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Abstract: In this work, complex dynamics are found in a fractional-order multi-scroll chaotic system
based on the extended Gamma function. Firstly, the extended left and right Caputo fractional
differential operators are introduced. Then, the basic features of the extended left Caputo fractional
differential operator are outlined. The proposed operator is shown to have a new fractional parameter
(higher degree of freedom) that increases the system’s ability to display more varieties of complex
dynamics than the corresponding case of the Caputo fractional differential operator. Numerical
results are performed to show the effectiveness of the proposed fractional operators. Then, rich
complex dynamics are obtained such as coexisting one-scroll chaotic attractors, coexisting two-scroll
chaotic attractors, or approximate periodic cycles, which are shown to persist in a shorter range as
compared with the corresponding states of the integer-order counterpart of the multi-scroll system.
The bifurcation diagrams, basin sets of attractions, and Lyapunov spectra are used to confirm the
existence of the various scenarios of complex dynamics in the proposed systems.

Keywords: the multi-scroll chaotic system; extended Caputo fractional differential operators;
coexisting one-scroll chaotic attractors; coexisting two-scroll chaotic attractors; approximate
periodic cycles
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1. Introduction

In the current century, many engineers, scientists, and economists have described
and analyzed their related problems using the aid of fractional calculus (FC) [1–9]. The
primary rationale is that using FC provides a greater level of accuracy when measuring
natural phenomena. Therefore, FC demonstrated immense potential for applications in
various scientific and engineering fields. Notably, it has found utility in disciplines such
as engineering [6], fluid dynamics [2], thermoelasticity [4,5], mathematical biology [1,8],
as well as market dynamics [9]. Additionally, the biological models that are described
in terms of FC involve the memory effect which is considered to be a powerful tool in
modeling the epidemiological diseases and viral dynamics. In recent times, the Caputo
fractional differential operator (CFDO) has gained significant importance as a valuable
tool for modeling various scientific and engineering phenomena. This is primarily due
to its ability to facilitate the determination of relevant initial values [10]. Consequently,
the CFDO is widely used in real-world applications. Indeed, the CFDO is the classic left
Caputo fractional differential operator (LCFDO).
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On the other hand, chaotic attractors, present in both fractional- and integer-order
equations, have demonstrated immense potential for applications in various technological
and scientific fields. Notably, they have found utility in disciplines such as meteorological
systems [11], chemical systems [12], as well as engineering systems [6,13–15]. The first
chaotic attractor was discovered by Lorenz when he tried to make a mathematical model
that can predict the weather [11]. Afterward, many chaotic attractors were reported by
scientists such as Rossler system [12], Chua system [13], Chen system [14], Liu system [15],
and MAVPD system [6]. Indeed, the Chua, Chen, Liu, and MAVPD systems are realized
through an electronic circuit design. Recently, chaotic attractors in fractional-order equa-
tions were shown to have great potential applications in some technological and scientific
disciplines such as the fractional Lorenz system [16], the fractional Chua system [17], the
fractional Chen system [18], the fractional Rossler system [19], and the fractional MAVPD
system [6]. In Ref. [7], the phase transition of chaotic attractors between the integer-order
system and its fractional-order counterpart is discussed. It is found that under certain
conditions, the chaotic attractors that appear in the fractional-order system may not exist in
its integer-order counterpart. However, the periodic orbits that exist in the integer-order
system cannot exist in its fractional-order counterpart involving the CFDO [20]. The ap-
proximate periodic cycles that may appear in the case of CFDO are due to the truncation
error of the solution algorithm and the observation scale.

The multi-scroll chaotic system [21] is an autonomous dynamical system (DS) that
has three quadratic nonlinearities. According to Ref. [22], this system is considered to be
a transition system between the Chen system and the Lorenz system. So, the multi-scroll
chaotic systems have promising applications to science and engineering.

One of the effective tools to describe the complex dynamics of the DS is the plot of the
Poincaré points of a component of the solution for every period T of the external forcing
signal against the system’s dynamical parameter. This tool is briefly termed the system’s
bifurcation diagram. In such diagrams, the shaded (or colored) parts refer to regions where
chaotic dynamics occur.

The Lyapunov exponents (LEs) are considered to be excellent estimators to quantify
chaotic dynamics. The three-dimensional DS has a maximum of three LEs (Λi, i = 1, 2, 3).
In Ref. [23], Haken proved that one LE must vanish for any limit set other than an equilib-
rium point. Furthermore, one LE must vanish for continuous flows. When chaos exists,
the system’s greatest LE must be positive. In addition, the third LE is negative for dis-
sipative three-dimensional DS. Indeed, the sum of the LEs is the divergence of the flow
corresponding to the DS. One of the most efficient numerical algorithms to estimate the
LEs in the integer-order DS was reported by Wolf et al. [24]. In the fractional-order case,
the LEs can successfully be estimated using the numerical algorithm given by Danca and
Kuznetsov [25].

The extended Gamma function is a generalization of the well-known Euler Gamma
function, which was discovered in the 18th century [26]. Recently, the extended Gamma
function has had useful applications in science and engineering. Indeed, the LCFDO
involves the Euler Gamma function. Hence, replacing the Euler Gamma function with
the extended Gamma function in the Caputo fractional operators is an interesting line
for research that was initiated by Matouk and Bachioua in Ref. [27]. Furthermore, in
Ref. [28], Matouk and Bachioua investigated some chaotic behaviors in two fractional-
order predator–prey models that consist of the generalized Caputo fractional operators. In
Ref. [8], Matouk inserted the extended Gamma function into the CFDO for investigating
the complex dynamics in an antimicrobial resistance model. These references [8,27,28]
assert that the CFDO involving the extended Gamma function is more suitable to handle
the complex dynamics arising from the models that describe the natural phenomena due to
its high adequacy in predicting the models’ dynamics and also due to the existence of a
higher degree of freedom that can be used to obtain more intricate dynamics that cannot
present in the case of the corresponding classic fractional Caputo operators.
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Here, we intend to investigate the chaotic dynamics of the multi-scroll chaotic system
using the extended left Caputo fractional differential operators (ELCFDO). By introducing
a new fractional parameter to the ELCFDO, more intricate dynamics can be achieved
that were not present in the case of the corresponding classic LCFDO. This leads to the
emergence of a diverse range of complex dynamics, including coexisting one-scroll chaotic
attractors, coexisting two-scroll chaotic attractors, and approximate periodic cycles. Fur-
thermore, advanced measures of DS such as bifurcation diagrams, basin sets of attractions
(BSA), and Lyapunov spectra are utilized to validate the existence of these complex dy-
namics in multi-scroll chaotic systems. To summarize the main motivations in this article,
we recall that the ELCFDO has a higher degree of freedom in comparison with the CFDO,
which makes the multi-scroll chaotic system exhibit more scenarios of complex dynamics.
In addition, the motivations of this work are clearly provided by comparing the results
obtained via the ELCFDO with the results obtained via the classic integer- and fractional-
order operators. Therefore, we compare the dynamics of the multi-scroll chaotic system
involving the ELCFDO and the dynamics of the corresponding integer-order counterpart
of the system by demonstrating the bifurcation diagrams and calculating the LEs. The
outcome of this comparison asserts that the ELCFDO is a better candidate to handle the
complex dynamics in the multi-scroll chaotic system since it provides varieties of complex
dynamics that persist in a shorter range as compared with the corresponding states of the
system’s integer-order counterpart.

The rest of this article is organized as follows. The basic definitions of the ELCFDO
and the extended right Caputo fractional differential operators (ERCFDO) are introduced
in Section 2. The integer-order multi-scroll chaotic system is introduced in Section 3, in
which we provide the system’s bifurcation diagrams, the system’s Lyapunov spectra, and
compute the system’s BSA. The fractional-order form of the multi-scroll chaotic system
involving the ELCFDO is investigated in Section 4 where the system’s bifurcation diagrams
and Lyapunov spectra are provided to confirm the main motivations of this work. Finally,
we provided the concluding statements and future studies in Section 5.

Notations: Throughout this article, the sets of positive (negative) real numbers are,
respectively, represented by R+(R−). The set of all natural numbers is represented by N.
AC([u, v]) represents the set of all functions that are absolutely continuous on the interval
[u, v]. The expression of the ceiling function is represented by d.e.

2. Fractional Calculus

The ELCFDO is described by

E
COq,η

u+κ(t) = Kl−q,η
u+

dlκ(t)
dtl , q ∈ R+, (1)

where l = dqe, Kξ,η
u+ϕ(t) = [

t∫
u

ϕ(x)
(t−x)1−ξ dx]/Γ0(ξ, η), ξ ∈ R+, t > u, represents the ξth-

order extended left Riemann–Liouville (ELRL) fractional integral, where Γ0(ξ, η) is the
extended Gamma function defined by

Γ0(ξ, η) =

 +∞∫
0

yξ−1

ey dy

/ηξ , ξ, η ∈ R+. (2)

However, the ξth-order extended right Riemann–Liouville (ERRL) fractional integral
is

Kξ,η
v−ϕ(t) = [

v∫
t

ϕ(x)

(x− t)1−ξ
dx]/Γ0(ξ, η), ξ ∈ R+, t < v. (3)
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Hence, the ERCFDO is given by

E
COq,η

v−κ(t) = Kl−q,η
b− (− d

dt
)

l
κ(t), q ∈ R+, l ∈ N. (4)

The following relations hold for the ELCFDO

(i) Let c ∈ R\{0} be a constant number then E
COq,η

u+c = 0.
(ii) Let κ(t) ∈ AC([u, v]) and q ∈ (0, 1], then

lim
q→1

E
COq,η

u+κ(t) =
dκ(t)

dt
. (5)

Furthermore, the following properties for the ELRL fractional integral hold

(I) K1,η
u+κ(t) = η

t∫
u

κ(x)dx.

(II) If κ(t) ∈ L1, then Kξ1,η
u+ Kξ2,η

u+ κ(t) = Kξ1+ξ2,η
u+ κ(t).

(III) lim
ξ→l

Kξ,η
u+κ(t) = Kl,η

u+κ(t) uniformly on [u, v], l = 1, 2, 3, . . . .

(IV) lim
ξ→0

Kξ,η
u+κ(t) = κ(t) weakly.

(V) If 0 < ξ < 1 and κ ∈ C[0, v] then Kξ,η
0+κ(t)

∣∣∣
t=0

= 0.

(VI) Kξ1,η
u+ Kξ2,η

u+ κ(t) = Kξ2,η
u+ Kξ1,η

u+ κ(t) ∀ ξ1, ξ2 ∈ R+ ∪ {0}.
(VII) Kξ,η

0+tn = Γ0(1+n,η)
Γ0(1+n+ξ,η) tξ+n ∀ n > −1.

(6)

The relation between the ELCFDO and the classic CFDO (COq
u+κ(t)) is given as

E
COq,η

u+κ(t) = ηl−q
COq

u+κ(t), η, q ∈ R+, (7)

where l = dqe. The parameter η acts as a higher degree of freedom for the ELCFDO.
Hence, more intricate dynamics can be achieved that were not present in the case of the
corresponding classic LCFDO. This leads to the emergence of a diverse range of complex
dynamics.

3. Description of the Integer-Order Multi-Scroll Chaotic System

The classic multi-scroll chaotic system [21] is presented as

dβ1
dt = c− dβ1 − β2β3,

dβ2
dt = aβ2 + β1β3,

dβ3
dt = bβ3 + β1β2,

(8)

where d = ab
b+a .

Obviously, the divergence of the system (8) is given as div(F) = a + b − d, where F
represents the flow vector. Hence, the integer-order multi-scroll system (8) is dissipative
if and only if the quantity div(F) is negative. This means that the volume element V0
converges to zero as the time t increases to infinity at an exponential rate, a + b − d.
Therefore, the motion of all the system orbits asymptotically settles onto an attractor. In
addition, the integer-order multi-scroll chaotic system (8) has a highly symmetric structure
that makes the system robust to different small perturbations. Thus, chaotic attractors
are expected in this system when it undergoes sensitive dependence on initial data. One-
scroll and two-scroll chaotic attractors in this system are obtained using the parameter
sets A = {a, b, c} = {−10,−4, 18.1} and B = {a, b, c} = {−10,−4, 0}, respectively. For,

a, b ∈ R− and c > − γ
3
2

b+a , γ =
√

ab, the system’s equilibrium points are
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P1 = (
c
d

, 0, 0), P2,3 = (γ,±γ

a

√
dγ2 − γc

b
,±
√

dγ2 − γc
b

), P4,5 = (−γ,±γ

a

√
dγ2 − γc

b
,±
√

dγ2 − γc
b

). (9)

The above-mentioned equilibria are reduced to only three when using selection A of
the parameter values. So, we obtain

P1 = (
c
d

, 0, 0) and P2,3 = (γ,±γ

a

√
dγ2 − γc

b
,±
√

dγ2 − γc
b

). (10)

For a, b ∈ R− and c = 0, the system’s equilibrium points are

P0 = (0, 0, 0), P2,3 = (γ,±γ

a

√
aγ2

b + a
,±

√
aγ2

b + a
), P4,5 = (−γ,±γ

a

√
aγ2

b + a
,±

√
aγ2

b + a
). (11)

System (8) is numerically integrated based on the MATLAB command ODE45 to
obtain its bifurcation diagrams (See Figures 1–3) and the BSA. The initial states are chosen
as (β10, β20, β30) = (0.1, 0.1, 0.1). The bifurcation diagrams confirm the existence of a rich
variety of chaotic attractors in this system and different routes to chaos via period-doubling
bifurcations.

The corresponding Les are calculated based on the numerical algorithm in Ref. [24].
Furthermore, the Lyapunov spectra of the system (8) are also obtained to confirm the
existence of such wide regions of chaotic dynamics. The results are depicted in Figures 4–6.

The bifurcation diagrams and the Les illustrate the region of chaotic dynamics in the
system (8) as follows. In Figure 1, chaotic dynamics exist when −11 < a ≤ −8.96 (see
Figure 1a) and exist when −11 ≤ a ≤ −7 (See Figure 1b). In Figure 2, chaotic dynamics
exist when −4.7 < b ≤ −4 (see Figure 2a) and exist when −5.7 < b ≤ −3 (see Figure 2b). In
Figure 3, chaotic dynamics exist when 17 < c < 19.3 (see Figure 3a) and exist when 0 ≤ c < 12
and 15 ≤ c ≤ 19 (see Figure 3b).

The BSA is given in the Figures 4 and 5 to confirm the coexistence of multi-attractors
in this system. In Figure 7, the blue and the red regions refer to the coexisting two one-band
chaotic attractors. In Figure 8, the yellow and the turquoise regions refer to the coexisting
two double-band chaotic attractors.

Symmetry 2023, 15, x FOR PEER REVIEW 5 of 16 
 

 

Obviously, the divergence of the system (8) is given as div(F) = a + b − d, where F 

represents the flow vector. Hence, the integer-order multi-scroll system (8) is dissipative 

if and only if the quantity div(F) is negative. This means that the volume element 0V  

converges to zero as the time t increases to infinity at an exponential rate, a + b − d. There-

fore, the motion of all the system orbits asymptotically settles onto an attractor. In addi-

tion, the integer-order multi-scroll chaotic system (8) has a highly symmetric structure 

that makes the system robust to different small perturbations. Thus, chaotic attractors are 

expected in this system when it undergoes sensitive dependence on initial data. One-scroll 

and two-scroll chaotic attractors in this system are obtained using the parameter sets 

}1.18,4,10{},,{ −−== cba   and },0,4,10{},,{ −−== cbaB   respectively. For, 

− Rba,  and ,,
2

3

ab
ab

c =
+

− 


 the system’s equilibrium points are 

),0,0,(1
d

c
=  ),,,(

22

3,2
b

cd

b

cd

a




−


−
=  ).,,(

22

5,4
b

cd

b

cd

a




−


−
−=      (9) 

The above-mentioned equilibria are reduced to only three when using selection A of 

the parameter values. So, we obtain 

)0,0,(1
d

c
=  and ).,,(

22

3,2
b

cd

b

cd

a




−


−
=

 

 (10) 

For 
− Rba,  and ,0=c  the system’s equilibrium points are 

),0,0,0(0 =  ),,,(
22

3,2
ab

a

ab

a

a +


+
=


  ).,,(

22

5,4
ab

a

ab

a

a +


+
−=


  (11) 

System (8) is numerically integrated based on the MATLAB command ODE45 to ob-

tain its bifurcation diagrams (See Figures 1–3) and the BSA. The initial states are chosen 

as )1.0,1.0,1.0(),,( 302010 = . The bifurcation diagrams confirm the existence of a 

rich variety of chaotic attractors in this system and different routes to chaos via period-

doubling bifurcations. 

  
(a) (b) 

Figure 1. The bifurcation diagram of the system (8) with varying a and using (a) the parameter set 

A and (b) the parameter set B. 
Figure 1. The bifurcation diagram of the system (8) with varying a and using (a) the parameter set A
and (b) the parameter set B.



Symmetry 2023, 15, 1582 6 of 14
Symmetry 2023, 15, x FOR PEER REVIEW 6 of 16 
 

 

  
(a) (b) 

Figure 2. The bifurcation diagram of the system (8) with varying b and using (a) the parameter set 

A and (b) the parameter set B. 

  
(a) (b) 

Figure 3. The bifurcation diagram of the system (8) with varying c and using (a) the parameter set 

A and (b) the parameter set B. 

The corresponding LEs are calculated based on the numerical algorithm in Ref. [24]. 

Furthermore, the Lyapunov spectra of the system (8) are also obtained to confirm the ex-

istence of such wide regions of chaotic dynamics. The results are depicted in Figures 4–6. 

Figure 2. The bifurcation diagram of the system (8) with varying b and using (a) the parameter set A
and (b) the parameter set B.

Symmetry 2023, 15, x FOR PEER REVIEW 6 of 16 
 

 

  
(a) (b) 

Figure 2. The bifurcation diagram of the system (8) with varying b and using (a) the parameter set 

A and (b) the parameter set B. 

  
(a) (b) 

Figure 3. The bifurcation diagram of the system (8) with varying c and using (a) the parameter set 

A and (b) the parameter set B. 

The corresponding LEs are calculated based on the numerical algorithm in Ref. [24]. 

Furthermore, the Lyapunov spectra of the system (8) are also obtained to confirm the ex-

istence of such wide regions of chaotic dynamics. The results are depicted in Figures 4–6. 

Figure 3. The bifurcation diagram of the system (8) with varying c and using (a) the parameter set A
and (b) the parameter set B.

Symmetry 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

  
(a) (b) 

Figure 4. The Lyapunov spectrum of the system (8) with varying a and using (a) the parameter set 

A and (b) the parameter set B. 

  
(a) (b) 

Figure 5. The Lyapunov spectrum of the system (8) with varying b and using (a) the parameter set 

A and (b) the parameter set B. 

  
(a) (b) 

Figure 6. The Lyapunov spectrum of the system (8) with varying c and using (a) the parameter set 

A and (b) the parameter set B. 

Figure 4. The Lyapunov spectrum of the system (8) with varying a and using (a) the parameter set A
and (b) the parameter set B.



Symmetry 2023, 15, 1582 7 of 14

Symmetry 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

  
(a) (b) 

Figure 4. The Lyapunov spectrum of the system (8) with varying a and using (a) the parameter set 

A and (b) the parameter set B. 

  
(a) (b) 

Figure 5. The Lyapunov spectrum of the system (8) with varying b and using (a) the parameter set 

A and (b) the parameter set B. 

  
(a) (b) 

Figure 6. The Lyapunov spectrum of the system (8) with varying c and using (a) the parameter set 

A and (b) the parameter set B. 

Figure 5. The Lyapunov spectrum of the system (8) with varying b and using (a) the parameter set A
and (b) the parameter set B.

Symmetry 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

  
(a) (b) 

Figure 4. The Lyapunov spectrum of the system (8) with varying a and using (a) the parameter set 

A and (b) the parameter set B. 

  
(a) (b) 

Figure 5. The Lyapunov spectrum of the system (8) with varying b and using (a) the parameter set 

A and (b) the parameter set B. 

  
(a) (b) 

Figure 6. The Lyapunov spectrum of the system (8) with varying c and using (a) the parameter set 

A and (b) the parameter set B. 
Figure 6. The Lyapunov spectrum of the system (8) with varying c and using (a) the parameter set A
and (b) the parameter set B.

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

The bifurcation diagrams and the LEs illustrate the region of chaotic dynamics in the 

system (8) as follows. In Figure 1, chaotic dynamics exist when 9.811 −− a  (see Fig-

ure 1a) and exist when 711 −− a  (See Figure 1b). In Figure 2, chaotic dynamics exist 

when 47.4 −− b  (see Figure 2a) and exist when 37.5 −− b  (see Figure 2b). 

In Figure 3, chaotic dynamics exist when 3.1917  c  (see Figure 3a) and exist when 

,120  c  and 1915  c  (see Figure 3b). 

The BSA is given in the Figures 4 and 5 to confirm the coexistence of multi-attractors 

in this system. In Figure 7, the blue and the red regions refer to the coexisting two one-

band chaotic attractors. In Figure 8, the yellow and the turquoise regions refer to the co-

existing two double-band chaotic attractors. 

 

Figure 7. The BSA of the system (8) with the parameter set A. 

 

Figure 8. The BSA of the system (8) with the parameter set B. 

  

Figure 7. The BSA of the system (8) with the parameter set A.



Symmetry 2023, 15, 1582 8 of 14

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

The bifurcation diagrams and the LEs illustrate the region of chaotic dynamics in the 

system (8) as follows. In Figure 1, chaotic dynamics exist when 9.811 −− a  (see Fig-

ure 1a) and exist when 711 −− a  (See Figure 1b). In Figure 2, chaotic dynamics exist 

when 47.4 −− b  (see Figure 2a) and exist when 37.5 −− b  (see Figure 2b). 

In Figure 3, chaotic dynamics exist when 3.1917  c  (see Figure 3a) and exist when 

,120  c  and 1915  c  (see Figure 3b). 

The BSA is given in the Figures 4 and 5 to confirm the coexistence of multi-attractors 

in this system. In Figure 7, the blue and the red regions refer to the coexisting two one-

band chaotic attractors. In Figure 8, the yellow and the turquoise regions refer to the co-

existing two double-band chaotic attractors. 

 

Figure 7. The BSA of the system (8) with the parameter set A. 

 

Figure 8. The BSA of the system (8) with the parameter set B. 

  

Figure 8. The BSA of the system (8) with the parameter set B.

4. The Fractional-Order Multi-Scroll Chaotic System via the ELCFDO

The fractional-order version of the system (8) via the ELCFDO is given by

E
COq,η

0+β1 = c− dβ1 − β2β3,
E
COq,η

0+β2 = aβ2 + β1β3, q ∈ (0, 1).
E
COq,η

0+β3 = bβ3 + β1β2,
(12)

Since the ELCFDO is a linear operator, we obtain E
COq,η

0+(−βi(t)) = −E
COq,η

0+(βi(t)),
i = 1, 2, 3 . So, the multi-scroll chaotic system (12) is symmetrical about the βi − axis,
i = 1, 2, 3 due to the invariance of this system under the transforms (β1, β2, β3)→
(β1,−β2,−β3), (β1, β2, β3)→ (−β1, β2,−β3), and (β1, β2, β3)→ (−β1,−β2, β3) .

Then, numerical simulations based on the modified PECE scheme [27] are carried
out for the system (12) using the parameter sets A and B. Throughout the simulations, the
selection of initial values (β10, β20, β30) = (0.1, 0.1, 0.1) and (β10, β20, β30) = (0.1, 0.1,−0.1)
are used for the upper attractors (red domain) and the lower attractors (blue domain),
respectively. In Figure 9, coexisting upper and lower one-scroll chaotic attractors and
approximate periodic cycles are shown. In Figure 10, different types of coexisting upper
and lower two-scroll chaotic attractors with different intensities are depicted.
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The bifurcation diagrams for system (12) are obtained via the local maxima algorithm
to confirm the existence of a wide range of chaotic dynamics. The results are depicted in
Figures 11–14.
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On the other hand, the Les are calculated based on the numerical algorithm in Ref. [25].
Furthermore, the Lyapunov spectra of the system (12) are also obtained to confirm the
existence of such wide regions of chaotic dynamics. Then, the results are depicted in
Figures 15–18.
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The region of chaotic dynamics in the system (12) can be illustrated via the bifurcation
diagrams and the Les as follows. In Figure 11, chaotic dynamics exist when −11 < a ≤ −8.9
(see Figure 11a) and exist when −11 ≤ a ≤ −7 (see Figure 11b). In Figure 12, chaotic
dynamics exist when −5 ≤ b < −4 (see Figure 12a) and exist when −6.5 < b < −5.7, and
−5.7 < b < −4.1 (see Figure 12b). In Figure 13, chaotic dynamics exist when 17 < c ≤ 17.2,
and 17.3 < c≤ 18 (see Figure 13a) and exist when 0≤ c < 13, and 13 < c≤ 17 (see Figure 13b).
In most corresponding cases, except Figures 2a and 12a observe that the chaotic dynamics
in the multi-scroll chaotic system involving the ELCFDO are displayed in shorter ranges
when compared with the system’s integer-order form. Furthermore, the approximate
periodic cycles in Figure 12a exist in a shorter range than the corresponding periodic orbits
in Figure 2a. Thus, the ELCFDO can be implemented to shorten the complex dynamics in
this system using a suitable choice of the new fractional parameter η.

Figure 19 is carried out to confirm the existence of a higher degree of unpredictability
and complexity of basins’ structures in the system (12). In Figure 19a, the blue and the
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red regions refer to the coexisting two approximate period 4 cycles. In Figure 19b, the
coexisting two approximate higher periodic cycles are characterized by the dotted line and
the dotted turquoise regions.
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5. Conclusions

The ERCFDO and ELCFDO have been presented, and some related mathematical
relations have been provided. Complex dynamics have been found in the fractional multi-
scroll chaotic system using the ELCFDO. It has been found that the new parameter of the
ELCFDO helps the multi-scroll chaotic system to exhibit more complex dynamics that
cannot be found in its counterpart with the classic LCFDO. As an illustration, a wide array
of complex dynamics are achieved, encompassing coexisting one-scroll chaotic attractors,
coexisting two-scroll chaotic attractors, and approximate periodic cycles. Furthermore,
advanced measures of DS such as the bifurcation diagrams, basin sets of attraction, and
Lyapunov spectra have been utilized to confirm the existence of the complex dynamics in
the multi-scroll chaotic systems.

Throughout this article, some comparisons have been performed by demonstrating the
systems’ bifurcation diagrams and calculating the systems’ LEs, which illustrate that full
scenarios of complex dynamics in the multi-scroll chaotic system involving the ELCFDO
persist in a shorter range as compared with the corresponding states of the system’s integer-
order counterpart. Moreover, the higher degree of freedom in the case of the ELCFDO
increases the system’s ability to display more varieties of complex dynamics than the
corresponding CFDO case. The summary of such results indicates that the ELCFDO is a
better choice to describe the complex dynamics of the multi-scroll chaotic system.

Future studies can be extended to implement microcontroller-based circuits based
on the multi-scroll chaotic system involving the ELCFDO, which may be useful in real
digital engineering applications such as secure communication. Studying chaos control
and synchronization in the multi-scroll chaotic system involving the ELCFDO are also two
main points of interest for future works.
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