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Abstract: We analyze a ballistic electron transport through a corrugated (rippled) graphene system
with a curvature-induced spin–orbit interaction. The corrugated system is connected from both sides
to two flat graphene sheets. The rippled structure unit is modeled by upward and downward curved
surfaces. The cooperative effect of N units connected together (the superlattice) on the transmission
of electrons that incident at the arbitrary angles on the superlattice is considered. The set of optimal
angles and corresponding numbers of N units that yield the robust spin inverter phenomenon
are found.
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1. Introduction

Since the discovery of spin transport in graphene, far-reaching consequences for
fundamental aspects of spintronics and its potential applications were soon realized [1]. It
is well understood that, in this case, applications in spintronics are sensitive dependent
on the strength of spin–orbit coupling (SOC). In particular, the form of the SOC suggested
by Kane and Mele [2], and by other authors [3–5], in freestanding graphene is too weak
for practical applications. Furthermore, this form relies on the presence of external fields,
which introduces additional constraints.

Noteworthy is the fact that a graphene sheet is corrugated naturally due to intrinsic
strains. It is predicted that a corrugation (ripple) in a tight-binding approximation could
create electron scattering in graphene, caused by the change in nearest-neighbor hopping
parameters by the curvature [6,7]. It is notable that the lattice deformation changes the
relative orientation of the orbitals of the corrugated graphene sheet, leading to hybridiza-
tions of the π- and σ-bonds [8]. As a result, it is shown that a one-dimensional periodic
rippled nanostructure produces a strong focusing effect of ballistic electrons due to Klein
tunneling. More importantly, in the low-energy physics of graphene, the mean curvature
generates a curvature-induced SOC [9] without any external field. Based on this fact, it was
demonstrated that curvature-induced SOC [9,10] could produce a chiral transport [11,12].
In this case, the transport of ballistic electrons through periodically repeated ripples is
subject to selection rules: Depending on the direction of motion, the system is transparent
only for one spin polarization. Moreover, the polarization changes to the opposite when
the flow direction changes. A similar phenomenon has been discussed recently in metal-
halide semiconductors (for a review, see [13]). All these predictions imply that it might be
possible to control the electronic and transport properties of a graphene sheet by altering
its curvature.

Experimental achievements in a spatial variation of graphene provide a sufficient
basis for such reasoning. For example, ripples can be formed by means of electrostatic
manipulation without any change in doping [14]. Periodically rippled graphene is fabri-
cated by the epitaxial technique [15], and by means of the chemical vapor deposition [16].
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It is discovered that ripples, acting as potential barriers, yield the localization of charged
carriers [17]. Indeed, the effect of the SOC in graphene, in conjunction with the ability to
control its geometry, allow for rich spin physics.

We recall that a consistent approach to introduce curvature-induced spin–orbit cou-
pling in the low-energy physics of the carbon nanotubes (CNTs) have been developed by
Ando [9] (see also [3,18,19]) in the framework of effective mass and tight-binding approxi-
mations. Experiments in ultra-clean CNTs [1,20] confirm the importance of SOC for the
interpretation of the energy spectra in nanotubes. Indeed, the measured shifts are com-
patible with theoretical predictions [9]. On the other hand, the role of different spin–orbit
terms in metallic and non-metallic CNTs is still debatable (see, for example, discussions
in [21–26]). We should nevertheless point out that, at least for armchair CNTs, one obtains
two SOC terms: one preserves the spin symmetry (a spin projection on the CNT symmetry
axis), while the second one breaks this symmetry [9,10,24,25]. Note that the contribution of
the second term was underrated [3,9,24,25]. In this paper, we will demonstrate how the
both SOC terms could be used to invert a polarized spin current with a high efficiency in a
rippled graphene system.

One of the goals of this paper is to figure out symmetries, as well as elucidate the
transport properties, of periodic rippled graphene nanostructures, and allow the prediction
of various remarkable properties. In particular, we focus on the most general case, when a
beam of ballistic electrons, propagating from a flat graphene sheet, incidents at arbitrary an-
gle on a periodically rippled graphene structure (superlattice), and exits from the opposite
side to the flat graphene sheet. The main result of the present paper is that geometrical prop-
erties of this superlattice can be used as an effective mechanism of a spin-flip phenomenon
for spin-polarized current traveling between non-magnetic flat graphene contacts.

2. The Model Hamiltonian and the Eigenvalue Problem

We model a corrugated graphene structure with a curved surface with periodically
repeated N elements (the superlattice).

The cross section of each element consists of the curved surface perpendicular to the y
axis (our quantization axis), which has the form of the direct arc of a circle (the concave
surface) connected to the inverse arc (the convex surface) (see Figure 1). The first element
is connected from the left side to a flat graphene sheet. Further, this structure (the first
element) is repeated N times, and the last element is connected to the flat graphene sheet on
the right side of our graphene structure. Hereafter, we consider a wide enough graphene
sheet, keep the translational invariance along the y axis, and neglect the edge effects.

A unit cell of a honeycomb lattice contains two sublattices, called the A or B site,
respectively. The effective model Hamiltonian of the flat graphene in the nearest-neighbor
tight-binding model [27] has the following form:

Ĥ = γτττkkk⊗ Is , (1)

where the Pauli matrices τx,y act on the sublattice degrees of freedom, and Is is the identity
matrix of rank 2, acting in the spin space. The eigenvalues and eigenstates of the flat
graphene Hamiltonian are well known (see, e.g., textbooks [28,29]):

E = κγ
√

k2
x + k2

y , κ = ±, (2)

Ψσ
kkk (x, y) =

1
2

(
κe−iϕ

1

)
⊗
(

1
σi

)
eikkk·rrr, σ = ±, (3)

where e−iϕ = (kx − iky)/
√

k2
x + k2

y, kkk = (kx, ky), rrr = (x, y). Hereafter, we choose the up
and down spins as eigenstates of the Pauli matrix σ̂y. For the sake of convenience, we
introduce the following equivalent definitions: σ = (+/−) ⇔ σ = (↑ / ↓). The sign
κ = +(−) corresponds to the conductance (valence) band. These bands touch at two



Symmetry 2023, 15, 1593 3 of 14

nonequivalent Dirac points (the Fermi level E = 0) or valleys K and K′, which are at the
corners of the hexagonal Brillouin zone in reciprocal space. Thus, each state is four-fold
degenerate, i.e., two spin and two valley degenerate.

kxky

ϕ

. . .
L R

R

Rd

I II

φ θ0

φ

(a) (b)

Figure 1. (a) Sketch of the superlattice. The ballistic electron, coming from the left of the flat graphene
sheet, incidents on the superlattice structure at an arbitrary angle ϕ. (b) Cross-section of the system
that consists of two flat graphene sheets and superlattice. The two flat surfaces are the region L,
defined in the intervals −∞ < x < 0; and the region R, defined in the intervals 4NR cos θ0 < x < ∞.
The region I (the concave arc) is a part of a nanotube of radius R, defined as 0 < x < 2R cos θ0. At
θ0 = 0, the up surface is half that of the nanotube, while at θ0 = π/2 the curvature does not exist.
For the sake of analysis, we introduce the angle φ = π − 2θ0. The region II (the convex arc with the
radius R) is characterized by similar parameters to those of region I. Here, we have −∞ < y < ∞. To
describe the scattering phenomenon, one has to define wave functions in different regions: flat (L,R)
and curved (I, II) graphene surfaces.

The solution for a curved graphene surface can be expressed in terms of the results
obtained for armchair CNTs in the effective mass approximation, when only the interaction
between nearest neighbor atoms is taken into account [10]. We assume that a curvature
is smooth enough on the lattice scaling of graphene and does not induce the inter-valley
scattering. Therefore, for the time being, we proceed our analysis for the K point.

Let us recapitulate the major results [10] in the vicinity of the Fermi level E = 0 for a
point K in the presence of the curvature-induced spin–orbit interaction in an armchair CNT.
In this case, the eigenvalue problem is defined as

ĤΦ =

(
0 f̂
f̂ † 0

)(
FK

A
FK

B

)
= E

(
FK

A
FK

B

)
, (4)

with the following definitions:

f̂ = γ(k̂x − ik̂y) + i δγ′

4R σ̂x(θ)− 2δγp
R σ̂y , (5)

k̂x = −i ∂
R∂θ , k̂y = −i ∂

∂y ,

σ̂x(θ) = σ̂x cos θ − σ̂z sin θ .

Here, σ̂x,y,z are standard Pauli matrices, and the spinors of two sub-lattices are

FK
A =

(
FK

A,↑
FK

A,↓

)
, FK

B =

(
FK

B,↑
FK

B,↓

)
. (6)

The following notations are used: γ = −
√

3Vπ
ppa/2 = γ0a, γ′ =

√
3(Vσ

pp −Vπ
pp)a/2 =

γ1a, p = 1− 3γ′/8γ. The quantities Vσ
pp and Vπ

pp are the transfer integrals for σ and π

orbitals, respectively, in flat graphene. a =
√

3` ' 2.46 Å is the length of the primitive
translation vector, where ` is the distance between atoms in the unit cell. For numerical
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illustration, we assume that γ0 ≈ 3 eV and γ1 ≈ 8 eV (see, e.g., Ref. [9]). Note that by
means of a similar method, we can find the solution for the K

′
point.

The intrinsic source of the SOC δ = ∆/(3επσ) is defined as

∆ = i
3h̄

4m2
e c2 〈xl |

∂V
∂x

p̂y −
∂V
∂y

p̂x|yl〉 , (7)

where V is the atomic potential, and επσ = επ
2p − εσ

2p. The energy εσ
2p is the energy of

σ-orbitals, localized between carbon atoms. The energy επ
2p is the energy of π-orbitals,

directed perpendicularly to the curved surface.
By means of the unitary transformation

Û(θ) = exp(i
θ

2
σ̂y)⊗ I , (8)

where I is 2× 2 identity matrix. One removes the θ dependence in the Hamiltonian (4),
transformed in the intrinsic frame, and obtains

Ĥ′ = Û(θ)ĤuÛ−1(θ) = Ĥkin + ĤSOC , (9)

Ĥkin = −iγ
(

τ̂y ⊗ I∂y + τ̂x ⊗ I
1
R

∂θ

)
,

ĤSOC = −λyτ̂y ⊗ σ̂x − λx τ̂x ⊗ σ̂y .

Here, the operators τ̂x,y,z are the Pauli matrices that act on the wave functions of A-
and B-sublattices (a pseudo-spin space), and

λx = γ(1 + 4δp)/(2R) , λy = δγ′/(4R) (10)

are the strengths of the SOC terms. The term ∼ λx conserves, while the the term ∼ λy
breaks the spin symmetry in the Hamiltonian (9) of the armchair CNT.

The operator Ĵy, being an integral of motion
[
Ĥ, Ĵy

]
= 0, is defined in the laboratory

frame as

Ĵy = I ⊗
(

L̂y +
σ̂y

2

)
= I ⊗

(
−i∂θ +

σ̂y

2

)
, (11)

while in the intrinsic frame it is

Ĵy → Ĵ′y = Û ĴyÛ−1 = I ⊗ (−i∂θ). (12)

Finally, we obtain for the eigenvalues of Equation (4):

E = κE±, κ = ±1 , (13)

where κ = +1(−1) is associated with the conductance (valence) band, and the energies E±
are defined as

E± =

√
t2
m + t2

y + λ2
y + λ2

x ± 2
√

λ2
x

(
t2
m + λ2

y

)
+ t2

yλ2
y . (14)

Here, tm = mγ/R, ty = γky, and the magnetic quantum number m = ±1/2,±3/2, . . .
is an eigenvalue of the angular momentum operator Ĵ′y.

The eigenfunctions of the Hamiltonian (4) take the following form

Φ±m,ky
(θ, y) = eimθeikyyF±(λx, θ), (15)
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where

F±(λx, θ) =


κ(cos θ/2A± − sin θ/2B±)
κ(sin θ/2A± + cos θ/2B±)

cos θ/2C± − sin θ/2D±
sin θ/2C± + cos θ/2D±

 , (16)

and

D± = N±
λyλx ±

√
λ2

x(t2
m + λ2

y) + t2
yλ2

y

itmλx − tyλy
= N±Θ± , (17)

A± =
N±
E±

[
tm − ity + i(λy + λx)Θ±

]
, (18)

B± =
N±
E±

[
(tm − ity)Θ± + i

(
λy − λx

)]
, (19)

C± = N± . (20)

The normalization constant N± is defined by the following expression:

N2
± =

t2
yλ2

y + t2
mλ2

x

2

[(
λyλx ±

√
λ2

x

(
t2
m + λ2

y

)
+ t2

yλ2
y

)2

+ t2
yλ2

y + t2
mλ2

x

] . (21)

In general, the relations |A±| = |D±| and |B±| = |C±| are fulfilled. The obtained
results for the armchair CNT will be used to describe the properties of the concave and
convex surface Hamiltonians.

In principle, the scattering problem that we are faced with can be considered as a
scattering of a ballistic electron on two potential barriers: a scattering problem at the first
barrier (the concave surface), with a subsequent scattering at the second barrier (the convex
surface). Therefore, in order to resolve the eigenvalue problem for our unit, it is convenient
to first solve this problem for the concave surface, and for the convex surface second.

It is convenient to describe the rippled graphene region with the concave surface
ripple in the laboratory frame as half of the nanotube Hamiltonian in the following form
(see Equations (4) and (5)):

Ĥu = γ(τ̂x k̂x + τ̂y k̂y)⊗ Is − λyτ̂y ⊗ σ̂x(θ)− ξx τ̂x ⊗ σ̂y , (22)

where ξx = 2δγp/R, and its eigenfunction is determined by Equation (15). In virtue of
the approach developed by Ando [9], we obtain the Hamiltonian Ĥd, associated with the
convex surface ripples (details will be given elsewhere):

Ĥd = γ(τx k̂x + ητ̂y k̂y)⊗ Is − ηλyτ̂y ⊗ σ̂x(−θ) + ξx τ̂x ⊗ σ̂y , (23)

where, for the K-valley, we have to use η = 1, while for the K′-valley, η = −1. Note the
transformation θ → −θ and ξx → −ξx in Hamiltonian (23), yields Hamiltonian (22). We
found that the symmetry transformation

T̂R = iIp ⊗ e−iσ̂xπ/2 = Ip ⊗ σ̂x , (24)

where Ip is 2× 2 identity matrix, acting in the pseudospin (sublattice) space, yields the
following relation between the Hamiltonians:

Ĥd = T̂RĤuT̂−1
R . (25)

Once the eigenproblem for the Hamiltonian (4) is solved, in virtue of the transformation (24),
we can define the eigenstates for the Hamiltonian (23). Taking into account that the electron
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energy should be same in the concave and the convex surfaces of the unit, we have the
following relations:

Φ̃±m,ky
(θ, y) = T̂RΦ±m,ky

(θ, y) = eimθeikyyF±(−λx,−θ) . (26)

The above-described eigenfunctions (15), (26) are used to calculate the electron trans-
mission through the curved graphene system (the superlattice) connected to the planar
graphene sheets. See Section 3, below.

At a fixed value of the carrier flow E ⇐⇒ ±E± (Equations (13) and (14)), there are
four possible values of the quantum number m:

m± = ±R
γ

√
E2 − t2

y − λ2
y + λ2

x ∓ 2
√

λ2
x(E2 − t2

y) + λ2
yt2

y . (27)

In the corrugated graphene system, the angular momentum is no longer the integral of
motion. As a result, we have to consider the mixture of the eigenfunctions with all possible
values at a given energy. Hereafter, we consider the positive solutions E > 0 only, since the
negative solutions are symmetrically reverted.

As an example of the spectrum (14), a few positive energy branches are shown on
Figure 2 as a function of the quantum number m.
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Figure 1. For a given energy E values m− and m+ are determined from the crossing of the horizontal
line the dashed and solid lines. The results are obtained at: R = 12 Å, ϕ = π, φ = π/6. The
values of spin-orbital strengths λx, λy follow from the values of the parameters: δ = 0.01, p = 0.1,
γ = (4.5 × 1.42)eV·Å, γ′ = 8

3 γ.

Figure 2. The energy spectrum (14) as a function of the magnetic quantum number m. For a given
energy E, the magnetic quantum number values m− and m+ are determined from the crossing
points of the dashed and solid lines by the horizontal line (E), presented as an example. The results
are obtained at R = 12 Å, φ = π, ϕ = π/6. The values of spin–orbital strengths λx ≈ 0.267 eV,
λy = 0.00355 eV (see Equation (10)) follow from the values of the parameters δ = 0.01, p = 0.1,
γ = (4.5× 1.42) eV·Å, γ′ = 8

3 γ.

For the sake of illustration, the positive energies (14) are crossed by two horizontal
lines that mimic the incoming electron energies. The crossing points determine quantum
numbers m that have nonquantized values when the curved surface is connected to the flat
one. There is an anticrossing effect between energy states characterized by the same m+

quantum number, which yields an energy gap. This anticrossing is caused by the term λy
in the Hamiltonians (22), (23), which creates the energy gap 2λy near the energy E = λx at
kx 6= 0, ky = 0 (see [10–12]). Let us analyze the upper and the lower limits of the energy
gap, in which the evanescent modes exist in the case kx 6= 0, ky 6= 0.

Since the energy of incoming electron E = γ
√

k2
x + k2

y, we have

ty = γky = E
ky√

k2
x + k2

y

= E · sin ϕ .
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The condition of existence for evanescent modes associated with imaginary values tm
is subject to the equation E+ = E− (see Equation (14)), such that

λ2
x

(
t2
m + λ2

y

)
+ t2

yλ2
y = 0 ⇔ t2

m = −
λ2

y(λ
2
x + t2

y)

λ2
x

.

In this case, the common energy will be

E× =

√√√√λ2
x + t2

y

[
1−

λ2
y

λ2
x

]
⇔ E× =

λ2
x√

λ2
x cos2 ϕ + λ2

y sin2 ϕ
. (28)

This equation generalizes the mid-slit position of the energy gap for the case kx 6= 0,
ky 6= 0. We recall that at ky = 0 this position is determined by E× = λx solely (see Figure 2
in Ref. [11]). Further, let us consider the situation when the energy E of the incoming
electron is equal either to E+ or to E−. In virtue of the relation ty = E · sin ϕ→ E± · sin ϕ,
we obtain the following from Equation (14):

E± =

√
t2
m + E2

± sin2 ϕ + λ2
y + λ2

x ± 2
√

λ2
x

(
t2
m + λ2

y

)
+ E2

±λ2
y sin2 ϕ . (29)

Squaring of the above equation yields

E2
± cos2 ϕ−

(
t2
m + λ2

y + λ2
x

)
= ±2

√
λ2

x

(
t2
m + λ2

y

)
+ E2

±λ2
y sin2 ϕ .

A second squaring leads us to the biquadratic equation

E4
± cos4 ϕ− 2E2

±
[
cos2 ϕ

(
t2
m + λ2

y + λ2
x

)
+ 2λ2

y sin2 ϕ
]
+

[(
t2
m + λ2

y + λ2
x

)2
− 4λ2

x

(
t2
m + λ2

y

)]
= 0 ,

which the roots of are defined by the following equations

E+ =

√
λ2

x cos2 ϕ + λ2
y sin2 ϕ +

√
λ2

y + t2
m cos2 ϕ

cos2 ϕ
, (30)

E− =

∣∣∣√λ2
x cos2 ϕ + λ2

y sin2 ϕ−
√

λ2
y + t2

m cos2 ϕ
∣∣∣

cos2 ϕ
. (31)

Once the energy E− = 0, one finds that t2
m = λ2

x − λ2
y does not depend on ϕ. Thus, for

the energy branch E− (the dashed line in Figure 2), we obtain the following expressions as
a function of tm(⇔ m):

E− =



√
λ2

x cos2 ϕ + λ2
y sin2 ϕ−

√
λ2

y + t2
m cos2 ϕ

cos2 ϕ
, for |tm| ∈

[
0,
√

λ2
x − λ2

y

]
,√

λ2
y + t2

m cos2 ϕ−
√

λ2
x cos2 ϕ + λ2

y sin2 ϕ

cos2 ϕ
, for |tm| ≥

√
λ2

x − λ2
y .

(32)
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By means of Equation (32), it is possible to define the middle of the energy gap:

E+ + E−
2

=



√
λ2

x cos2 ϕ + λ2
y sin2 ϕ

cos2 ϕ
, for |tm| ∈

[
0,
√

λ2
x − λ2

y

]
,√

λ2
y + t2

m cos2 ϕ

cos2 ϕ
, for |tm| ≥

√
λ2

x − λ2
y .

(33)

The “central” energy is constant for |tm| ∈
[
0,
√

λ2
x − λ2

y

]
!

The energy gap between the energy branch E+ and the energy branch E− is defined as

E+ − E− =



2
√

λ2
y + t2

m cos2 ϕ

cos2 ϕ
, for |tm| ∈

[
0,
√

λ2
x − λ2

y

]
,

2
√

λ2
x cos2 ϕ + λ2

y sin2 ϕ

cos2 ϕ
, for |tm| ≥

√
λ2

x − λ2
y ,

(34)

which is an increasing function at tm ≥ 0. Indeed, the gap increases from

E+ − E− =
2λy

cos2 ϕ
at tm = 0

to

E+ − E− =
2
√

λ2
x cos2 ϕ + λ2

y sin2 ϕ

cos2 ϕ
at |tm| =

√
λ2

x − λ2
y .

It is notable that the energy gap at m = 0 becomes much larger with an increase in
the ratio ky/kx, in comparison to the case ky = 0. For larger tm values, the gap remains
constant. The wave numbers m± are determined by the equation

m± = ±R
γ

√
E2 cos2 ϕ + λ2

x − λ2
y ∓ 2E

√
λ2

x cos2 ϕ + λ2
y sin2 ϕ , (35)

where E = γ
√

k2
x + k2

y is the energy of incoming electron.

3. Transmission through the Superlattice

As was mentioned above, we assume that the incident ballistic electron moves from
the left planar graphene sheet (L) through the superlattice to the right planar graphene
sheet (R) along the x axis, and its energy is the integral of motion (see Figure 1). Hereafter,
we consider a graphene sheet, in which width W along the y axis is much larger the
length M along x axis, i.e., W � M. In other words, we keep the translational invariance
along the y axis and neglect the edge effects. By means of the continuity condition of
the wave functions at the boundaries between the flat and corrugated graphene regions,
we determine the unknown reflection and transmission amplitudes rσ

α , tσ
α(α, σ =↑, ↓). In

these amplitudes, the upper (bottom) index denotes the spin polarization of the incoming
(outgoing) (reflected and transmitted) electron.

More specifically, we have the following condition at the boundary between the
regions L (the flat graphene sheet) and the concave arc (the region I, the concave surface):

AΨ+
kx ,ky

(rrr) + BΨ−kx ,ky
(rrr) + r(L)σ

↑Ψ
+
−kx ,ky

(rrr) + r(L)σ
↓Ψ
−
−kx ,ky

(rrr) =

a(1)+ Φ+
m+ ,ky

(θ, y) + b(1)+ Φ+
−m+ ,ky

(θ, y) + a(1)− Φ−m− ,ky
(θ, y) + b(1)− Φ−−m− ,ky

(θ, y); (36)

x = 0, θ = −π/2, |A|2 + |B|2 = 1.
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The boundary condition between the concave arc (I) and the convex arc (II) provides
the following equation:

a(k)+ Φ+
m+ ,ky

(θ, y) + b(k)+ Φ+
−m+ ,ky

(θ, y) + a(k)− Φ−m− ,ky
(θ, y) + b(k)− Φ−−m− ,ky

(θ, y) =

c(k)+ Φ̃+
m+ ,ky

(θ, y) + d(k)+ Φ̃+
−m+ ,ky

(θ, y) + c(k)− Φ̃−m− ,ky
(θ, y) + d(k)− Φ̃−−m− ,ky

(θ, y) (37)

x = (2k− 1)d, d = 2R, θ = π/2 k = 1, . . . , N.

Thus, regions I and II characterize two subelements of the superlattice unit, which
repeats N times. Note that we have to consider the boundary condition between the region
II with the next unit. Consequently, the boundary condition between the convex arc (II)
and the concave arc has the following form:

c(k)+ Φ̃+
m+ ,ky

(3π/2, y) + d(k)+ Φ̃+
−m+ ,ky

(3π/2, y) +

c(k)− Φ̃−m− ,ky
(3π/2, y) + d(k)− Φ̃−−m− ,ky

(3π/2, y) =

a(k+1)
+ Φ+

m+ ,ky
(−π/2, y) + b(k+1)

+ Φ+
−m+ ,ky

(−π/2, y) + (38)

a(k+1)
− Φ−m− ,ky

(−π/2, y) + b(k+1)
− Φ−−m− ,ky

(−π/2, y)

x = 2kd, k = 1, . . . , N − 1.

Taking into account that the last Nth block, ending with the convex surface (arc)
connected to the right flat graphene sheet (the region R), we obtain

c(N)
+ Φ̃+

m+ ,ky
(θ, y) + d(N)

+ Φ+
−m+ ,ky

(θ, y) + c(N)
− Φ−m− ,ky

(θ, y) + d(N)
− Φ−−m− ,ky

(θ, y) =

t(L)σ
↑Ψ

+
kx ,ky

(xxx) + t(L)σ
↓Ψ
−
kx ,ky

(xxx) (39)

x = 2Nd, θ = 3π/2

Eliminating the unknown coefficients a, b, c, d from Equations (36)–(39), we obtain the
key equation 

A
B
rσ
↑

rσ
↓

 = M0(ϕ)−1XN M0(ϕ)


tσ
↑

tσ
↓
0
0

 , (40)

where the matrix M0(ϕ) is defined as

M0(ϕ) =


e−iϕ e−iϕ −eiϕ −eiϕ

ie−iϕ −ie−iϕ −ieiϕ ieiϕ

1 1 1 1
i −i i −i

 . (41)

The matrix transformation X has the following structure:

X = T1(−φ/2)T2D(−φ)T −1
2 T1(π)T̃2D(−φ)T̃ −1

2 T1(π + φ/2) , (42)

where we introduce the following definitions

D(φ) =


eim+φ 0 0 0

0 e−im+φ 0 0
0 0 eim−φ 0
0 0 0 e−im−φ

, (43)
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T1(φ) =


cos φ/2 − sin φ/2 0 0
sin φ/2 cos φ/2 0 0

0 0 cos φ/2 − sin φ/2
0 0 sin φ/2 cos φ/2

 , (44)

T2 =


Aη(λx, m+) Aη(λx,−m+) A−(λx, m−) A−(λx,−m−)
Bη(λx, m+) Bη(λx,−m+) B−(λx, m−) B−(λx,−m−)
Cη(λx, m+) Cη(λx,−m+) C−(λx, m−) C−(λx,−m−)
Dη(λx, m+) Dη(λx,−m+) D−(λx, m−) D−(λx,−m−)

 , (45)

T̃2(λx, m±) = T2(−λx, m±) . (46)

In the definition (45), the following conditions hold:

• η = 1 if E ≥ E×;
• η = −1 if E < E×.

The energy E× is defined by Equation (28). We consider the following situations for
ballistic electrons (moving from the left flat graphene sheet and described by Equation (3))
that are incident on the superlattice with a certain polarization in Equation (40): (i) spin
polarization | ↑〉 corresponds to the set σ = +, A = 1, B = 0; and (ii) spin polarization | ↓〉
corresponds to the set σ = −, A = 0, B = 1.

It is quite certain that the matrix X (Equation (42)) can be diagonalized

Xvk = λkvk , (47)

where λk, vk are the eigenvalues and the eigenvectors of the matrix X, respectively. Using
this fact, we transform the matrix XN into the form

XN = U


λN

1 0 0 0
0 λN

2 0 0
0 0 λN

3 0
0 0 0 λN

4

U−1, (48)

where the matrix U
U = (v1, v2, v3, v4) (49)

consists of the eigenvectors {v}, and UU−1 = I.
Evidently, the eigenvalues {λ} can be written in a very general form as λk = ak exp iψk,

k = 1, . . . , 4. Consequently, the amplitudes rσ
α , tσ

α (α, σ =↓, ↑) of Equation (40) become
the functions of the eigenfunctions λN

k = aN
k eiNψk . It results in probabilities that will

depend periodically on the number of units in superlattice through the functions a±N
k a∓N

j ,
cos[N(ψk − ψj)], sin[N(ψk − ψj)].

4. Discussion

From the analysis of ballistic electron transport through a superlattice that consists
of concave arcs (semiripples) interconnected by flat graphene sheets [30] it was shown
that a periodically repeated rippled graphene structure leads to the suppression of the
transmission of electrons with one spin orientation in contrast to the other, depending on
the direction of the incoming electron flow. In this case, it was assumed that electrons are
injected to the curved surface in a perpendicular direction, i.e., ky = 0. In contrast to the
above case, our superlattice unit contains both the convex surface connected continuously
with the concave surface, and kx 6= 0, ky 6= 0.

To gain a better insight into the effect of the superlattice on ballistic transport, we
numerically study its dependence on: (i) the number N of the superlattice units; (ii) the
incident angle ϕ of ballistic electrons; and (iii) the radius of the curved surface of the
unit (see Figure 1). While our approach enables us to analyze the effect for the arbitrary
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unit angle, in this paper, all calculations are performed for the unit angle φ = π. The
calculation of the spin-flip probabilities are performed on the N × ϕ mesh with ∆N = 1
for N = 1, . . . , 500 units, and ∆ϕ = 0.01

◦
for ϕ = 0

◦
, . . . , 50

◦
. The results are shown in

Figure 3 for various values of the number of N units at different values of ϕ = arctan ky/kx
of incident electrons with an energy 0 < E ≤ 1 eV. Hereafter, we consider only the results
that provide the maximal probability PN,ϕ ≥ 0.9999.
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Figure 1. The maximal probability of the spin inversion PN,φ as a function of number units N =

1, . . . 500 in the superlattice for various angles φ = 0, 0.01, . . . , 80
◦

in the energy interval 0 < E ≤ 1 eV.
Figure 3. The maximal spin-flip probabilities PN,ϕ in the superlattice for various combinations
{N, ϕ} (see discussion below) in the energy interval E = 0.02, . . . , 1 eV for R = 12 Å. For the sake of

illustration, the points P{i}N,ϕ for corresponding energies Ei = ∆E× Ni (∆E = 0.02 eV, Ni = 1, . . . , 50)
are connected by a solid line.

It appears that our device operates most efficiently at the incident beam energy, defined
in the intervals 0 ≤ E ≤ 0.18 eV, and 0.5 ≤ E ≤ 1.0 eV (see Figure 3). In particular, at
energy E = 0.1 eV (see Figure 4), we find a set of bands that provide the spin-flip effect for
incident ballistic electrons for minimal N units of the superlattice. Each band is limited by
the boundaries with the probability P = 0.99. Each solid point in the band is characterized
by a set {N, ϕ} variables that corresponds to P ≥ 0.9999.
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Figure 1. For a given energy EN values m− and m+ are determined from the crossing of the
horizontal line the dashed and solid lines. The results are obtained at: R = 12 Å, φ = π, ϕ = π/6.
The values of spin-orbital strengths λx, λy follow from the values of the parameters: δ = 0.01, p = 0.1,
γ = (4.5× 1.42) eV·Å, γ′ = 8

3 γ.

Figure 4. The spin inversion probabilities PN,ϕ ≥ 0.99 (yellow domain) as a function of number units
N = 50, . . . , 450 in the superlattice for angles ϕ = 5

◦
, 5.01

◦
, . . . , 37

◦
, for R = 12 Å, at the incident

energy beam E = 0.1 eV (left) and E = 1.0 eV (right).

For example, at the incident energy E = 0.1 eV of the electron that enters to the
superlattice at the angle ϕ = 20

◦
, the latter must consist of N = 163 units to invert the

polarized beam (↑ or ↓) of ballistic electrons to the opposite polarization. It is notable that,
with an increase in the incident electron energy, the separate points transform to the dense
points (see the right panel, Figure 4). The higher the incident electron energy, the wider the
set of {N, ϕ} that yields the inversion effect of entrance electrons with a given polarization.
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The functional dependence of the bands leads us to conclude that there is a remarkable
relation

tan ϕi =
ci
N

, i = 1, 2, 3 (50)

that allows to determine the number of N units to obtain the maximal spin flip effect for all
considered energies. The index i characterizes the band number, namely that the lowest
band has the index i = 1, etc. The least squares fitting of our results provide another
interesting result

ci
∼= c1(2i− 1) (51)

with high accuracy, where the constant c1 = 59.149. It is notable that, at a given ϕ, it is
possible to relate the number Ni(ϕ) of the ripple units in the band i with the aid of the
number of units Nj(ϕ) in the band j and, consequently, to exclude the constant c1. Indeed,
in virtue of relations (50)–(51), we can formulate the following result

Ni(ϕ) ∼= Nj(ϕ) · 2i− 1
2j− 1

⇒ Ni(ϕ) ∼= N1(ϕ) · (2i− 1) . (52)

As a result. we obtain the units number periodicity between the position of the
maximum probabilities in different bands:

Ni+1(ϕ)− Ni(ϕ) ∼= 2N1(ϕ), i = 1, 2, . . . (53)

Thus, the knowledge of the minimal number of ripples in the first band provides the
number of the superlattice units that yields the effect of the periodicity of the spin-flip
phenomenon at a fixed value of the angle ϕ of the incident beam.

We recall that the results discussed above are valid at R = 12 Å of the ripple radius
(see Figure 1b) for all considered energies. It is noteworthy that our results remain true
for various values of the ripple radius as well (see Figure 5). The presence of the band
structure is found for the set of different ripple radii. Although the band structures manifest
themselves for a particular choice of {R, E} in the panels (a–d) in Figure 5, the results hold
for all energy intervals considered in our analysis (see Figure 3) at the fixed values of
the radii.
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Figure 5. Spin-flip points on the N × ϕ mesh: (a) R = 6 Å, E = 0.1 eV; (b) R = 18 Å, E = 0.6 eV;
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5. Conclusions

The curvature-induced spin–orbit coupling in rippled graphene structures opens a
broad avenue for spintronic applications in graphene based nanodevices. In this paper, we
consider the most general case of the incident angle ϕ = arctan ky/kx of a ballistic electron
beam, injected from the plane graphene sheet on the superlattice that consists of the curved
graphene units. In contrast to semiripple configurations (a concave arc) considered
in [11,12,30], our superlattice consists of the concave surface continuously connected to the
convex surface. This unit is repeated N times (see Section 2). The cooperative effect of our
superlattice leads to almost perfect spin inversion phenomenon for the injected through
this superlattice ballistic electrons with a chosen spin polarization (see Section 4) without
any external field.

We found the optimal set of angles and the minimal number of corresponding N
ripples (see Figures 4 and 5) that yield the spin-flip operation. Such an operation (without
use of the magnetic field) may be useful for production of spin-based logic elements (see [31]
for a review). In particular, at a fixed energy of the injected ballistic electrons, one can
choose the fixed number of ripples and obtain the spin-flip operation at specific angles of
the injected electrons, i.e., the angle ϕ (see Figure 5d). The obvious advantages are low
switching energies and low power dissipation. On the other hand, once the set {N1, ϕi}
(which provides the spin-flip operation in the first band) is chosen, this phenomenon can
take place with the periodicity of 2N1 in the other bands (see Equation (53)). It is notable
that this effect holds for all specific intervals of energies that create a type of conductance
bands in the superlattice, which are independent of the ripple radius (see Figure 5). We hope
that presented results could be useful for various spintronic devices once nanotechnology
provides rippled graphene structures with a controlled periodicity.
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