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Abstract: In this paper, a more flexible extension of the Fréchet distribution is introduced. The new
distribution is defined by means of the stochastic representation as the quotient of two independent
random variables, a Fréchet distribution and the power of a random variable, with uniform distribu-
tion in the interval (0, 1). We will call this new extension the slash Fréchet distribution and one of its
main characteristics is that its tails are heavier than the Fréchet distribution. The general density of
this distribution and some basic properties are determined. Its moments, skewness coefficients, and
kurtosis are calculated. In addition, the estimation of the model parameters is obtained by the method
of moments and maximum likelihood. Finally, three applications with real data are performed by
fitting the new model and comparing it with the Fréchet distribution.

Keywords: Fréchet distribution; slash distribution; kurtosis coefficient; moment estimators; maxi-
mum likelihood estimator

1. Introduction

The Fréchet distribution is named after Maurice Fréchet, the French mathematician
who developed it in 1927 [1]. This model is also known as the inverse Weibull distribution
and is a special case of the generalized distribution of extreme values. The Fréchet model
is used to model maximum values in a dataset, such as flood analysis, maximum rainfall,
survival analysis, and river discharge in hydrology. More details on the Fréchet distribution
can be found in the work by Kotz and Nadarajah [2]. The probability density function of
the Fréchet model (Fr) is defined as follows:

fX(x; α) = αx−α−1 exp
{
−x−α

}
,

where x > 0, and α > 0 is the shape parameter, which we denote as X ∼ Fr(α). Properties
of this distribution are presented as follows:

1. FX(x; α) = exp{−x−α}, where FX(·) is the cumulative distribution function of X.
2. Q(p) = (− log(p))−1/α, 0 < p < 1. where Q(·) is the quantile function of X.
3. E(Xr) = Γ

(
1− r

α

)
, r = 1, 2, 3, ..., is the r-th moment of X

Some extensions of the Fréchet distribution that are available in the literature are the
exponentiated Fréchet distribution (Nadarajah and Kotz [3]), where the main objective is
on providing a complete development of the mathematical properties of this distribution.
Here, the theoretical analysis of the inverse Weibull distribution (Khan, M.S. et al. [4]) is
performed; it is a flexible model that approximates different distributions when its shape pa-
rameter changes. The generalized inverse Weibull distribution (de Gusmão, F.R.S. et al. [5]),
specifically the three-parameter version with both decreasing and unimodal failure rates,
was studied. On the other hand, I. Elbatal and Hiba Z. Muhammed [6] presented the four-
parameter exponential generalized inverse Weibull distribution (EGIW). Badr, M.M. [7]
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presented a new class of distributions, called the Beta generalized exponentiated Fréchet
distribution, based on the Beta-G family.

On the other hand, another important distribution for the development of this work
is the slash distribution, which is represented as the quotient between two independent
random variables, a normal distribution and a uniform power (see Johnson et al. [8]).
Therefore, we say that X has a slash (S) distribution if its stochastic representation is
given by

X =
Z

U
1
q

,

where Z ∼ N(0, 1) and U ∼ U(0, 1) are independent random variables and q > 0 is
the kurtosis parameter. It will be denoted as X ∼ S(q) and its density function has the
following expression:

fX(x; q) =
2

q−2
2 q√

π|x|q+1 γ

(
q + 1

2
;

x2

2

)
, x > 0.

where γ(a, z) =
∫ z

0 wa−1e−wdw, is the lower incomplete gamma function.
Rogers and Tukey [9] introduce the slash distribution as an alternative distribution to

the standard normal distribution, but with heavier tails. Kadafar [10] proposes maximum
likelihood estimators for location and scale parameters. Ref. [11] generalizes the slash
distribution by introducing the family of slash-elliptic distributions. Genc [12] discusses
the symmetric case of a generalization of the slash distribution. Reyes, Gómez, and
Bolfarine [13] propose a modification to the classical slash distribution by changing the
uniform distribution to an exponential distribution in its stochastic representation, and
Rojas, Bolfarine, and Gómez [14] extend the slash distribution by considering a random
variable with the Beta distribution in the denominator.

In this work, a new extension of the Fréchet distribution is introduced, with the
objective that this new family presents greater flexibility in terms of the kurtosis of the Fr
distribution, enabling it to model positive data that display atypical observations. It arises
as the quotient of two independent random variables, one being the Fréchet distribution
in the numerator and power of the uniform distribution in the denominator. The uniform
distribution at (0, 1) produces a slash Fréchet distribution with heavier tails than the
Fréchet distribution.

The paper is presented as follows. Section 2 presents the stochastic representation of
the model, the density function, some basic properties, and moments and the coefficient of
skewness and kurtosis. In Section 3, we obtain the parameter estimators by the method of
moments (MM) and maximum likelihood (MV), ending with a simulation study to observe
the asymptotic behavior of the MV estimators. In Section 4, we show three illustrations of
real datasets. In Section 5, we provide some conclusions.

2. The Slash Fréchet Distribution
2.1. Density Function

Definition 1. We will say that a random variable Y is slash Fréchet-distributed with shape pa-
rameter α and kurtosis parameter q, denoted by Y ∼ SFr(α, q), if its stochastic representation is
as follows:

Y =
X

U
1
q

, (1)

where X ∼ Fr(α) and U ∼ U(0, 1) are independent random variables with α > 0 and q > 0.

The following proposition presents the density function of the SFr distribution.
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Proposition 1. Let Y ∼ SFr(α, q), then the density function of Y is given by:

fY(y; α, q) =
q

yq+1 Γ
(

1− q
α

, y−α
)

, (2)

where y > 0, α > 0, q > 0, α > q and Γ(a, t) =
∫ ∞

t wa−1e−wdw is the upper incomplete
gamma function.

Proof. Using the stochastic representation given in (1) and using the random vector trans-
formation method, it follows that

Y =
X

U
1
q

W = U
1
q

⇒ X = YW
U = Wq

}
⇒ J =

∣∣∣∣∣∣∣∣∣∣

∂x
∂y

∂x
∂w

∂u
∂y

∂u
∂w

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣w y
0 qwq−1

∣∣∣∣ = qwq.

Then, fY,W(y, w) = |J| fX,U(yw, wq) = qwqα(yw)−(α+1) exp{−(yw)−α}, 0 < w < 1,
y > 0, by marginalizing with respect to the random variable W, we have that

fY(y) = qα
∫ 1

0
wq(yw)−(α+1) exp

{
−(yw)−α

}
dw,

and making the change of variable t = (yw)−α, the result is obtained.

Corollary 1. If q = 1, we will say that Y is canonical slash Fréchet-distributed and its density
function is as follows:

fY(y; α, 1) =
1
y2 Γ

(
1− 1

α
, y−α

)
,

where Γ(a, t) =
∫ ∞

t wa−1e−wdw is the upper incomplete gamma function and is denoted as
Y ∼ SFr(α, 1).

Proof. Making q = 1 in Proposition 1, the result is obtained.

On the left side of Figure 1, the SFr and Fr distributions are shown for α = 1 and
different values of parameter q; on the right side is a zoomed-in view of the graphical
representation of the tails; as the value of parameter q decreases, the density function of the
SFr distribution exhibits greater kurtosis.
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Figure 1. Graphical comparison of the density function of the Fréchet (Fr) and slash Fréchet (SFr)
distributions for fixed alpha (α = 1) and different values of q.
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2.2. Properties

In this subsection, we show some properties of the SFr distribution.

Proposition 2. Let Y ∼ SFr(α, q), then the cumulative distribution function (cdf) of Y is given by:

FY(t; α, q) =
q

αtq Γ
(
− q

α
, t−α

)
,

where t > 0, α > 0, q > 0, and Γ(a, t) =
∫ ∞

t wa−1e−wdw is the upper incomplete gamma function.

Proof. Using the definition of CDF, we obtain

FY(t; α, q) =
∫ t

0
fY(y)dy

=
∫ t

0

q
yq+1 Γ

(
1− q

α
, y−α

)
dy

=
∫ t

0

q
yq+1

(∫ ∞

y−α
t−

q
α e−tdt

)
dy.

Considering the following variable change, z = yαt, and developing the integral, the
result is obtained.

Figure 2 shows the graphical comparison of the cdf of the SFr model for (α = 1) and
different values of q, with the Fr distribution. It can be seen that for smaller values of the q
parameter, the growth of the cdf in the SFr distribution is slower, which implies greater
flexibility when working with data with high kurtosis.
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Figure 2. Graphical comparison of the CDF between the Fréchet (Fr) and slash Fréchet (SFr) distribu-
tion for the fixed alpha (α = 1) and different values of q.

Proposition 3. Let Y ∼ SFr(α, q), then the survival function and the hazard function of Y,
respectively, are given by

SY(t; α, q) =
αtq − qΓ

(
− q

α , t−α
)

αtq ,

hY(t; α, q) =
αqtq Γ

(
1− q

α , t−α
)

tq+1
(
αtq − q Γ

(
− q

α , t−α
)) ,

where t > 0, α > 0, q > 0.
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Proof. Using the definitions of the survival function and hazard function,

SY(t; α, q) = 1− FY(t; α, q); hY(t; α, q) =
fY(t; α, q)

1− FY(t; α, q)
.

Substituting fY(t; α, q) and FY(t; α, q), we obtain the result.

Table 1 shows P(Y > y) for different values of y for the mentioned models, where it is
observed that the SFr distribution presents heavier tails than the Fr distribution.

Table 1. Comparison of values of the survival function between the SFr and Fr distributions for α = 1
and q = 1, 3, 5, 10.

P(Y > 10) P(Y > 11) P(Y > 12) P(Y > 13) P(Y > 14) P(Y > 15)

Fr (1) 0.0952 0.0869 0.0800 0.0740 0.0689
SFr (1, 10) 0.1051 0.0960 0.0884 0.0819 0.0763
SFr (1, 5) 0.1171 0.1070 0.0986 0.0914 0.0852
SFr (1, 3) 0.1368 0.1253 0.1157 0.1074 0.1002
SFr (1, 1) 0.2775 0.2605 0.2457 0.2327 0.2212

Figure 3 shows the survival function (left side) and the hazard function (right side)
for α = 2 and different values of q, compared to the Fr distribution. It can be seen that as
parameter q increases, the SFr distribution has heavier tails than the Fr distribution.
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Figure 3. Graphs of the survival function and hazard function for the SFr distribution with α = 2 and
different values of q.

Proposition 4. Let Y|W = w ∼ Fr
(

α, w−α/q
)

and W ∼ U(0, 1), then Y ∼ SFr(α, q).

Proof. The marginal density function of Y is given by:

fY(y; α, q) =
∫ 1

0
fY|W(y|w) · fW(w) dw

=
∫ 1

0
w−α/qαy−α−1e−w−α/qy−α

dw.

Considering the change of variable u = w−α/q, the result is obtained.

Proposition 5. Let Y ∼ SFr(α, q). If q → ∞, then Y converges in distribution to the random
variable X ∼ Fr(α).
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Proof. Let Y ∼ SFr(α, q) and Y = X
U1/q given in (1). First, the probability convergence of

U1/q is studied. We have that U ∼ U(0, 1), and if W = U1/q, then W ∼ Beta(q, 1); therefore,
the following is obtained:

E[(W − 1)2] =
2

(q + 1)2(q + 2)
,

where if q → ∞ ⇒ E[(W − 1)2] → 0; therefore, W P−→ 1 (see Lehmann [15]), where P−→
denotes convergence in probability. Finally, applying Slutsky’s theorem [15] for Y = X

W , we

have that Y D−→ X ∼ Fr(α), where D−→ denotes the convergence in distribution.

2.3. Moments

Proposition 6. Let Y ∼ SFr(α, q), then the moment of order r of Y is given by

µr = E[Yr] =
q

q− r
Γ
(

1− r
α

)
, with r = 1, 2, ... and q, α > r.

Proof. Using the stochastic representation given in (1) and considering that X and U are
independent random variables, we have:

µr = E[Yr]

= E

[(
X

U
1
q

)r]
= E

[
Xr ·U−

r
q
]

= E[Xr] · E[U−
r
q ],

where E[U−
r
q ] =

q
q− r

, q > r and E[Xr] = Γ
(
1− r

α

)
, α > r, are the moments of order r of

U−
1
q and X, respectively, where U ∼ U(0, 1) and X ∼ Fr(α).

Corollary 2. If Y ∼ SFr(α, q), then it follows that

µ1 = E[Y] =
q

q− 1
Γ
(

1− 1
α

)
, q, α > 1. (3)

µ2 = E[Y2] =
q

q− 2
Γ
(

1− 2
α

)
, q, α > 2. (4)

µ3 = E[Y3] =
q

q− 3
Γ
(

1− 3
α

)
, q, α > 3.

µ4 = E[Y4] =
q

q− 4
Γ
(

1− 4
α

)
, q, α > 4.

Proof. Replacing r = 1, 2, 3, 4 in Proposition 6, the result is obtained.

Corollary 3. If Y ∼ SFr(α, q), then the expectation and variance of Y are given by

E[Y] =
q

q− 1
Γ
(

1− 1
α

)
, q, α > 1

V(Y) =
q

q− 2
Γ
(

1− 2
α

)
−
[

q
q− 1

Γ
(

1− 1
α

)]2
, q, α > 2.
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Proof. Using µ1 and µ2 from Corollary 2, considering E[Y] = µ1 and V(Y) = µ2 − µ2
1, the

result is obtained.

Proposition 7. Let Y ∼ SFr(α, q), then the skewness coefficient of Y is given by

√
β1 =

P3 − 3qP1P2 + 2q2P3
1

√
q
[
P2 − qP2

1
]3/2 , q > 3

where Pr =
Γ(1− r

α )
q−r , q, α > r.

Proof. Using the definition of the standardized skewness coefficient

√
β1 =

E[(Y− E(Y))3]

(V(Y))3/2 =
µ3 − 3µ1µ2 + 2µ3

1(
µ2 − µ2

1
)3/2 ,

and substituting µ1, µ2 and µ3 in Corollary 2 and Pr =
Γ(1− r

α )
q−r , the result is obtained.

The left side of Figure 4 shows the behavior of the skewness coefficient as a function
of parameters α and q, where it is observed that as the value of q decreases, the value of the
skewness coefficient increases. In addition, on the right side of Figure 4, it is shown that
when parameter q tends to ∞, the value of the skewness coefficient of the SFr distribution
tends to the value of the skewness coefficient of the Fr distribution.
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Figure 4. Skewness coefficient plot of the SFr model (left side). Comparison of the skewness
coefficient between SFr and Fr for different values of q (right side).

Proposition 8. Let Y ∼ SFr(α, q), then the kurtosis coefficient of Y is given by

β2 =
P4 − 4qP1P3 + 6q2P2

1 P2 − 3q3P4
1

q
[
P2 − qP2

1
]2 , q > 4

where Pr =
Γ(1− r

α )
q−r , q, α > r.

Proof. Using the definition of the standardized kurtosis coefficient

β2 =
µ4 − 4µ1µ3 + 6µ2µ2

1 − 3µ4
1

(µ2 − µ2
1)

2
,

and substituting the expressions obtained in Corollary 2 and Pr =
Γ(1− r

α )
q−r , the result

is obtained.
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The left side of Figure 5 shows the behavior of the kurtosis coefficient as a function
of parameters α and q, where it is observed that as the value of q decreases, the kurtosis
coefficient increases. Furthermore, on the right side of Figure 5, it is observed that when
parameter q tends to ∞, the value of the kurtosis coefficient of the SFr distribution tends to
the value of the kurtosis coefficient of the Fr distribution.
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Figure 5. Plot of the kurtosis coefficient for the SFr model (left side). Comparison of the kurtosis
coefficient between the SFr and Fr models for different values of q (right side).

2.4. Some Mathematical Properties

In this subsection, we show some mathematical properties of the SFr model, such as
the order statistics, the first incomplete moment, and the Lorenz curve.

Proposition 9. Let Y(1), . . . , Y(n) denote the order statistics of a random variable of Y1, . . . , Yn
with Y ∼ SFr(α, q). Then, the pdf of Y(j) is as follows:

fY(j)
(y) =

n!
(j− 1)!(n− j)!

q
yq+1 G0

[
q

αyq G1

]j−1[
1− q

αyq G1

]n−j
,

In particular, the pdf of the minimum, Y(1), is

fY(1)
(y) =

nq
yq+1 G0

[
1− q

αyq G1

]n−1
,

and the pdf of the maximum, Y(n), is

fY(n)
(y) =

nq
yq+1 G0

[
q

αyq G1

]n−1
,

where G0 = Γ
(
1− q

α , y−α
)

and G1 = Γ
(
− q

α , y−α
)
.

Proof. Since we are dealing with an absolutely continuous model, the pdf of the j-th order
statistics is obtained by applying

fY(j)
(y) =

n!
(j− 1)!(n− j)!

f (y)[F(y)]j−1[1− F(y)]n−j,

where F and f are the cdf and pdf of the SFr distribution.

Proposition 10. Let Y ∼ SFr(α, q). Then, the first incomplete moment of Y is given by:

m1(y; α, q) =
q

1− q

[
y1−qΓ

(
1− q

α
, y−α

)
− Γ

(
1− 1

α
, y−α

)]
, y > 0. (5)
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Proof. Using the definition of the first incomplete moment and substituting the density
given in (2), we have

m1(y; α, q) =
∫ ∞

0
t fY(t; α, q)dt

= q
∫ ∞

0
t−qΓ

(
1− q

α
, t−α

)
dt.

Then, integrating by parts using u = Γ
(
1− q

α , t−α
)

and v =
t1−q

1− q
, the result

is obtained.

Proposition 11. Let Y ∼ SFr(α, q). Then, the Lorenz curve, L(y; α, β), can be obtained

L(y; α, β) =
q

3(1− q)

[
y1−qΓ

(
1− q

α
, y−α

)
− Γ

(
1− 1

α
, y−α

)]
.

Proof. Using the definition of the Lorenz curve in terms of the first incomplete moment,
we have

L(y; α, β) =
m1(y; α, q)

ρ
,

Replacing m1(y; α, q) obtained in (5) and considering ρ = 3, the result is obtained.

3. Estimation

In this section, we study two methods of estimating the parameters of the slash Fréchet
distribution. First, the method of moments and the maximum likelihood method are used
and then a simulation study is performed using the maximum likelihood method.

3.1. Moment Estimators

Proposition 12. Let Y1, ..., Yn be a random sample of the random variable Y with distribution
SFr(α, q), the moment estimators for θ = (α, q) can then be obtained by numerically solving the
following nonlinear system of equations:

q̂M =
Y

Y− Γ
(

1− 1
α̂M

) , (6)

2Y2
[

Y− Γ
(

1− 1
α̂M

)]
−Y

[
Y2 − Γ

(
1− 2

α̂M

)]
= 0, (7)

where Y and Y2 are the first two sample moments of Y.

Proof. Using Equations (3) and (4) in Corollary 2 and equating the sample moments to the
population moments, we have

X =
q

q− 1
Γ
(

1− 1
α

)
, (8)

X2 =
q

q− 2
Γ
(

1− 2
α

)
, (9)

by solving Equation (8) for q, we obtain q̂M given in (6). Then, substituting q̂M into
Equation (9), we obtain the equation given in (7). By utilizing numerical methods and
the "uniroot" function of the R software, we obtain α̂M; replacing α̂M in Equation (6), we
obtain q̂M.

3.2. Maximum Likelihood Estimators

Let Y1, . . . , Yn, be a random sample of size n of a random variable Y with distribution
SFr(α, q), then the log-likelihood function for θ = (α, q)T can be expressed as follows:
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`(θ, yi) = n log(q)− (q + 1)
n

∑
i=1

log(yi) +
n

∑
i=1

log G(yi), (10)

where G(yi) = Γ
(
1− q

α , y−α
i
)
.

Partially deriving the log-likelihood function with respect to α and q, and setting them
equal to zero, we obtain the normal equations:

∂`(θ, yi)

∂α
=

n

∑
i=1

G1(yi)

G(yi)
= 0 (11)

∂`(θ, yi)

∂q
=

n
q
−

n

∑
i=1

log(yi) +
n

∑
i=1

G2(yi)

G(yi)
= 0 (12)

where

G1(yi) =
∂G(yi)

∂α
=

∂Γ
(
1− q

α , y−α
i
)

∂α

G2(yi) =
∂G(yi)

∂q
=

∂Γ
(
1− q

α , y−α
i
)

∂q

The solutions for Equations (11) and (12) can be obtained using numerical methods,
such as the Newton–Raphson algorithm. An alternative to obtaining the maximum likeli-
hood estimator is to maximize Equation (10) using the optim function of the R software [16].

3.3. Simulation Study

In this section, we study the behaviors of the maximum likelihood estimators for
parameters α and q. Moreover, 2000 samples of sizes 50, 100, 150, 200, 250, and 300 were
used for the slash Fréchet distribution, and in each one, parameters α and q were estimated.
In addition, the mean of the estimators (α̂ and q̂), the mean of the standard errors (sd), and
the coverage percentage (C) were calculated. The results are shown in Table 2. Next, the
algorithm used to generate random samples of Y ∼ SFr(α, q) is developed.

1. Generate W ∼ U(0, 1).
2. Compute X = (− log(W))−1/α.
3. Generate U ∼ U(0, 1).

4. Compute Y =
X

U1/q .

Table 2 shows that as the sample size increases, the mean of the standard errors
decreases and the values of the estimators approach the values of parameters α and q,
indicating that the estimators are consistent. On the other hand, the coverage percentages
approach the nominal values with which they were constructed (95%).

Table 2. Simulation of 2000 samples for the SFr(α, q) model.

n α q α̂ sd(α̂) C(α̂) q̂ sd(q̂) C(q̂)

50

0.5 0.5

0.5544 0.1156 97.35 0.5329 0.1574 90.45
100 0.5225 0.0676 96.05 0.5141 0.0972 92.65
150 0.5148 0.0536 95.65 0.5074 0.0775 93.20
200 0.5109 0.0455 95.65 0.5061 0.0664 93.75
250 0.5068 0.0401 95.15 0.5052 0.0593 94.30
300 0.5068 0.0367 95.20 0.5035 0.0539 95.05

50

0.7 0.4

0.8964 0.4138 97.60 0.4106 0.0833 93.20
100 0.7438 0.1289 96.95 0.4059 0.0570 94.80
150 0.7307 0.1006 95.75 0.4032 0.0457 94.65
200 0.7205 0.0845 95.25 0.4025 0.0394 94.80
250 0.7160 0.0747 96.25 0.4022 0.0351 95.10
300 0.7151 0.0681 95.45 0.4007 0.0318 93.95
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Table 2. Cont.

n α q α̂ sd(α̂) C(α̂) q̂ sd(q̂) C(q̂)

50

1 1

1.1888 0.3298 96.90 1.0482 0.2915 90.1
100 1.0416 0.1342 95.75 1.0178 0.1910 94.1
150 1.0276 0.1066 95.40 1.0159 0.1550 93.3
200 1.0200 0.0909 95.00 1.0088 0.1322 92.8
250 1.0147 0.0805 95.35 1.0096 0.1187 94.4
300 1.0122 0.0731 95.30 1.0073 0.1078 94.4

50

3 2

3.5152 2.6864 97.25 2.0399 0.4426 93.25
100 3.1753 0.5104 96.30 2.0275 0.3054 94.80
150 3.1360 0.4020 96.20 2.0132 0.2444 93.75
200 3.0860 0.3375 95.45 2.0124 0.2113 94.85
250 3.0645 0.2973 96.05 2.0127 0.1885 94.60
300 3.0498 0.2694 96.25 2.0065 0.1712 95.50

50

5 3

6.0466 2.2275 96.55 3.0638 0.6347 93.05
100 5.3670 0.9570 96.45 3.0306 0.4333 94.10
150 5.1994 0.6965 95.70 3.0305 0.3513 94.80
200 5.1491 0.5910 96.35 3.0132 0.3003 95.25
250 5.1065 0.5197 95.25 3.0230 0.2699 94.65
300 5.0991 0.4726 95.45 3.0158 0.2451 95.30

50

2.3 2

2.5672 0.5551 96.65 2.0735 0.5295 91.60
100 2.3919 0.3308 96.00 2.0451 0.3593 93.55
150 2.3612 0.2624 95.85 2.0196 0.2835 94.75
200 2.3540 0.2253 95.65 2.0190 0.2449 95.20
250 2.3387 0.1994 95.05 2.0171 0.2186 95.35
300 2.3378 0.1816 95.25 2.0128 0.1983 95.15

50

4.5 5

4.8658 0.8912 96.75 5.2956 1.6178 91.10
100 4.6657 0.5677 96.05 5.1339 1.0337 92.45
150 4.6148 0.4520 95.50 5.1018 0.8302 92.35
200 4.5990 0.3896 94.40 5.0426 0.7024 93.25
250 4.5751 0.3441 95.25 5.0352 0.6242 93.85
300 4.5670 0.3126 94.20 5.0394 0.5719 93.45

Figure 6 shows the log-likelihood profile of the SFr distribution for a random sample
of n = 200 for values of the parameter q = 5 (on the left side) and q = 1 (on the right side),
where the parameter value shows the maximum likelihood estimator of q that maximizes
the log-likelihood function, indicating the good performance of the MLE obtained in Table 2.

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

−
52

3
−

52
2

−
52

1
−

52
0

−
51

9
−

51
8

−
51

7

q

P
ro

fil
e 

lo
g−

lik
eh

oo
d 

of
 q

2.5 3.0 3.5 4.0 4.5

−
81

.5
−

81
.0

−
80

.5
−

80
.0

q

P
ro

fil
e 

lo
g−

lik
eh

oo
d 

of
 q

Figure 6. Profile of the log-likelihood of the SFr distribution.
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4. Applications

In this section, three applications with real data are presented to compare the fit of
the SFr distribution with the Fr model and with other slash distributions. The maximum
likelihood method was used to obtain the estimators of the α and q parameters and their
estimation errors were calculated through the Hessian matrix. To compare the distributions,
the Akaike information criterion [17] (AIC), Bayesian information criterion [18] (BIC),
Akaike information criterion consistent [19] (CAIC), and Hannan–Quinn information
criterion [20] (HQIC) were considered.

4.1. Application 1 (Patients with Lung Cancer)

The first dataset corresponds to a study conducted by the US Veterans Administra-
tion, where the time elapsed between diagnosis and the start of the study (in months)
of 137 patients with advanced lung cancer was recorded. This dataset was presented by
Kalbfleisch [21] and is available in the survival R package [16], labeled as veteran.

Table 3 presents the descriptive statistics for this dataset: sample mean, sample stan-
dard deviation, sample skewness (

√
β1), and sample kurtosis coefficient (β2), where we

highlight the high level of kurtosis of the data. On the other hand, Figure 7 shows the box
plot of the data, showcasing the possible existence of outliers.

Table 3. Descriptive statistics for the dataset of patients undergoing lung cancer.

n x S
√

b1 b2

137 8.7737 10.6121 4.1055 26.3882

0 20 40 60 80

diagnosis time

Figure 7. Box plot for the dataset of patients undergoing lung cancer.

Table 4 shows the results of the fit performed, comparing the SFr distribution with the
Fréchet (Fr) distribution. It is concluded that the SFr distribution has the best fit for this
dataset compared to the Fr distribution because it has lower values in the AIC, BIC, CAIC,
and HQIC criteria.

Table 4. Estimates, SE in parenthesis, log-likelihood, AIC, BIC, CAIC, and HQIC values for the
dataset of patients undergoing lung cancer.

Parameters Fr SFr

α 0.7452 (0.0540) 2.0245 (0.3805)
q - 0.7382 (0.0812)

log-likelihood −504.6068 −444.1976
AIC 1011.214 892.3952
BIC 1014.134 898.2351

CAIC 1015.134 900.2351
HQIC 1012.400 894.7684
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In Figure 8, the histogram of the dataset of lung cancer patients fitted to the densities
of the Fr and SFr distributions is presented. Note that the SFr model fit has heavier tails.
Figure 9 illustrates the QQ plots, where it can be seen that the theoretical quantiles of the
SFr model are close to the line, y = x, when compared to the Fr distribution.
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Figure 8. Density adjusted for the dataset of patients undergoing lung cancer in the Fr and SFr
distributions.
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Figure 9. QQ plots for the dataset of patients undergoing lung cancer: (a) Fr Model; (b) SFr model.

4.2. Application 2 (Patients with Peritoneal Dialysis)

In this application, we consider the slash power-normal (SPN) distribution (see Chen,
M. et al. [22]), whose density function is given by

f (x, α, q) = qα
∫ 1

0
[Φ(xv)]α−1φ(xv)vqdv x, α, q > 0. (13)

The dataset presents the survival times (in months) of 64 patients on peritoneal dialysis
who attended the University Clinical Hospital of Caracas between 1980 and 1997. This
dataset can be obtained in Borges R. [23]. Table 5 presents the descriptive summary of
the data and Figure 10 shows a box plot for the dataset of patients undergoing peritoneal
dialysis, where atypical observations and high kurtosis can be seen.

Table 5. Descriptive statistics for the dataset of patients undergoing peritoneal dialysis.

n x S
√

b1 b2

64 27.9547 24.9442 1.5772 5.4244
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0 20 40 60 80 100

survival timeFigure 10. Box plot of the dataset of patients undergoing peritoneal dialysis.

Table 6 shows the results of the fit performed, showing that the SFr distribution fits
best with this dataset compared to the Fr and SPN models, because it has lower values in
the AIC, BIC, CAIC, and HQIC criteria.

Table 6. Estimates, SE in parenthesis, log-likelihood, AIC, BIC, CAIC, and HQIC values for the
dataset of patients undergoing peritoneal dialysis.

Parameters Fr SPN SFr

α 0.4377 (0.0446) - 0.6679 (0.0767)
σ - 8.6409 (1.9018) -
q - 0.3900 (0.0509) 0.5794 (0.1025)

log-likelihood −336.0071 −319.3558 −315.4611
AIC 674.0141 642.7116 634.9221
BIC 676.1730 647.0294 639.2399

CAIC 677.1730 649.0294 641.2399
HQIC 674.8646 644.4126 636.6231

Figure 11 shows the histogram of the survival time for the dataset of patients under-
going dialysis, adjusted to the densities of the Fr, SPN, and SFr distributions, where it is
evident that the SFr distribution performs a better fit than the other models, specifically on
the right tail. On the other hand, Figure 12 shows QQ plots, where the good fit of the SFr
distribution is visualized. Figure 13 presents profile log-likelihood functions for parameters
α and q for the SFr distribution for application 2, indicating that the profiles behave well in
the sense that there is a single maximum with a very pronounced value.
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Figure 11. Density adjusted to the dataset of patients undergoing peritoneal dialysis in the Fr, SPN,
and SFr distributions.
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Figure 12. QQ plots for the dataset of patients undergoing peritoneal dialysis: (a) Fr model; (b) SPN
model; (c) SFr model.
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Figure 13. Profile log-likelihoods of α and q for the dataset of patients undergoing peritoneal dialysis.

4.3. Application 3 (Patients with Breast Cancer)

In the third application, we consider the slash half-normal (SHN) distribution (see
Olmos, N.M. et al. [24]), whose density function is given by:

f (z, σ, q) = q

√
2q

π
σqΓ

(
q + 1

2

)
z−(q+1)G

(
z2,

q + 1
2

,
1

2σ2

)
z, σ, q > 0. (14)

The dataset comes from the trial carried out between the years 1984 and 1989 by the
“German Breast Cancer Study Group (GBSG)” on 686 patients with node-positive breast cancer.
For the study, the descriptor of interest is the number of positive lymph nodes in each patient.
The description of the study can be found in the work by Schumacher et al. [25] and the
dataset is available in the R software package [16] “survival” with the database “gbsg”.

Table 7 presents the descriptive statistics of the data and Figure 14 shows a box plot for the
dataset of positive lymph nodes, where atypical observations and high kurtosis can be seen.

Table 7. Descriptive statistics for the dataset of patients undergoing breast cancer.

n x S
√

b1 b2

686 5.0102 5.4755 2.8784 16.2079
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0 10 20 30 40 50

positive lymph nodes

Figure 14. Box plot for the dataset of patients undergoing breast cancer.

Table 8 shows the results of the fit, comparing the SF distribution with the SHN and
Fr distributions; in this case, it can be concluded that the SF distribution fits best with this
dataset because it has lower values in the AIC, BIC, CAIC, and HQIC criteria.

Table 8. Estimates, SE in parenthesis, log-likelihood, AIC, BIC, CAIC, and HQIC values for the
dataset of patients undergoing breast cancer.

Parameters Fr SHN SFr

α 1.0452 (0.0348) - 2.2209 (0.1934)
σ - 3.2493 (0.2384) -
q - 1.9260 (0.2031) 1.1304 (0.0631)

log-likelihood −1905.598 −1790.6070 −1712.0270
AIC 3813.196 3585.215 3428.054
BIC 3817.727 3594.277 3437.116

CAIC 3818.727 3596.277 3439.116
HQIC 3814.949 3588.721 3431.561

Figure 15 shows the histogram of the positive lymph node dataset fitted to the densities
of the F, SHN, and SF distributions, where it can be seen that the SF distribution better
captures the atypical data.
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Figure 15. Density adjusted for the dataset of patients undergoing breast cancer in the Fr, SHN, and SFr
distributions.
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On the other hand, Figure 16 shows the QQ plots of the fitted models. From these re-
sults, it can be seen that the SFr distribution provides a better fit than the other distributions
in comparison.
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Figure 16. QQ plots for the dataset of patients undergoing breast cancer: (a) Fr model; (b) SHN
model (c) SFr model.

5. Conclusions

In this work, a new distribution is studied that is an extension of the Fréchet distribu-
tion, which shows greater flexibility in the modeling of the kurtosis coefficient.

When carrying out the study of the slash Fréchet distribution, the following is concluded:

• A new extension of the Fréchet distribution with the density function, cumulative
distribution function, survival function, and hazard function is obtained explicitly
(closed) in terms of the incomplete gamma function.

• The moments, expectations, and variances of this new distribution were obtained,
leading to closed expressions for all of them.

• By observing the skewness and kurtosis coefficients, it can be seen that the SFr model
is more flexible than the Fr model. Furthermore, as shown in Table 1, the tails of the
distribution become heavier when parameter q is smaller.

• Analyzing the stochastic representation of the SFr model, it is observed that the SFr
distribution is a scale mixture of the Fr and U(0, 1) distribution.

• In the simulation study, it is observed that as the sample size increases, the maximum
likelihood estimators are closer to the parameter values, suggesting consistent and
stable estimators.

• In applications with real data, the SFr distribution demonstrates superior fits compared
to the Fr model and other slash distributions, because it has lower values in the AIC,
BIC, CAIC, and HQIC criteria.

• In future research, we plan to work on a new extension of the Fr distribution that is
more flexible in the kurtosis coefficient than the SFr distribution. We will use this
distribution in regression problems and survival analyses.
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