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Abstract: The impact of convection and radiation on the thermal distribution of the wavy porous
fin is examined in the present study. A hybrid model that combines the differential evolution (DE)
algorithm with an artificial neural network (ANN) is proposed for predicting the heat transfer of
the wavy porous fin. The equation representing the thermal variation in the wavy porous fin is
reduced to its dimensionless arrangement and is numerically solved using Rung, e-Kutta-Fehlberg’s
fourth-fifth order method (RKF-45). The study demonstrates the effectiveness of this hybrid model,
and the results indicate that the proposed approach outperforms the ANN model with parameters
obtained through grid search (GS), showcasing the superiority of the hybrid DE-ANN model in
terms of accuracy and performance. This research highlights the potential of utilizing DE with ANN
for improved predictive modeling in the heat transfer sector. The originality of this study is that it
addresses the heat transfer problem by optimizing the selection of parameters for the ANN model
using the DE algorithm.

Keywords: heat transfer; fin; porous fin; wavy fin; machine learning; differential evolution

1. Introduction

Heat transfer has become a significant subject in the field of thermal engineering.
There has been an increase in demand for improved thermal systems that provide a better
heat transfer rate in industrial applications. Due to spatial temperature differences, the
transmission of thermal energy, termed heat transfer, occurs within or between mediums in
three modes: heat conduction, radiation, and convection. Many researchers have inspected
the aspects of heat transmission and its applications. Jo et al. [1] studied the heat transfer
mechanism of a pulsating heat pipe. Their results revealed that sensible heat transfer is a
byproduct of oscillating flow, whereas latent heat transfer contributes to the overall heat
transfer and encourages an oscillating flow. The convective heat transfer characteristics
of a porous medium in a heat exchanger were investigated by Hu et al. [2]. Their results
conveyed that overall heat transfer performance decreases as velocity increases, and the
heat transfer coefficient, pressure drop, and the volumetric heat transfer coefficient in-
crease along with an increase in the number of cells per inch. The convection–radiation
heat transfer process of a chip embedded in an enclosure was studied by Hassan and
Shafey [3]. The study concluded that as the input power induced by the chip increases,
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the chip’s temperature would also increase. Combined mixed convective and surface
radiation heat transmission inside an air-filled enclosure was investigated by Prakash and
Singh [4]. Their results indicate that the heat removal rate is augmented as the velocity
near the active wall increases. Zhang and Lou [5] validated an improvised thermodynamic
analysis method to evaluate the efficiency and irreversibility of the radiative–conductive
heat transfer process. Their findings indicate that, as the heat generation rate increases,
total exergy increases, and the amount of heat generation exhibits more prominence on
the radiative entropy generation rate. Without affecting the overall performance of the
heat transfer devices, different techniques have been implemented in the ever-demanding
industrial sector to augment the heat transfer processes, such as the following: insertion
of twisted tapes, wire coils, coating of surfaces, applications of nanofluids, provision of
rough or porous surfaces, coupling of an electrical or magnetic field, impingement of jets,
and suction. The heat transfer rate can be characteristically increased with an increased
heat transfer coefficient, heat exchanging area, and temperature difference. However,
owing to technical limitations, it is inadvisable to escalate the temperature difference sig-
nificantly, and increasing the heat transfer coefficient is a major risk. Thus, expanding the
heat transference area seems to be one of the finest ways to augment the heat exchange
rate. Accordingly, a thin metal strip, called a fin, or an extended surface, is attached to
the base surface of the heat-transferring devices. Fins are broadly exploited in electronic
components, car radiators, pipelines, turbine blades, electrical chips, compressors, refrig-
erators, solar collectors, and heat sinks. Differential equations are generally utilized to
represent various natural phenomena in many disciplines, including physics, biology, and
engineering. The heat transfer equations of the fins are also represented by nonlinear
differential equations (NDEs). The most significant of the several applications of modern
mathematical theories is the complex and important study of NDE systems with symme-
tries. Interpreting the features of differential equations can be facilitated by using symmetry
analysis, particularly when dealing with equations derived from mathematical concepts.
Symmetry analysis is a powerful tool that enables effective production of numerical solu-
tions to a given NDE. Examining a naturally occurring phenomenon with the assistance
of symmetry analysis is more convenient. Several studies have analyzed the heat transfer
performance through various fin profiles by providing a governing NDE. The transient
heat transfer process through fins having different profiles was studied by Ndlovu [6] by
implementing the differential transform method. The results illustrated that, compared to a
fin having an insulated tip, one with a convective radiative tip dissipates more heat rapidly
to the surroundings. El Ghandouri et al. [7] presented a new fin shape to improve the
convective heat transfer and reduce the weight of heat sinks. Their results indicated that
rippling fins resulted in better enhancement of heat transfer, compared to rectangular fins.
Li et al. [8] proposed several types of three-dimensional perforated fins to investigate
the impact of perforated fins in a latent thermal energy storage system. Their results
revealed that a perforated fin better encourages the heat transfer mechanism of phase-
changing materials. By applying perforated fins, it was found that the flow area expands,
which helps to improve natural convection processes. The heat transfer enhancement
within a turbine blade using a curved pin fin was elucidated by Luo et al. [9]. Accord-
ing to the findings of their investigations, it was discovered that, compared to upright
pin fins, curved pin fins showed better thermal performance. Under natural convection,
Dogmaz et al. [10] investigated the thermal performance of aluminum and functionally
graded annular fins. They concluded that the net heat transfer rate increases as the fin
spacing decreases. Compared to aluminum fins, functionally graded fins have a superior
heat transfer rate, better fin effectiveness and better base to ambient temperature difference.

In recent years, numerous researchers have been interested in the transmission of
heat through a medium in which a solid matrix is interlinked with pores. This matrix
with pore interlinkages is a porous medium that helps in heat transmission. By permitting
the fluid to propagate across the whole domain, and by transmitting heat from one part
to another, the pore spaces created by the medium’s matrix organization contribute to
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convective heat transfer and a fluid convective mode. As a result, porous fins, falling under
the category of passive heat transfer enhancement procedures, have been widely used to
boost thermal performance because they perform better and have a larger surface area
than conventional solid fins. Due to their ease of applicability in various forms, many
researchers have studied the heat dissipation mechanism through porous fins. The concept
of employing a porous fin to augment heat transfer from a given porous medium was
first introduced by Kiwan and Al-Nimr [11]. They compared and estimated the thermal
performance of porous fins and solid fins, and the results showed that using porous fins
with a certain porosity could increase the performance of a solid fin of the same size. Using
the variational iteration method, the variation of fin efficiency and temperature distribution
of a rectangular porous fin was investigated by Ndlovu and Moitsheki [12]. Their results
revealed that, by increasing the porous parameter, the temperature decreased, due to the
changes in permeability; high porosity resulted in a higher heat transfer rate. By considering
internal heat generation, the transient heat transfer along a radiative–convective porous
fin was investigated by Emamifar et al. [13]. According to their findings, lowering the
convective heat coefficient, or increasing Rayleigh or Darcy number, results in an increase
in porosity, which causes a decline in the thermal distribution within the porous fin, and,
thus, the heat transfer from the fin is boosted. Das and Kundu [14] demonstrated an
inverse methodology by employing the Artificial Bee Colony algorithm to predict internal
heat generation in a radial porous fin. They found that internal heat generation greatly
impacts the heat transfer rate for lower porosity values. In a differentially heated chamber,
Xuan Hoang Khoa et al. [15] investigated the impacts on heat transfer performance of both
porous and solid fins. They concluded that, compared to solid fins, the porous fin is more
effective in heat elimination. Thermal analysis of a porous fin with outward fluid flow was
conducted by Abbas et al. [16]. They noticed that the optimal porosity, which improves the
heat removal rate, depends on the period in which the fin removes the heat.

Incorporating geometrically modified fins, comprising louvred fins, offset strip fins,
and wavy or corrugated fins, increases the surface area density, while improving the con-
vection heat transfer coefficient. Owing to convenience in usage and production, and
the potential for higher thermal–hydraulic performance among these modified fins, wavy
fins symmetric around the length or width axis, are the most attractive. The corrugated
shape of these symmetric fins facilitates the expansion of the surface area in the available
space, amplifying the flow distortion and mixing. Numerous investigations have been
conducted on the thermal performance of wavy fins. Convective–radiative heat transfer in
a wavy sinusoidal fin was investigated by Altun and Ziylan [17]. Their results indicated
that, compared to rectangular fins, sinusoidal wavy fins showed better heat transfer perfor-
mance. Luo et al. [18] studied different corrugation angles on wavy fins. Their findings
indicated that incorporating a novel wavy fin improved heat transfer performance. The
thermal performance of a wavy fin comprised of rectangular winglets in air conditioners
was studied by Chimres et al. [19]. They compared the thermal performance of the wavy
fin having winglets with a normal wavy fin. Their results revealed that wavy fins having
winglets provided a better heat transfer rate than normal wavy fins. A new design for a
heat sink having porous wavy fins, named wavy-top-porous fins (WTPF), was proposed
by Boland and Majidi [20]. They compared this proposed WTPF with other fin configu-
rations and concluded that WTPF showed the best overall thermal performance among
the configurations. Okon and Effiom [21] determined the thermal performance of wavy
fin arrays. Their results disclosed that the amount of heat transferred depends upon the
fin’s space, height, wavelength and base to ambient temperature. They also found that, in
comparison to rectangular fin arrays, wavy fin arrays possessed greater convection heat
transfer performance.

To predict and analyze heat transfer phenomena in augmenting the design structure
of heat transfer systems and optimizing heat transmission processes, artificial intelligence-
based machine learning (ML) techniques are widely utilized nowadays. Apart from this,
ML models are implemented to investigate the abundant data generated from experiments,



Symmetry 2023, 15, 1601 4 of 21

simulations and field observations. As a whole, ML techniques boost the accuracy and
effectiveness of data, and further examination of these methods will result in major ad-
vancements in the heat transfer domain. By the application of a radial basic function
(RBF) network, Alizadeh et al. [22] investigated the heat and mass transfer over a porous
medium. Their study illustrated that variation in radiative heat transfer impacts the
heat and mass transfer responses. It also demonstrated how ML can facilitate resolving
matters involving abundant parameters by lowering the required computations. The K-
Nearest Neighbor, an ML algorithm, was employed by Krishnayatra et al. [23] to predict
a fin’s thermal performance. The result concluded that this regression model resulted in
greater prediction accuracy. With the aid of a Genetic algorithm and pix2pix networks,
Yang et al. [24] optimized the arrangement and shape of a pin fin array. They trained and
tested the model in predicting the thermal and pressure distributions on the channel. Their
results revealed that, to regress the exterior surface temperature and the pressure distri-
bution in the middle section, the pix2pix model was the appropriate network type among
the pin fin channels. To study the temperature distribution through porous fins having
different fin profiles, the ML algorithm, namely the Levenberg–Marquardt (LM) algo-
rithm, and cascade feedforward back propagated (CFB) neural networks, was employed by
Khan et al. [25]. They compared the above-mentioned algorithm with other ML algorithms,
and the resulting solution reflected a minimum error between 10−6 and 10−10. Optimiza-
tion in the shape of a pin fin using a genetic algorithm coupled with the ML model was
reported by Nguyen et al. [26]. During the design process, they used an ML model to
evaluate the pressure and temperature caused by the fins within a second. The results
verified that ML-based optimization techniques can be utilized to find undiscovered heat
transfer system shapes that perform better.

Heat transfer is essential in many manufacturing and scientific operations, notably
heat exchangers, combustors, computer processors, fuel cells, and gas turbine blades. On
the other hand, artificial intelligence-based ML methodologies are employed to determine
engineering challenges in almost every industry concerning heat transfer mechanisms.
Differential evolution (DE), prevalent in various scientific and technical domains, has
emerged as a highly effective population-based stochastic search strategy for addressing
optimization issues across a continuous space. Stimulated by these facts, a machine learning
technique based on differential evolution was employed to establish a fin’s heat transfer
model. Furthermore, the current study is innovative in addressing the thermal behavior
and heat transmission of a porous wavy fin under the coupled influence of radiation and
convection. The proposed nonlinear problem was transformed into a non-dimensional
ODE by adopting dimensionless variables. This study examined the significance of several
parameters on the temperature field and the heat transfer rate graphically. The findings
offer better comprehension of heat transmission in porous structures with wavy fins, which
can be helpful in various technical and industrial applications, such as, for instance, heat
exchanger design.

2. Formulation of the Problem

The steady-state heat transmission in a porous wavy fin (PWF) of width W and height
2H, symmetric around the length axis, is investigated. The considered PWF is geometrically
represented and is revealed in Figure 1. The primary presumptions for the current problem
are outlined below:

• The proposed fin geometry is symmetric around the length axis and wavy along the
x-direction.

• It is presumed that the temperature varies only longitudinally and does not vary
across the thickness.

• Convection and radiation heat transfer with constant ambient temperature TAMB are
considered to be the heat-exchanging mechanism of PWF.

• The porous medium, which is homogeneous and isotropic, is saturated with a single-
phase fluid.
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• The fin tip is assumed to be adiabatic, comparable to ignoring the fin tip transferring
heat due to its minimal area.
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The dimensional energy equation for the PWF is obtained as follows (Sowmya et al. [27]
and Kumar et al. [28]):

d
dx

[
ke f f

dTWF
dx

]
= (1− φ)

[
dASF

dx

]
h∗(TWF)

ACS
(TWF − TAMB)−

[ ke f f
ACS

dACS
dx

]
dTWF

dx

+
[
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dx
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(
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AMB

)
+
[
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dx

]
φ
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2.

(1)

Here, both solid and fluid thermal conductivities
(

kSd and k f

)
collectively influence

the effective thermal conductivity
(

ke f f

)
which is denoted as:

ke f f = k f φ + kSd(1− φ), (2)

and h∗(TWF) depends on the temperature of the PWF, as well as the ambient temperature,
which is mathematically represented as (Abdulrahman et al. [29]):

h∗(TWF) = hb

(
TWF − TAMB
TB − TAMB

)ξ

. (3)

Substituting Equations (2) and (3) in Equation (1) yields,

d
dx

[(
k f φ + kSd(1− φ)

)
dTWF

dx

]
+
(

k f φ + kSd(1− φ)
)

dTWF
dx

[
1

ACS

dACS
dx

]
−

(1− φ) 1
ACS

[
dASF

dx

]
hb(TWF−TAMB)

ξ+1

(TB−TAMB)
ξ −

[
dASF

dx

]
σε∗
ACS

(
T4

WF − T4
AMB

)
−
[

dASF
dx

]
φ

ACS

ρ f cp f g K β f
ν f

(TWF − TAMB)
2 = 0.

(4)

The fin half height H and cross-sectional area of the PWF are given by

H = H0

{
1 + δ sin

[
2πn

( x
L

)
+ ϕ

]}
, (5)
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and

ACS = 2H0

W∫
0

{
1 + δ sin

[
2πn

( x
L

)
+ ϕ

]}
dz, (6)

where, W denotes the width of the PWF.
The PWF surface area is provided by

ASF = 2W
L∫

0

√
1 +

(
dH
dx

)2
dx. (7)

Here, Lta =
L∫

0

√
1 +

(
dH
dx

)2
dx is the total arc length of the PWF.

Equation (4) is associated with the following boundary conditions:

x = 0 : TWF = TB,

x = L : dTWF
dx = 0.

(8)

By defining the subsequent dimensionless terms,

ΘWF = TWF−TAMB
TB−TAMB

, X = x
L , Nt =

TAMB
TB−TAMB

, Nc = hb L2

kSd H0
, aRL = H0

L , kr =
k f
kSd

,

Nr = σε∗L2(TB−TAMB)
3

kSd H0
, Sh =

ρ f cp f gKβ f L2(TB−TAMB)

kSdν f H0
,

(9)

the corresponding dimensionless energy equation is obtained:

((1− φ) + φkr)
d2ΘWF

dX2 + ((1− φ) + φkr)
[

2πδn cos(2πnX+ϕ)
1+δ sin(2πnX+ϕ)

]
dΘWF

dX −

(1− φ)Nc

[√
1+4(πaRLδn)2 cos2(2πnX+ϕ)

1+δ sin(2πnX)

]
ΘWF

ξ+1

−φSh

[√
1+4(πaRLδn)2 cos2(2πnX+ϕ)

1+δ sin(2πnX)

]
Θ2

WF

−Nr

[√
1+4(πaRLδn)2 cos2(2πnX+ϕ)

1+δ sin(2πnX)

](
(ΘWF + Nt)

4 − N4
t

)
= 0.

(10)

The BC for Equation (10) is specified as:

X = 0 : ΘWF = 1,

X = 1 : dΘWF
dX = 0.

(11)

The dimensionless thermal equation is solved using RKF-45 and the substitutions
mentioned below are used to convert Equation (10) into a first-order ODE.

ΘWF = E,
dΘWF

dX = E1,
d2ΘWF

dX2 = E2

(12)
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Then, the equivalent form of Equation (10), with the above-specified terms, is given by,

E2 =
1

((1− φ) + φkr)



−((1− φ) + φkr)
[

2πδn cos(2πnX+ϕ)
1+δ sin(2πnX+ϕ)

]
E1+

Nc

[√
1+4(πaRLδn)2 cos2(2πnX+ϕ)

1+δ sin(2πnX)

]
Eξ+1+

Nr

[√
1+4(πaRLδn)2 cos2(2πnX+ϕ)

1+δ sin(2πnX)

](
(E + Nt)

4 − N4
t

)
+Sh

[√
1+4(πaRLδn)2 cos2(2πnX+ϕ)

1+δ sin(2πnX)

]
E2


, (13)

with BCs:
E(0) = 1, E1(1) = 0. (14)

The following steps are taken to obtain the numerical solution:

γ1 = hG(ηγ, ωγ),

γ2 = hG(ηγ + 1
4 h, ωγ + 1

4 γ1),

γ3 = hG(ηγ + 3
8 h, ωγ + 3

32 γ1 +
9

32 γ2),

γ4 = hG(ηγ + 12
13 h, ωγ + 1932

2197 γ1 − 7200
2197 γ2 +

7296
2197 γ3),

γ5 = hG(ηγ + h, ωγ + 439
216 γ1 − 8γ2 +

3680
513 γ3 − 845

4104 γ4),

γ6 = hG(ηγ + 1
2 h, ωγ − 8

27 γ1 + 2γ2 − 3544
2565 γ3 +

1859
4104 γ4 − 11

40 γ5).

(15)

The RK-4 approach was used to approximate a solution to the aforementioned initial
value problem.

ωγ+1 = ωγ +
25

216
γ1 +

1408
2565

γ3 +
2197
4101

γ4 −
1
5

γ5,

and the RK-5 method is being used to improve the value of the solution:

Zγ+1 = ωγ +
16

135
γ1 +

6656
12825

γ3 +
28561
56430

γ4 −
9

50
γ5 +

2
55

γ6. (16)

A shooting strategy can be used with suitable parameter quantities to solve the
transformed first-order ODE (Equation (13)).

The heat transmission through the PWF is determined by utilizing Fourier’s law at
the fin’s base, and is defined as follows:

qWF = −ke f f

 W∫
0

H(x = 0, z)dz

dTWF
dx

∣∣∣∣∣∣
x=0

. (17)

Equation (17) can be represented using Equation (2) as,

qWF = −
(

k f φ + kSd(1− φ)
)

WH0
dTWF

dx

∣∣∣∣
x=0

. (18)

The non-dimensional form of Equation (18) is given as:

QWF = qWF
kSd(TB−TAMB)W

,

= −((1− φ) + φkr) aRL
dΘWF

dX

∣∣∣
X=0

.
(19)
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3. Stochastic Machine Learning Modeling
3.1. Artificial Neural Networks

Artificial neural networks (ANNs) are popular ML approaches that extract relevant
features from high-dimensional input data samples. Stimulated by the working of the
human brain, ANNs simulate the process of learning and pattern recognition, which is
advantageous for solving several complex problems. In comparison to traditional statistical
regression methods, ANN exhibits superior predictive ability and can autonomously
identify meaningful patterns and features in data without prior knowledge or explicit
insight (Cui et al. [30] and Goud et al. [31]). Additionally, they can iteratively improve
performance over many training cycles and rapidly estimate overall statistics when applied
to datasets containing numerous variables. In the domain of heat transfer research, the
concept of ANN has risen to prominence as a remarkable tool for the management of
complexities of intricate systems (Motahar [32] and Kumar et al. [33]). The modeling of
ANN structures is similar to virtual brains and is meticulously developed with input,
hidden, and output layers, resulting in a highly interconnected network. A rigorous
testing process ensures the network’s efficacy, where independent test data are carefully
kept separate from the training phase. This meticulous evaluation safeguards against the
overfitting condition, and the precise selection of network parameters is an important factor
that unravels the ANN model’s remarkable ability to perform efficiently.

3.2. Grid Search

Grid Search (GS) is a systematic approach to parameter estimation that involves
defining a grid of values for each hyperparameter and exhaustively evaluating the model’s
performance on each combination of parameter values. It also provides a comprehensive
exploration of the parameter space. It ensures that every combination is noticed, and this
is particularly useful when prior knowledge or intuition suggests specific values for the
hyperparameters. The tuning hyperparameters must each be specified with discrete values
(Tikadar and Kumar [34]). The flexibility of GS to examine a wide variety of parameter
values without any prior assumptions or limits is its primary advantage. On the other hand,
it may suffer from inherent unpredictability because certain values guide the search process,
so many iterations may be necessary to converge to an ideal parameter configuration.

3.3. Differential Evolution

There have been efforts to resolve a few of ANN’s drawbacks, such as unwanted
convergence to local rather than global optimal solutions and a lengthy training period. This
can be done by incorporating ANN with another algorithm that addresses a particular issue.
Differential Evolution (DE) is a well-known evolutionary technique that was developed by
Storn to solve the Chebyshev polynomial fitting issue (Storn [35]). Like other evolutionary
algorithms, it has gained substantial attention as a powerful optimization algorithm. In
contrast to gradient-based optimization approaches, DE does not need an estimation of
gradients; thereby rendering it ideal for non-differentiable or noisy objective functions.
When compared to other evolution methods, such as the genetic algorithm and particle
swarm optimization, DE’s mutation and crossover operators frequently create a good
balance between exploration and exploitation, which can help in handling parameter
sensitivities effectively. This is especially important in ANN training, where changing
parameters can have a big impact on model performance. DE also uses a population-based
approach, including separate mutation, crossover, and selection processes. On the other
hand, DE distinguishes itself with its amazing ease of implementation, requiring fewer
parameters and demonstrating rapid convergence (Centeno-Telleria et al. [36]). Inspired
by natural selection principles, DE adeptly solves global optimization challenges, such as
parameter estimation, within ANN models (Atangana Njock et al. [37]). By maintaining a
population of candidate solutions, DE iteratively refines and evolves these individuals by
assimilating the information from the most adept individuals in the population.
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The DE process is executed in multiple discrete steps, as exhibited in Figure 2. To
begin, critical parameters, such as population size (N), mutation factor (F), and crossover
rate (R), must be specified during the initiation phase. Furthermore, in the context of
ANN, a chromosome is constructed using three distinct parameters: C1, m1, and r1. These
factors specify the length of a chromosome, which, in this case, was three. N was set to 100,
whereas F and R were set to 0.5 and 0.9, respectively.

Mζ1ζ2 = rand.(upper[ζ2]− lower[ζ2]) + lower[ζ2]. (20)

Mi
′ = Mi + F(Mj −Ml). (21){

M′j(ζ2) = M′i(ζ2) if rand(ζ2) ≤ C1 or ζ2 = rand(ζ2)

M′j(ζ2) = Mi(ζ2) otherwise
. (22)

Xζ2,G+1 =

{
Uζ2,G : f (Ui,G) < f (Mζ2,G)

Mζ2,G : otherwise
. (23)Symmetry 2023, 15, x FOR PEER REVIEW 10 of 24 
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The evolutionary process begins once the parameters are determined. The genera-
tion count (gc) is initially set to zero. The population is then randomly produced using
Equation (20), resulting in the initial set of samples. The produced population is then
used in the ANN model to forecast optimal results. The fitness function values are calcu-
lated and recorded to determine the accuracy of the results. This investigation used the
mean squared error (MSE) as the fitness function. After the preliminary computations,
offspring are generated using Equations (21)–(23), which include mutation, crossover,
and selection activities. These offspring then determine the predictions in the ANN
model, allowing updated fitness values to be calculated. Setting up gc = gc + 1 increases
the generation count, indicating the end of one iteration. The iteration procedure is
repeated, recalculating fitness values, based on the offspring, and identifying the best so-
lution. This process is repeated until a termination requirement is reached. The method
terminates if the gc equals the predefined maximum number of generations. The best
solution chromosome is acquired at this point, indicating the optimal parameter values
for the ANN model. If the termination requirement is not encountered, the algorithm
returns to the step of recalculating fitness values and the iterative process is resumed.
The DE algorithm effectively optimizes the parameters of the ANN model by rigorously
following these phases, resulting in accurate predictions.

4. Results and Discussion

This section discusses the major impacts of the corresponding dimensionless pa-
rameters on the thermal profile of a wavy porous fin. The achieved outcomes are pre-
sented graphically for the solid wavy fin (SWF) and PWF cases. Graphical outputs were
achieved using particular physical parameter ranges, such as 0.2 ≤ Nc ≤ 0.8, 1 ≤ Nr ≤ 4,
0 ≤ Nt ≤ 0.3, Sh = 0(for SWF), and Sh = 0.2(for PWF). The heat transfer rate of the PWF
was explored by developing a heat transfer model by implementing an artificial neural
network with a differential evolution algorithm.

The considered wavy fin was assumed to dissipate heat from itself to the surrounding
environment via surface convection and radiation mechanisms. These heat transmission
processes play a key role in the thermal behavior of the fin and are indicated in mathematical
forms, which are nondimensional terms. Thus, the impact of dimensionless variables, such
as convective–conductive (Nc) and radiative–conductive (Nr) parameters, are envisioned
via graphical plots, as shown in Figures 3 and 4.

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 24 
 

 

 

Figure 3. Consequences of Nc  on WFΘ  of solid and porous wavy fin. 

 

Figure 4. Consequences of Nr  on WFΘ  of solid and porous wavy fin. 

The thermal profile of the wavy extended surface declined with an increasing range 
of Nc , as revealed in Figure 3. The lessening in the scales of Nr  encouraged thermal 
variation in the fin, as revealed in Figure 4. 

The energy loss from the fin, influenced by radiation, was associated with the param-
eter tN . Figure 5 explains the variation in the fin’s temperature with the influence of tN  

for both SWF and PWF cases. The augmented scales of tN  resulted in the thermal distri-
bution decreasing for both circumstances. The variation in the thermal dispersion of the 
PWF is presented in three-dimensional (3D) graphical form, as shown in Figure 6. The 

Figure 3. Consequences of Nc on ΘWF of solid and porous wavy fin.



Symmetry 2023, 15, 1601 11 of 21

Symmetry 2023, 15, x FOR PEER REVIEW 12 of 24 
 

 

 

Figure 3. Consequences of Nc  on WFΘ  of solid and porous wavy fin. 

 

Figure 4. Consequences of Nr  on WFΘ  of solid and porous wavy fin. 

The thermal profile of the wavy extended surface declined with an increasing range 
of Nc , as revealed in Figure 3. The lessening in the scales of Nr  encouraged thermal 
variation in the fin, as revealed in Figure 4. 

The energy loss from the fin, influenced by radiation, was associated with the param-
eter tN . Figure 5 explains the variation in the fin’s temperature with the influence of tN  

for both SWF and PWF cases. The augmented scales of tN  resulted in the thermal distri-
bution decreasing for both circumstances. The variation in the thermal dispersion of the 
PWF is presented in three-dimensional (3D) graphical form, as shown in Figure 6. The 

Figure 4. Consequences of Nr on ΘWF of solid and porous wavy fin.

The thermal profile of the wavy extended surface declined with an increasing range of
Nc, as revealed in Figure 3. The lessening in the scales of Nr encouraged thermal variation
in the fin, as revealed in Figure 4.

The energy loss from the fin, influenced by radiation, was associated with the parame-
ter Nt. Figure 5 explains the variation in the fin’s temperature with the influence of Nt for
both SWF and PWF cases. The augmented scales of Nt resulted in the thermal distribution
decreasing for both circumstances. The variation in the thermal dispersion of the PWF is
presented in three-dimensional (3D) graphical form, as shown in Figure 6. The temperature
of the fin dispersed from the base to the fin’s tip, due to the exclusion of heat caused by the
simultaneous mechanisms of radiation and convection.
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The foremost objective of the investigation was to present the stochastic ANN model
for the heat transfer analysis of the PWF by employing the DE-ANN scheme, and the corre-
sponding architecture of the ANN model was represented in terms of thermal parameters,
as shown in Figure 7. In this figure, the input layer consists of the data of the thermal
parameter, such as (Nc, Nr, Sh, and Nt), whereas the target data includes the heat transfer
rate (QWF) values of the PWF. The ANN adjusts the weights and the number of neurons
in the hidden layers, and, here, this was selected by GS and DE algorithms, and both of
these were compared. During training, to minimize network loss and learn the complex
relationships between the input and output of a given dataset, the training procedure was
validated using test data that was not used during training. After training, the network
parameters were calculated, allowing the ANN to anticipate unknown inputs and forecast
the related output. The parameters selected using DE were a network structure of 24, 17, 8,
an adam optimizer with relu activation function, followed by 234 epochs, and a batch size
of 33. GS consisted of a network of 10, 10, and 12, to which the optimizer and activation
were the same as above, but the epochs were estimated to be 258, with a batch size of 50.
Table 1 compares two techniques for parameter estimation in an ANN model. The MSE and
Maximum Error (ME) were the performance metrics considered in this table for the training
and testing stages. Regarding parameter estimation for the ANN model, the findings clearly
show that DE-ANN outperformed GS-ANN. Furthermore, DE-ANN exhibited much lower
MSE values for the training and testing phases than GS-ANN. This implies that DE-ANN
can accurately estimate the ANN model parameters and deliver more exact predictions.
In addition to lowering MSE, DE-ANN performed better in terms of ME. It represented
the greatest difference between projected and actual values, and minimizing this error is
critical for making accurate forecasts. DE-ANN reduced the maximum error in both the
training and testing phases, demonstrating its capacity to grasp complicated patterns and
reduce outliers, if present in the data. This was verified by analyzing the following plots
and tables.
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Table 1. Performance metrics evaluation.

Model
Training Testing

MSE ME MSE ME

GS-ANN 2.94 × 10−5 3.82 × 10−2 2.36 × 10−5 2.87 × 10−2

DE-ANN 3.34 × 10−7 8.43 × 10−5 2.84 × 10−7 8.01 × 10−5

Figure 8 compares the predicted values from the GS-ANN model with the actual
values, whereas Figure 9 demonstrates the DE-ANN model’s training results. The per-
formance and accuracy of the model’s predictions were also evaluated graphically using
these plots. These figures show that the applied stochastic DE-based ANN methodology
provided more excellent convergent training and testing results than the GS-ANN model.
This was authenticated by the values of the training and testing phases. The corresponding
R2 values were closer and equal to one for the DE-ANN model, which confirmed the
model’s training accuracy. The behavior of the loss function during the training and testing
periods is shown in Figure 10. The x-axis indicates training iterations or epochs, and the
y-axis represents the loss function value. The training curve displays the evolution of the
loss function during the training process, whereas the testing curve depicts its behavior on
a separate testing dataset. One of the reasons for the superior performance of DE-ANN
lies in its computational efficiency. GS involves an exhaustive search through a predefined
grid of parameter combinations, which can be computationally expensive, especially when
dealing with a large number of parameters or a wide parameter range. On the other hand,
DE operates on population-based optimization, employing a stochastic search strategy
to efficiently explore the parameter space, which converges to the optimal solution more
quickly. Furthermore, one of the primary benefits of DE over GS for parameter estimation
in an ANN model is its resistance to local optima. GS is susceptible to becoming trapped
in local optima, which are suboptimal parameter values that keep the algorithm from
achieving the global optimum.

This happens because GS endlessly searches through a specified grid of parameter
possibilities, restricting its ability to explore the parameter space properly. On the other
hand, DE may overcome local optima, due to its population-based strategy and mutation-
crossover operations. DE searches a larger parameter space by keeping a population
of potential solutions and using stochastic procedures, such as mutation and crossover.
This enables it to avoid local optima and search for the global optimum more efficiently.
When compared to GS-ANN, the robustness of DE-ANN against local optima improved its
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overall performance and estimation accuracy. By avoiding suboptimal solutions, DE-ANN
finds more optimal parameter values, resulting in better forecasts and lower errors. This
property makes DE-ANN particularly useful when working with complex datasets or
high-dimensional parameter spaces. The comparison of performance measures in Table 1
and the evaluation of DE’s robustness to local optima demonstrated the effectiveness of
DE-ANN in parameter estimation in an ANN model. DE-ANN exhibited greater MSE
reduction, maximum error minimization, computational efficiency, and the capacity to
avoid becoming caught in local optima. Compared to GS, these benefits establish DE as a
more successful technique for predicting optimal parameters in an ANN model.
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Figure 11 illustrates the training results of the GS-ANN and DE-ANN target variables
plotted against Nc. The ANN models captured the underlying data pattern with surprising
efficiency when using DE for the model’s hyperparameter estimation. The DE-ANN model
precisely matched with the target values, indicating a highly precise fit to the data points.
This achievement can be credited to differential evolution’s innate capacity to successfully
traverse the search space and locate optimal hyperparameters that lead to higher model
performance. The GS strategy, on the other hand, had relatively low precision in capturing
the intricate correlations between the input and target variables, resulting in a less exact fit
to the data.
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The connection between the target variable (QWF) and Nr is shown in Figure 12.
The DE-ANN model yielded an outstanding fit to the target values, mimicking the true
data distribution with remarkable fidelity for hyperparameter estimation. Due to its
global search capabilities, DE performed better than other methods, since it walks through
complicated, high-dimensional spaces and find the best hyperparameters for the ANN
model. In contrast, GS found it difficult to fully explore the hyperparameter space, which
resulted in a fit that could be better at fully capturing the complex patterns in the data.
Figures 13 and 14 present a high correlation between the input variables (Sh and Nt) and
the trained result values. As a strong global optimization technique, DE excels at effectively
and efficiently exploring the solution space. In both circumstances, it may change its search
approach to identify the ideal hyperparameters that accurately capture the data patterns.
As a result, the generated curves were very close to the intended values, demonstrating
the exceptional fit produced by DE. In contrast, GS can be constrained by its thorough
search approach.
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The need to quickly navigate the complicated and high-dimensional hyperparameter
space resulted in unsatisfactory fits for the above figures. As a result, the GS curves
diverged significantly from the intended values, indicating difficulties in capturing the
detailed data patterns depicted in the plots. All four figures (Figures 11–14) show that
DE consistently outperformed GS in hyperparameter estimation for the ANN model. The
capacity of DE to efficiently explore hyperparameter space and adaptively fine-tune model
parameters allowed it to obtain highly accurate fits to the target values, accurately capturing
the patterns contained in the data. Additionally, GS generated poor results due to its more
rigorous and systematic approach, which limited its ability to capture intricate data and,
hence, it fell short of precisely fitting the target values.

Tables 2 and 3 highlight the characteristics of the heat transfer rate (QWF) of the PWF
versus varying scales of the thermal parameter of PWF. From these data, it is confirmed
that the heat transfer rate of the PWF was augmented with various values of Nc, Nr, Nt,
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and Sh. Moreover, the QWF values achieved by RKF-45 showed closer convergence with
the trained results of QWF performed by DE-ANN compared to GS-ANN.
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Table 2. Evaluation of QWF (GS-ANN) versus various parameter values.

Nc Nr Sh Nt QWF (RKF-45) QWF (GS-ANN) Error

0 0.85011405 0.840990228 0.009123822

0.2 0.95328066 0.94328785 0.00999281

0.4 1.0539614 1.050534536 0.003426864

0.5 1.1600689 1.134471762 0.025597138

0.7 1.2348873 1.23078651 0.00410079

0.9 1.305011 1.295292965 0.009718035

0 1.3049402 1.28276164 0.02217856

2 1.8682498 1.850384554 0.017865246

4 2.2973224 2.280442338 0.016880062

0 1.2073227 1.180933459 0.026389241

0.3 1.7016177 1.673833355 0.027784345

0.5 2.1908957 2.163965102 0.026930598

Table 3. Evaluation of QWF(DE-ANN) versus various parameter values.

Nc Nr Sh Nt QWF (RKF-45) QWF (DE-ANN) Error

0.1 0.90198715 0.90195635 0.0000308156

0.5 1.1032758 1.1032435 0.0000323278

1.0 1.3385787 1.338533 0.000045695

1.5 1.5542698 1.5542114 0.0000583956

2.0 1.7511475 1.7510726 0.0000748647

0.60 1.1981278 1.19811899 0.00000880819

0.65 1.2166612 1.2166363 0.0000248735

0.70 1.2348873 1.2348065 0.0000808085

0.75 1.2528216 1.2527606 0.0000610428

0.80 1.2704784 1.270429 0.0000494225

1 1.6111099 1.6110987 0.0000111584

3 2.0938689 2.093848 0.0000208749

5 2.4841792 2.484161 0.0000181909

7 2.8213522 2.8213307 0.0000214986

9 3.1230257 3.1229542 0.0000714896

0.1 1.3385787 1.33856911 0.00000958838

0.2 1.5034813 1.5034201 0.0000611585

0.3 1.7016177 1.70161562 0.0000020828

0.4 1.9314589 1.9314027 0.0000562394

0.5 2.1908957 2.1908335 0.0000622346

5. Conclusions

This research explores the variation in thermal dispersion in a wavy porous fin under
the impacts of convection and radiation. A hybrid forecasting model to estimate the
heat transfer rate of the PWF is suggested, which uses the DE technique to determine
the parameters in the ANN model. The key results of the present study demonstrate
the following:
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1. The effect of convective heat exchange is prominent in the distribution of temperature
through the fin inducing the decremental change of temperature dispersion in the
PWF with variation of the convective–radiative parameter.

2. Radiation heat transmission impacts the fin’s overall heat transfer rate, leading to a
reduction in the thermal distribution through PWF.

3. The wavy structured porous fin provides more heat transfer than the solid wavy fin.
4. The heat transfer rate estimated by the intelligent DE-ANN model outperforms the

GS-ANN model, due to its high non-linear fitting ability.
5. The DE-ANN forecasting model has consistent performance, whereas conventional

ANN models (such as GS-ANN), that are not thoroughly designed, can easily overfit.
6. The DE technique can select the appropriate ANN model parameters, potentially

improving prediction accuracy, and capturing growing curve patterns more easily.

DE outperforms GS for ANN model parameter estimation because of its population-
based methodology, mutation-crossover procedures, computing efficiency, and robustness
to local optima. DE effectively searches the parameter space, responds to data patterns
adaptively, converges faster, and makes more accurate predictions. Thus, DE can be
employed as a powerful and efficient technique to optimize the parameters of ANN models,
which can be beneficial in solving engineering problems.
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Nomenclature

A fin’s area
aRL fin profile aspect ratio
cp specific heat
g acceleration due to gravity
gc generation count
H fin half height
H0 fin base half height
h∗ convective heat transfer coefficient
K permeability
k thermal conductivity
L fin’s length
ξ exponent constant
Nc convection–conduction parameter
Nr radiation–conduction parameter
Nt temperature ratio parameter
n wave number
Q heat transfer rate (non-dimensional)
q heat transfer rate
T temperature



Symmetry 2023, 15, 1601 20 of 21

X fin’s length (dimensionless)
x fin axial distance
Greek symbols
β volumetric expansion index
δ surface wave dimensionless amplitude
ε∗ emissivity
Θ non-dimensional temperature
ν kinematic viscosity
ρ density
σ Stefan–Boltzmann constant
ϕ surface wave phase shift
φ porosity
Subscript
AMB ambient
B base
CS cross-sectional
eff effective
f fluid
PWF porous wavy fin
r relative quantity
Sd solid
SF surface area
WF wavy fin
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