.7290, 0.0706) (0.7290, 0.1871) (0.7290, 0.2077)
4(C1) 0.2006 −0.0260 0.3809 0.3856

C2 (0.7326, 0.0833) (0.7621, 0.0631) (0.7621, 0.2459) (0.7621, 0.2787)
4(C2) 0.2481 0.0444 0.4277 0.4365

C3 (0.7038, 0.0660) (0.7231, 0.0554) (0.7231, 0.1114) (0.7231, 0.1235)
4(C3) 0.2385 −0.0032 0.3766 0.3778

C4 (0.7414, 0.0615) (0.7647, 0.0501) (0.7647, 0.1475) (0.7647, 0.1645)
4(C4) 0.3017 0.0786 0.4440 0.4465

C5 (0.6575, 0.1056) (0.6720, 0.1024) (0.6720, 0.1574) (0.6720, 0.1750)
4(C5) 0.1075 −0.1645 0.2995 0.3025

C6 (0.7246, 0.0780) (0.7406, 0.0665) (0.7406, 0.3029) (0.7406, 0.3608)
4(C6) 0.2458 0.0011 0.3784 0.3892

C7 (0.7202, 0.1042) (0.7633, 0.0660) (0.7633, 0.2845) (0.7633, 0.3157)
4(C7) 0.1958 0.0405 0.4217 0.4348

C8 (0.6700, 0.1529) (0.6884, 0.1432) (0.6884, 0.3292) (0.6884, 0.3805)
4(C8) 0.0579 −0.1969 0.2905 0.3052

Table 6. Comparison rankings for our application.

Operators Ranking Best Country

SR-FWPA C4 � C2 � C6 � C3 � C1 � C7 � C5 � C8 C4
3PR-FWPA C4 � C2 � C7 � C6 � C3 � C1 � C5 � C8 C4

FFWPA C4 � C2 � C7 � C1 � C6 � C3 � C5 � C8 C4
3,4-ROFWPA C4 � C2 � C7 � C6 � C1 � C3 � C8 � C5 C4

6. Conclusions

Aggregation operators are computational models that have developed into essential
tools for combining multiple inputs into one valuable output. Additionally, the n,mPR-FS
is an effective tool for characterizing the uncertainty present in decision-making issues
where there are multiple perspectives on the same data source. To express the fuzziness
of information, n,mPR-FS is a good tool. It has the parameters n and m, so it holds a
wider range of fuzzy information than IFS, PFS, FFS, and nPR-FS. In this paper, several
operators on n,mPR-fuzzy sets were explored, and their relationships were discovered.
Furthermore, we developed a new weighted aggregated operator over n,mPR-fuzzy sets
and thoroughly described its features. Moreover, we illustrated this process with an one
fully applicable example. Finally, the results of the FWPAn

m operator were compared to
the results of other well-known operators such as the SR-FWPA, 3PR-FWPA, FFWPA, and
3,4-ROFWPA operators.

In the future, we can modify the aggregation operator described here to include models
for uncertain data, such as n,mPR-fuzzy soft sets. Additionally, the weighted average
operator, weighted geometric operator, and weighted power geometric operator over
n,mPR-fuzzy sets may be investigated and MCDM methods may be discussed depending
on these operators. Moreover, we wish to extend our research with the following ideas:
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(1) complex n,mPR-FSs, (2) interval-valued n,mPR-FSs, and (3) bipolar n,mPR-FSs. Finally,
decision models can be amalgamated with deep learning concepts to handle complex and
critical decision-making problems.
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