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Abstract: A relativistic motor exchanging momentum and energy with an electromagnetic field is
studied. We discuss the advantages and challenges of this novel mover, giving specific emphasis to
the more favorable (yet challenging) nano configurations. It specifically turns out that an isolated
hydrogen atom in either a ground or excited state does not produce relativistic motor momentum.
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1. Introduction

Linear momentum is not only a property of matter but also a property of the elec-
tromagnetic field [1–3]. Thus, in principle, a vehicle might propagate using the energy
supplied by the sun and contained within its storage devices, while the momentum it
gains is balanced by the same amount of momentum but of opposite direction, which is
transferred to the electromagnetic field.

A detailed introduction to the subject of relativistic motors in general and microscopic
relativistic engines in particular with suitable references can be found in [4] and will not be
repeated here; the interested reader is referred to the original text. A brief history of the
relativistic engine is given below.

The first relativistic engine suggested was based on the electromagnetic field retarda-
tion of two time-dependent loop currents [5] (see Figure 1).

Figure 1. Two current loops.

Griffiths and Heald [6] pointed out that strictly Coulomb’s law and the Biot–Savart
law determine the electric and magnetic fields for static sources only. Thus, Jefimenko’s [7]
formula was used to calculate the total force ~FT operating on the center of mass of a system
(Jefimenko’s equation can also be found in Jackson’s book [3]), resulting in the formula

~FT ∼=
µ0

8π
(

h
c
)2~K122 I2 I(2)1 (t), I(n)1 (t) ≡ ∂n I1(t)

∂tn (1)

in which µ0 is the magnetic permeability of the vacuum, c is the velocity of light in the
vacuum, h is at a typical length scale of the system, and ~K122 is a dimensionless vector that
depends on the geometry of the loops. I2 is a static current, and I1(t) is a time-dependent
current. This was later generalized to calculate the total force in a system of a permanent
magnet and a current loop [8]. As force is applied for a finite duration, momentum will
be acquired, as well as kinetic energy for the entire system. It may superficially seem that
the laws of momentum and energy conservation are violated, but this is not so. Linear
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momentum conservation was validated in [1]. It was shown that the momentum gained
by the field ~Pf ield 12 is the same as the momentum gained by the engine ~Pmech but in an
opposite direction:

~Pf ield 12 = − µ0

8π
I2 I(1)1 (t)

h2

c2
~K122 = −~Pmech. (2)

We assumed that the magnetization and polarization of the medium are small and, therefore,
neglected corrections to the Lorentz force suggested in [9]. The exchange of energy between
the kinetic part of the relativistic engine and the electromagnetic field was elaborated in [10].
It was demonstrated that the electromagnetic energy consumed is six times the engine’s
kinetic energy. It was also demonstrated that energy is radiated if the coils are misaligned.

Our preliminary analysis assumed bodies that were electric charge natural. In a later
paper [11], charged bodies were analyzed. The charged engine allows having a finite
momentum even if the current does not increase continuously, as is dictated by the current
derivative term in Equation (2) (which requires a monotonously increasing current for a
uniform motion in some direction). This more general case result is a total force in the
center of mass and total linear momentum given by the formulae

~FT =
µ0

4π
∂t

∫ ∫
d3x1d3x2

[
1
2
(ρ2∂tρ1 − ρ1∂tρ2)R̂− (ρ1~J2 + ρ2~J1)R−1

]
, ~R ≡ ~x1 −~x2 (3)

~Pmech(t) =
µ0

4π

∫ ∫
d3x1d3x2

[
1
2
(ρ2∂tρ1 − ρ1∂tρ2)R̂− (ρ1~J2 + ρ2~J1)R−1

]
(4)

in the above ρ is the charge density and~J is the current density of the two subsystems 1 and
2, respectively, and an integrations is required over the volumes of the two sub systems.
The above equation is valid for both a system containing just two point particles (or a few
point particles) in which the charge densities are described by Dirac delta functions, and
also in the case of macroscopic number of point particles in which the charge densities can
be described by smooth functions.

However, due to dielectric breakdown that dictated a maximal value to charge
density [12–15] and current density limitations [16] that limit the amount of current that
can be transferred even through a superconducting wire, it is shown that for any reasonable
geometrical size, the momentum that can be gained by a relativistic charged engine is
very limited. Table 1, obtained from [11], demonstrates the severe limitations of macro-
scopic configurations:

Table 1. Maximal momentum of a relativistic motor for three cases. We assume an extreme charge
density, σ = 3.7× 10−3 Coulomb/m2, and current density, J0 = 5× 107 Ampere/m2.

Car Rocket Size Engine Giant Cube Units

a 6 200 1000 m
b 2 10 1000 m
d 1 10 1000 m
w 0.2 0.4 0.4 m

Pmech 0.3 868 3.1× 107 kg m/s

The physical structure of this particular relativistic engine and its geometric parameters
are depicted in Figures 2 and 3.
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Figure 2. A relativistic engine.

Figure 3. A cross section of the relativistic engine.

The above limitations suggested the use of the high charge densities that are available
on the microscopic scale, for example, in ionic crystals. We have pursued this idea in a
previous paper [4] in which we calculated the extremely high charge densities and current
densities on the atomic scale. It was shown [4] that an isolated hydrogen atom in either
a ground or excited state does not produce relativistic motor momentum. This is not the
case when the atom interacts with other atoms or particles, or when the atom’s electron
is in a state that is not an eigenstate. Thus, we suggested two naive forms for a wave
function in terms of beneficial relativistic engine gain: a wave packet in a hydrogen atom
and an eigenstate in a simple molecule, which introduces a static electric field of a broken
spherical symmetry.

To conclude, the relativistic motor possesses the following attributes:

• Allows three-axis motion (including vertical);
• No moving parts;
• Zero fuel consumption;
• Zero carbon emission;
• Needs only electromagnetic energy (which may be provided by solar panels);
• Highly efficient, in principle, kinetic energy can be converted back to electromag-

netic energy.

However, to reach a practical relativistic engine, one must manipulate matter at
subatomic levels, a feat that is quite challenging. In this paper, we shall investigate two
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ways of doing so, one that is related to free electrons and the other to confined electrons.
While we start with a classical description of the problem, we cannot and do not ignore the
fact that, on the atomic level, a quantum description is required. It will be shown that the
quantum effects are much more important for confined electrons than for free electrons.
We shall not derive the equations of the relativistic motor here; the reader is referred
to [4,11]. We shall also use the same notations as in the previous papers and will not
redefine the symbols.

In the current paper, we will show that both free electrons and confined electrons
can be put in a configuration supporting a relativistic motor effect. However, quantum
mechanics (for spin and spinless electrons) is only important in the confined electron case.
We thus derive the form of the electromagnetic field needed to maintain the appropriate
wave packet that supports a relativistic engine effect in the confined case.

2. Relativistic Engine in the Microscopic Scale
2.1. A Classical Electron

Before introducing quantum considerations, we shall first consider a classical system
of two point particles each with a charge of absolute value |e|. We shall assume one charge
to be stationary while the other moving with velocity ~v2; it thus follows that system 2 has a
current density of [11]

~J2 = ρ2~v2 = eδ3(~x2 −~x(t))~v2 (5)

and system 1 has a charge density of

ρ1 = ±eδ3(~x1), (6)

in which we assume for convenience that the stationary charge is located at the origin of
the coordinates.

2.1.1. Proximity Considerations

Plugging Equations (5) and (6) into Equation (3) of [4]:

~P(t) = − µ0

4π

∫ ∫
d3x1d3x2 ρ1~J2R−1 = ∓µ0e2

4π

~v2

|~x(t)| (7)

Taking the total mass of the two particle systems to be mt = m1 + m2, we arrive at a center
of mass velocity:

~vcm(t) =
~P(t)
mt

= ∓ µ0e2

4πmt

~v2

|~x(t)| . (8)

The above equation makes explicit the fundamental conflicting requirements of the concept.
To have significant speed in the center of mass, the particles must be close to each other;
thus, we would like to have a confined system. On the other hand, we would like to have a
high v2 with a constant direction; this is impossible in a confined system as in such a case,
~v2 must eventually change direction. Thus, for the center of mass to obtain speed vcm(t) at
time t, the particles must be at the proximity:

|~x(t)| = ∓ µ0e2

4πmt

v2

vcm(t)
. (9)

If the particles are an electron and a proton mt ' mp,

|~x(t)| = µ0e2

4πmp

v2

vcm(t)
. (10)
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It is not difficult to bring an electron to move very close to the speed of light such that
v2 ' c, for example, for 99% of the speed of light with a low-energy accelerator:

v2 = 0.99c ⇒ Ek =
mec2√

1− ( v2
c )

2
' 3.6 MeV. (11)

Thus, we shall take v2 = c and obtain

|~x(t)| = µ0e2c
4πmp

1
vcm(t)

=
4.6× 10−10

vcm(t)
= 8.7

a0

vcm(t)
, (12)

in which the last expression contains the Bohr radius:

a0 ≡
4πε0h̄2

m′ee2 ' h̄2

kmee2 ' 0.53× 10−10 m , m′e ≡
memp

me + mp
' me. (13)

The relation between the required distance and the desired velocity for the two particle
systems is described in Figure 4.

20 40 60 80 100
v cm (m/s)

2

4

6

8

x

a0

Figure 4. The proximity between a classical electron and proton needed to achieve a desired velocity
for an unloaded engine.

Thus, a typical car’s velocity, vcm = 50 m/s = 180 km/h, is obtained for

|~x(t)| ' 0.174 a0. (14)

Requiring the hydrogen relativistic motor to escape the earth’s gravity (escape velocity of
vcm = 11.2 km/s), we must have a proximity of

|~x(t)| ' 48.8 rp (15)

where rp ≡ 8.4× 10−16 m is the proton charge radius. Thus, the distance between electron
and proton must be of a nuclear scale rather than an atomic scale. Finally, if we imagine
that the relativistic engine can reach relativistic velocities vcm ' 0.1c, it follows that

|~x(t)| ' 0.018 rp (16)

That is, the electron proton system is of subnuclear dimensions.
An engine suitable for interplanetary travel must include a macroscopic amount of

such atoms, and it must carry not just itself but also some payload.
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2.1.2. An Unconfined Electron

It seems that a way to circumvent this inherent contradiction between proximity and
velocity is to use a train of particles in which for each particle leaving the desired range, a
new one enters, as depicted in Figure 5.

Figure 5. Two electrons from a train of electrons, moving in the vicinity of a proton.

Let us assume that we keep at least one electron from the proton at a distance that is
not smaller than a distance rmax and bigger that a distance rmin; it follows that the duration
between successive electrons is

∆t = 2

√
r2

max − r2
min

c
(17)

If we take rmin to be the distance for vcm = 50 m/s, that is, rmin = 0.174 a0 and rmax = 3rmin,
it follows that

∆t ' 1.7× 10−19s ⇒ I =
e

∆t
' 0.92 A (18)

Hence, the needed current is not too excessive. The practical problem is how to put high-
velocity electrons in the vicinity of protons. One may imagine a high-density plasma (see
Figure 6)

Figure 6. Plasma of protons and electrons: the red circles symbolize protons, while the orange circles
symbolize electrons.
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made of protons and electrons in which the average density between protons is 2rmin, and
the density of such a plasma is

∆V = (2rmin)
3 ' 6.2× 10−33 m3 ⇒ ρplasma =

mp

∆V
' 2.7× 105 Kg/m3 (19)

This is much higher than the density of solid hydrogen rhoSH ' 86 Kg/m3, in which the
typical distance between atoms is about 5 Bohr radii. We notice that a 3.7 L of the above
plasma will weigh about 1 metric ton, and could easily move a standard car. We also notice
that solid hydrogen can only be obtained under unusual conditions of low temperature
and high pressure. Another alternative is to have sparse protons but high-density electrons
with a typical distance of 2rmin. However, this will lead ∆V of Equation (19) to a charge
density of

ρcharge =
e

∆V
' 2.6× 1013 C/m3 (20)

Obviously, such a configuration cannot hold. If we take for simplicity the configuration
to be spherical of radius rs, then according to Equation (9) of [4], the electric field on its
surface would be

Er =
kQ
r2

s
=

k 4π
3 ρcharger3

s

r2
s

= k
4π

3
ρchargers ' 9.7× 1023rs (21)

Thus, an electron on the surface of the said sphere will be accelerated outwards with an
acceleration of

r̈ =
eEr

me
' 1.7× 1035rs m/s2. (22)

The typical disintegration time of the above configuration is

τdisintegration =

√
rs

r̈
' 2.4× 10−18 s, (23)

regardless of the size of the sphere. We shall make a point regarding the typical charge
separation that is empirically available. According to Section 6, the maximal charge density
for air is σmax ' 53 µC /m2. In terms of electron number density, this is

σmax electrons =
σmax

|e| ' 3.3× 1014 m−2 (24)

which translates into a typical spatial separation of

δe =
1√

σmax electrons
' 5.5× 10−8 m (25)

This separation is much too large to obtain a significant relativistic motor effect. On the
other hand, looking back at the ionic crystal of Figure 1 of [4], it is easy to draw a trajectory
for the said stream of electrons, as depicted in Figure 7.

As the electron passes through more positive ions, it becomes closer to the positive
ion; in fact, even an electron at a distance of a lattice constant of l ' 564 pm will feel a force
perpendicular to its trajectory and towards the positive ion line of about

F⊥ '
ke2

l
' 4× 10−19 Newton. (26)

Thus, it will have a perpendicular acceleration towards a positive ion line of about

r̈⊥ =
F⊥
me
' 4.5× 1011 m/s2, (27)
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for a duration of about ∆t (see Equation (18)) in each ion passage. Thus, the velocity
towards the positive ion line would be at least

v⊥ ' ∆tr̈⊥ ' 7.8× 10−8 m/s, (28)

but of course, the acceleration and velocity will become larger as the electron reaches closer
to the ion line. Thus, the electron will reach the ion line at a time shorter than

τion line '
v⊥
l
' 0.007 s. (29)

This time can be shortened by applying an external electric field perpendicular to the
ion line and away from the line. Moreover, a slower electron beam will have more time
to converge to the ion line, which poses an interesting optimization problem, balancing
between the desired proximity to the ion line and the electron beam speed. We notice that a
99% speed of light will hardly converge to the ion line even if the engine is 1 meter thick,
because it will pass it in about 3 nanoseconds. If convergence to the ion line is indeed
achieved, we expect an oscillatory motion around the positive ion line in which inverse
beta decay will occasionally occur. Of course, the most significant relativistic motor effects
will occur at the times in which the electron is closer to the positive ion line.

Figure 7. The 100 planes of a lattice of Na+Cl− (table salt): blue circles depict sodium positive ions,
and green circles depict chlorine negative ions. The trajectory of relativistic electrons is described
using a thick black line.

2.1.3. A Confined Electron

A confined classical electron can be put in an elliptical trajectory that can be occasion-
ally favorable to the relativistic motor effect; see Figure 8.

One can see that the positive relativistic motor effect near the proton at a distance rmin is
much greater than the negative relativistic motor effect that occurs due to the motion in the
opposite direction but at a much larger separation rmax. We also notice that the orthogonal
motions will cancel each other as they occur in opposite directions. Unfortunately, such
a description is not very useful as quantum effects play a major role in confined electron;
thus, we conclude our discussion regarding classical electrons and move to the discussion
of quantum electrons.
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Figure 8. A schematic of an elliptical orbit of an electron around a proton.

3. Schrödinger’s Electron

Quantum mechanics according to the Copenhagen interpretation has lost faith in our
ability to predict precisely the whereabouts of even a single particle. However, the theory
does predict precisely the evolution in time of the quantum wave function, which is related
to a particle location in a probabilistic way. This evolution is described by Schrödinger’s
equation [17]:

ih̄ψ̇ = ĤSψ, ĤS = − 1
2me

(
h̄~∇− ie~A

)2
− eΦ (30)

where i ≡
√
−1 and ψ is a complex function. ψ̇ ≡ ∂ψ

∂t . h̄ = h
2π is Planck’s constant over 2π.

However, this form of quantum theory is abstract and does not explicitly give a physical
picture of the relevant quantities. Thus, we write the quantum function using the modulus
a and phase φ representation:

ψ = aeiφ. (31)

The probability density and flux are defined as

ρ̃ = ψ∗ψ, ~JS =
h̄

2mei
[ψ∗~∇ψ− (~∇ψ∗)ψ]− e

me
~Aρ̃ = ρ̃(

h̄
me

~∇φ− e
me

~A). (32)

We thus define the velocity field using the natural definition:

~vS =
~JS
ρ̃

=
h̄

me
~∇φ− e

me
~A (33)

and the mass density is
ρ̂ = meρ̃ = mea2. (34)

It follows from Equation (30) that the continuity equation is satisfied:

∂ρ̂

∂t
+ ~∇ · (ρ̂~vS) = 0 (35)

Thus, ~vS is the velocity associated with continuity. However, it is also the velocity field
associated with the probability a2 (by Born’s interpretational postulate) and the charge
density ρ = ea2. The equation for the phase φ derived from Equation (30) takes the form

h̄
∂φ

∂t
+

1
2me

(
h̄~∇φ− e~A

)2
− eΦ =

h̄2∇2a
2mea

= −Q (36)

In terms of the velocity defined in Equation (33), the following equation of motion [18,19]
is obtained:

d~vS
dt

=
∂~vS
∂t

+ (~vS · ~∇)~vS = −~∇ Q
me

+
e

me
(~E +~v× ~B) (37)
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The “quantum correction” for the classical equation can be found on the right-hand side of
the above equation:

Q = − h̄2

2me

~∇2√ρ̂√
ρ̂

. (38)

The correction can be interpreted in terms of information theory [20,21]. These results
illustrate the advantages of using phase and modulus variables to obtain classically looking
equations of motion that have a substantially different form than the Schrödinger equation
(but having the same mathematical content) and have obvious interpretation [22].

The quantum correction Q will disappear in the limit h̄→ 0, but even if one intends
to consider the quantum equation fully, one is forced to consider the expansion of an
unconfined quantum function. Since Q is related to the gradient of the amplitude, it is
obvious that as the function becomes smeared over time and the gradient becomes small,
the quantum correction becomes negligible. To put it in quantitative terms,

~FQ = −~∇Q ' h̄2

2meL3
R

, LR '
R
|~∇R|

(39)

LR is the length of the amplitude gradient. Thus,

|FQ| << |FL| ⇒ LR >> LRc =

(
h̄2

2meFL

) 1
3

. (40)

in which ~FL = e(~E +~v× ~B) is the Lorentz force [23,24]. For the free electron relativistic
motor in which an electron transverses a macroscopic length, this term will be negligible.
However, for a confined electron, this term should not be neglected as we show in the
section describing the hydrogen atom.

4. Pauli’s Electron

Schrödinger’s mechanics describes spinless particles. The need for spin became
necessary for describing the Stern–Gerlach experiments, as Schrödinger predicted a single
spot instead of the two spots obtained for hydrogen atoms. Thus, Pauli suggested a
nonrelativistic particle with the spin equation

ih̄ψ̇ = ĤPψ, ĤP = − h̄2

2me
[~∇− ie

h̄
~A]2 + µ~B ·~σ + eΦ = ĤS I + µ~B ·~σ (41)

In the above equation, ψ is a complex column vector of two dimensions (a spinor), ĤP is a
Hermitian operator matrix, µ is the magnetic moment of the particle, and I is a unit matrix.
~σ is a vector of Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (42)

The ad hoc status of this equation was later removed as it was shown to be the nonrelativistic
limit of the relativistic Dirac equation. If ψ satisfies Equation (41), it must also satisfy

∂ρp

∂t
+ ~∇ ·~j = 0, (43)

in which
ρp = ψ†ψ, ~j =

h̄
2mei

[ψ†~∇ψ− (~∇ψ†)ψ]− e
me

~Aρp. (44)
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ψ† is a row spinor (the transpose) whose components are equal to the complex conjugate of
ψ. Equation (43) suggests a velocity field as follows [19]:

~v =
~j
ρp

=
h̄

2meiρp
[ψ†~∇ψ− (~∇ψ†)ψ]− e

me
~A. (45)

Holland [19] suggested to write the spinor in the following form:

ψ = Rei χ
2

 cos
(

θ
2

)
ei φ

2

i sin
(

θ
2

)
e−i φ

2

 ≡ ( ψ↑
ψ↓

)
. (46)

Thus the probability density is given as

R2 = ψ†ψ = ρp ⇒ R =
√

ρp. (47)

The mass density is given by

ρ̂ = meψ†ψ = meR2 = meρp. (48)

Additionally, we obtain probability amplitudes for spin-up and spin-down electrons:

a↑ =
∣∣ψ↑∣∣ = R

∣∣∣∣cos
θ

2

∣∣∣∣, a↓ =
∣∣ψ↓∣∣ = R

∣∣∣∣sin
θ

2

∣∣∣∣. (49)

The other Holland variables can be interpreted in terms of the expectation value of the spin
in the following way:

<
h̄
2
~σ >=

h̄
2

∫
ψ†~σψd3x =

h̄
2

∫ (
ψ†~σψ

ρp

)
ρpd3x (50)

The spin density is

ŝ ≡ ψ†~σψ

ρp
= (sin θ sin φ, sin θ cos φ, cos θ), |ŝ| =

√
ŝ · ŝ = 1. (51)

Thus, θ, φ are angles of the projection of the spin density on the axes. θ is an elevation angle,
and φ is an the azimuthal angle. The velocity field can be presented by Holland’s variables
by using both Equations (45) and (46):

~v =
h̄

2me
(~∇χ + cos θ~∇φ)− e

me
~A. (52)

The material derivative of the velocity is thus ([19], p. 393, Equation (9.3.19))

d~v
dt

= −~∇( Q
me

)−
(

h̄
2me

)2 1
ρp

∂k(ρp~∇ŝj∂k ŝj) +
e

me
(~E +~v× ~B)− µ

me
(~∇Bj)ŝj. (53)

Pauli’s equation of motion differs from both the classical equation and Schrödinger’s
equation. In addition to the Schrödinger quantum force, we have an additional spin
quantum force:

~FQS ≡ −
h̄2

4me

1
ρp

∂k(ρp~∇ŝj∂k ŝj) = −
h̄2

4me

[
∂k(~∇ŝj∂k ŝj) +

∂kρp

ρp
~∇ŝj∂k ŝj

]
(54)
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Additionally, we have a Stern–Gerlach term describing the interaction of the spin with a
gradient of the magnetic field:

~FgradBS ≡ −µ(~∇Bj)sj. (55)

Since the upper and lower spin components are expanding in free space, it follows that
the gradients of ~FQS will tend to diminish for any macroscopic scale, making this force
negligible. To estimate the condition, we introduce the typical spin length:

Ls = min i∈{1,2,3} |~∇ŝi|−1 (56)

Using the above definition, we may estimate the spin quantum force:

FQS ≈
h̄2

4m
[

1
L3

s
+

1
L2

s LR
] =

h̄2

4mL2
s
[

1
Ls

+
1

LR
] (57)

This suggests a hybrid typical length:

LsR = [
1
Ls

+
1

LR
]−1 =

{
Ls Ls � LR
LR LR � Ls

, (58)

in terms of which

FQS ≈
h̄2

4meL2
s LsR

(59)

Thus,

FQS � FL ⇒ L2
s LsR �

h̄2

4meFL
⇒ Ls �


(

h̄2

4me FL

) 1
3 Ls � LR(

h̄2

4me FL LR

) 1
2 LR � Ls

. (60)

In the free electron scenario, the only quantum term that might have a significance
is the Stern–Gerlach term given in Equation (55); however, it is well known that this
term is negligible with respect to the Lorentz classical term, which is why Stern–Gerlach
experiments are performed using natural particles. Thus, as far as free-electrons-based
relativistic engines are concerned, a classical analysis will suffice; this is not the case for a
confined electron, as we discuss in the next section.

5. The Hydrogen Atom

The hydrogen atom is a simple quantum system and was discussed in [4,25]; we will
use the same notation as in [4] and will not redefine the notation here.

The associated velocity field of an eigenfunction is determined from its phase
(Equation (44) in [4]), which is

~vS =
h̄

me
~∇φ− e

me
~A =

mh̄
mer sin θ′

ϕ̂, ~A = 0, (61)

and is azimuthal; thus, for every eigenstate, the electron is circulating some axis (the z axis,
which is arbitrarily defined). The speed of the electron in the hydrogen atom is thus

vS =
mh̄

mer| sin θ′| . (62)

The speed will vanish for every eigenstate with a magnetic quantum number m = 0,
including for the ground state. However, for every other magnetic quantum number, the
velocity field is singular both in the proton at r = 0 and on the north and south poles
θ′ = 0, π. Regrading the singularity at r = 0, this is not a problem from a physical point of
view as one can expect a different potential from the Coulomb potential inside the proton,
which is not a point particle. However, with regard to the south and north poles’ infinite
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velocities, this indicates a difficulty in the hydrogen atom classical description in which
relativistic considerations that enforce speeds smaller than the velocity of light c will be
part of the solution. The static electron implies, according to Equation (37), that the force is
zero. This is indeed the case. One can calculate the quantum potential for every state by
using Equation (38); however, for hydrogen eigenstates, it will be easier to use Equation (36)
and substitute the phase from Equation (44) of [4]. This gives the expression

Qnm = En −
m2h̄2

2mer2 sin2 θ′
+ eΦ = En −

m2h̄2

2mer2 sin2 θ′
+

ke2

r
(63)

This can be verified by the direct substitution of eigenstates in Equation (38). It is easy to
see that for m = 0, the total force vanishes:

~∇(Qnm − eΦ) = ~∇En = 0 (64)

Thus, the current density of Equation (32) is

~J =
h̄

me
ρ~∇φ = −m

eh̄
me
|ψnlm|2

ϕ̂

r sin θ′
(65)

The current density is linear in the magnetic number m; if m = 0, the current density is
null and there is no relativistic motor force. It follows that for an isolated hydrogen in the
ground state n = 1, l = 0, m = 0, there is no relativistic motor force. In excited states for
which the current density is not null, there will be no relativistic motor force if the potential
is spherically symmetric as is evident from Equation (3) of [4].

It seems that a hydrogen atom cannot be used in a relativistic motor. However, this
system can be manipulated by chemical and electromagnetic means, as described in [4]. To
understand the order of magnitude of the relativistic motor effect using a hydrogen atom,
one is referred to [4].

6. A Simple Wave Packet

We consider an idealized wave packet:

ψ = Aeik′x, A =

{ √
ρ̃c r < Rmax

0 r ≥ Rmax
(66)

k′ and ρ̃c are constants. Since the wave function is normalized, it follows that

ρ̃c =
3

4π
R−3

max (67)

The phase of this wave function is linear, and its amplitude is uniform inside a sphere of
radius Rmax. It is not an eigenstate of the hydrogen atom Hamiltonian; the preparation of
such a state will require a suitable electromagnetic field, which will be discussed below.
We have analyzed the properties of this wave function in [4] and will not repeat the
analysis here.

The purpose of wave function engineering is to achieve a wave function that will
produce a stable linear momentum over macroscopic durations. This implies, according
to Equation (3) of [4] and Equation (32), that we need to achieve a constant wave packet
amplitude and constant phase gradient affected by a constant vector potential. A constant
phase gradient does not imply a constant phase; in fact, we may write the phase in the form

φ = φs(~x)− φt(t) (68)

For a time-independent amplitude, it follows from Equation (31) that

∂ψ

∂t
= −iψ

∂φt

∂t
(69)
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defining

E(t) = h̄
∂φt

∂t
(70)

which is a time-dependent function with units of energy; Schrödinger Equation (30) im-
plies that

ĤSψ = E(t)ψ (71)

Thus, to achieve such a condition, ψ must be an eigenfunction of some Hamiltonian ĤS
with a possibly time-dependent eigenvalue E(t). A Hamiltonian can be constructed by
introducing suitable electromagnetic fields into the physical system. For example, let us
consider the somewhat artificial wave packet described in Equation (66), which we now
augment with a time-dependent phase:

ψ = Amei(k′x−φt(t), Am =

{ √
ρ̃c r < Rmax

0 r ≥ Rmax
(72)

We shall now plug the above expression into Equation (30) and ignore the nonphysical
derivatives connected to the fact that the above oversimplified wave packet is not smooth
at r = Rmax; it follows that

E(t) =
h̄2k′2

2me
− eΦ− eh̄k′

me
Ax +

e2 A2

2me
, (73)

Above, we took advantage of the gauge freedom and assumed a Coulomb gauge ~∇ · ~A = 0,
which is of course not physically restrictive. This allows two types of solutions. In one case,
we assume Ax = 0; that is, we assume that there is no vector potential component in the
direction of motion of the wave packet. Denoting the perpendicular vector potential as
~A⊥ = Ayŷ + Az ẑ, it follows that

A⊥ = ±
√

2me

e

√
E(t) + eΦ− h̄2k′2

2me
. (74)

If, however, Ax 6= 0, it follows that

Ax =
1
e

(
h̄k±

√
2meE(t)− e2 A2

⊥ + 2meeΦ
)

. (75)

7. Discussion

The main results of this paper are the implementation of a relativistic motor on the
atomic scale. It is demonstrated that two approaches are possible. In one case, we consider
free propagating electrons, which move, nevertheless, in proximity to the nucleus but
have enough energy not to be captured by the nucleus; we also consider the case of
confined electrons.

Free electrons are classical, and quantum forces are shown to be negligible due to the
phenomenon of wave packet spreading; thus, a relativistic engine based on free electrons is
analyzed classically.

For confined electrons, quantum effects are important. Unfortunately, an isolated
hydrogen atom in either a ground or excited state does not produce relativistic motor
momentum. We study the case in which an electron is put in a wave packet state that is an
eigenstate of an unspecified Hamiltonian. The electromagnetic field for generating such a
Hamiltonian is calculated.

8. Conclusions

Despite the theoretical possibility of constructing a working relativistic motor, in
practice, this will not be a trivial task and will involve the generation of a highly local-



Symmetry 2023, 15, 1613 15 of 16

ized wave packet or, alternatively, a very narrow electron beam. This is so because an
isolated hydrogen atom in either a ground or excited state does not produce relativistic
motor momentum.

Thus, in a study that is not merely preliminary as this one, a more realistic wave packet
should be considered, and the sources of the electromagnetic field needed to achieve this
goal need to be specified. Alternatively, one will need to describe how to accelerate a very
narrow beam of electron that will fit within a lattice constant.

Additional suggestions for studies that may follow this paper include the following:

1. Analysis of a relativistic engine with components that move at relativistic speeds (and
not just the electromagnetic signals transmitted between the components). The need
for this arises as the electron studied in the current paper is relativistic.

2. A study of the relativistic motor in the framework of a Dirac theory is required. The
Schrödinger equation and the Pauli equation are not sufficient for the study of an
electron at relativistic speeds.
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