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Abstract: We study the holographic dual of the two-dimensional non-relativistic field theory with
anisotropic scaling from a symmetry perspective. We construct a new four-dimensional metric with
two-dimensional global anisotropic scaling isometry. The four-dimensional spacetime is homoge-
neous and is a solution of Einstein gravity with quadratic-curvature extension. We consider this
spacetime dual to the vacuum of the boundary field theory. By introducing a proper solution phase
space, we find that the asymptotic symmetry of the gravity theory is the two-dimensional local
anisotropic conformal symmetry, which recovers precisely the results from the dual non-relativistic
field theory side.
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1. Introduction

An interesting feature of quantum field theory (QFT) with scaling symmetry in two-
dimensional (2D) spacetime is that the global symmetry can be enhanced to an infinite-
dimensional local symmetry. The best known example is revealed by Polchinski in [1]
that a local, unitary Poincare-invariant 2D QFT with a global scaling symmetry and a
discrete non-negative spectrum of scaling dimensions must have both a left and a right
local conformal symmetry. More than ten years ago, Hofman and Strominger showed
that for a chiral situation, the local conformal symmetry is still implied [2], which leads
to two kinds of minimal theories, namely the 2D conformal field theory (CFT) [3] or the
2D warped conformal field theory (WCFT) [4]. The global symmetry of the WCFT is
SL(2, R)×U(1) and its local enhancement is the Virasoro–Kac–Moody algebra. The en-
hanced local symmetries have a clear dual interpretation from the gravity side in the context
of AdS3/CFT2 correspondence. They reveal the enhancement of the asymptotic symmetry
from the isometry of the AdS spacetime. More precisely, for AdS3 gravity, the asymptotic
symmetry group under Brown–Henneaux boundary conditions contains two copies of
Virasoro symmetry [5]. Meanwhile, for the waped AdS3 case [6,7], the algebra of asymptotic
symmetries is isomorphic to the semi-direct product of a Virasoro algebra and an algebra
of currents under Compère-Detournay boundary condition [8] (The local symmetry of
WCFT can be also realized in AdS3 gravity under the Compère–Song–Strominger boundary
conditions [9]).

Recently, the enhanced symmetry was revealed for 2D Galilean field theories with
anisotropic scaling symmetry [10]. The 2D Galilean field theories with global translations
and anisotropic scaling symmetries are shown to have enhanced local symmetries which
are generated by the infinite-dimensional spin-k Galilean algebra. For 2D Galilean field
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theories with isotropic scaling symmetry, the dual gravity theory is proposed to be three-
dimensional and asymptotically flat [11,12] where the asymptotic symmetry is enhanced
from the global 3D Poincare group to the infinite-dimensional Bondi–Metzner–Sachs (BMS)
group. For the anisotropic case, the dual gravity theory is proposed [13] to be higher-
dimensional Schrödinger geometry [14]. But the asymptotic symmetry of these geometries
has not been addressed. Whether it can recover the enhanced local symmetry from the field
theory side is not yet known.

The main purpose of this work is to find the gravitational duality for the enhancement
of symmetry in [10]. We find a new 4D metric with the isometry group isomorphic to
the global symmetry of the 2D Galilean field theories with anisotropic scaling, which
presents a different realization of gravity dual for the 2D theory from the one in [13,14].
This metric describes a homogeneous spacetime with a constant curvature tensor. The 4D
spacetime is supposed to be dual to the vacuum of the field theory. We show that Einstein
gravity with quadratic-curvature extension admits the 4D spacetime as a vacuum solution
when the coupling constants of the higher-derivative terms are specially adapted to the
dynamical exponent z. The 4D spacetime, with the restricted range of the dynamical
exponent z, can also be obtained from the Einstein–Proca theory. Then, we find a solution
phase space of the higher-derivative theory, which admits the vacuum metric and yields
precisely the infinite-dimensional spin-k Galilean algebra in [10] as asymptotic symmetry.
Since the duality is between 4D and 2D, we adopt a double expansion of inverse spatial
directions. Correspondingly, the 2D Galilean theory is defined on the corner of the 4D
spacetime boundary.

The organization of this paper is as follows. In Section 2, we present the vacuum
solution and show that it has a constant curvature tensor. In Section 3, we comment on
the gravitational theory that admits the vacuum solution. In Section 4, we show a solution
phase space and derive the asymptotic symmetry of the phase space, namely the most
generic residual gauge transformations that preserve the solution phase space. In Section 5,
we derive the asymptotic symmetry algebra. We conclude in the last section.

2. Spacetime with Global Anisotropic Scaling Symmetry

The global symmetry of 2D Galilean field theory with anisotropic scaling consists of
translations along two directions: the Galilean boost

x → x− vt , (1)

and the dilations (we set the parameter c in [10] to be 1. This can always be realized by the
rescaling λc → λ̃, hence d

c → k).

t→ λt, x → λkx , (2)

In Ref. [10], it is shown that the symmetry of the 2D Galilean field theory with the
above global symmetry is enhanced to an infinite-dimensional spin-k Galilean algebra.
In plane modes, the algebra is given by

[ln, lm] = (n−m)ln+m ,

[ln, mm] = (kn−m)mn+m ,

[mn, mm] = 0 .

(3)

This algebra with k = 1 is precisely the BMS3 algebra derived in [15,16].
From the holographic principle, the field theory is defined on the boundary of the

dual gravity theory. The global symmetry of the field theory is the isometry of the bulk
spacetime. For the 2D Galilean field theory with anisotropic scaling, the dual gravity
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theory is four-dimensional. The 4D metric which we find with global anisotropic scaling
isometry is

ds2 =
`2dr2

r2 + r2zdy2 + r2(2dxdt− ydt2) . (4)

The metric is invariant under the translations along t and x directions plus the follow-
ing global transformations,

Galilean embedding : x → x− vt , t→ t , y→ y− 2v ,

scaling embedding : x → λkx , t→ λt , y→ λk−1y , r → λ−
k+1

2 r , (5)

with
k =

2 + z
2− z

. (6)

The spacetime described by the metric (4) is homogeneous and has a constant cur-
vature tensor. For constant y, the metric is the AdS3 in planar coordinates with a 2D
Minkowski boundary. The introduction of y serves the purpose of breaking the 2D con-
formal group to Gallilean symmetry with anistropic scaling. Our construction of the
background metric (4) is very different from the proposal in [13], where an extra null
Killing direction associated with the coordinate ξ was introduced. In our case, however, y
is not a Killing direction, but it is analogous to the radial coordinate r, which allows us to
take an additional y→ ∞ limit in the asymptotic expansion. This makes the analysis of the
asymptotic symmetry simpler and well controlled by both the (r, y) coordinates. We shall
return to this in the next sections.

The constant curvature tensor can be easily obtained from the vielbein formalism.
A natural vielbein choice that respects the global isometry is

e0 =
`dr
r

, e1 = rzdy , e+ = r1− 1
2 zdt , e− = r1+ 1

2 z(dx− 1
2 ydt) , (7)

such that ds2 = e0e0 + e1e1 + 2e+e−. Thus, we have

de0 = 0 , de1 =
z
`

e0 ∧ e1 , de+ =
1− 1

2 z
`

e0 ∧ e+ ,

de− =
1 + 1

2 z
`

e0 ∧ e− − 1
2 e1 ∧ e+ . (8)

The spin connections are

ω±0 =
e±

`
, ω+− =

z
2`

e0 , ω10 =
ze1

`
, ω1− = 1

2 e+ . (9)

We thus have the curvature tensor 2-form Θa
b = 1

2 Ra
bcdec ∧ ed as

Θ+
+ = − 1

`2 e+ ∧ e− , Θ+
0 =

1
`2 e0 ∧ e+ , Θ−0 =

1
`2 e0 ∧ e− +

1− z
2`

e+ ∧ e1 ,

Θ+
1 = − z

`2 e+ ∧ e1 , Θ−1 =
z− 1

2`
e0 ∧ e+ − z

`2 e− ∧ e1 , Θ0
1 = − z2

`2 e0 ∧ e1 . (10)

Hence, the independent non-vanishing components of the Riemann tensor are

R+
++− = − 1

`2 , R+
0+0 = − 1

`2 , R−0+1 =
1− z

2`
,

R+
1+1 = − z

`2 , R0
101 = − z2

`2 . (11)
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The Ricci tensor is given by

R+− = − z + 2
`2 , R00 = − z2 + 2

`2 , R11 = − z(z + 2)
`2 . (12)

and the Ricci scalar is

R = −2(z2 + 2z + 3)
`2 . (13)

When z = 1, the metric (4) is just the 4D AdS spacetime.
As one can see from (6) that k = −1 requires z → ±∞. So, the metric is not well

defined for this particular choice. To include this limiting case, we make a coordinate
transformation and redefine the parameter as follows,

r = r̃
1
z , ` = z ˜̀ . (14)

The new metric admits a z→ ±∞ limit, and we obtain

ds2 =
˜̀2dr̃2

r̃2 + r̃2dy2 − ydt2 + 2dtdx . (15)

The vielbein, spin connections and curvature can be simply obtained from the same
treatment when taking the limit z→ ±∞.

3. Dual Gravity Theories

Einstein gravity with the most general quadratic-curvature extension in four dimen-
sions is

L =
√
−g(R− 2Λ0 + αR2 + βRµνRµν) . (16)

Since the Gauss–Bonnet term is a total derivative, we do not add the Riemann squared
term. The metric (4) is a solution of the theory (16) when the coupling constants α, β and
the cosmological constant Λ0 are specially chosen with respect to the dynamical exponent z,

z = 1 : Λ0 = − 3
`2 , no constraint on α and β, (17)

z 6= 1 : Λ0 = − (z2 + 2z + 3)
2`2 , 4α

(
z2 + 2z + 3

)
+ 2β

(
z2 + 2

)
= `2 . (18)

Note that when setting β = 0, the generic theory (16) is reduced to the ghost-free
theory L =

√−g(R − 2Λ0 + αR2), which still admits the vacuum solution (4), and the
coupling constant is completely fixed by

α =
`2

4(z2 + 2z + 3)
. (19)

It is also of interest to examine whether our metric (4) can arise from Einstein theory
with minimally coupled matter. The curvature tensor in the vielbein base implies that

G00 =
1 + 2z
`2 , G11 =

3
`2 , G+− =

z2 + z + 1
`2 . (20)

If the solutions are constructed from the Einstein theory with minimally coupled
matter fields, then we can deduce that Tab

tot = Gab. In the diagonal base, we have

ρ = − z2 + z + 1
`2 = −p1 , p2 =

3
`2 , p3 =

1 + 2z
`2 . (21)
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The null energy conditions (NEC) ρ + pi ≥ 0 impose the following conditions

2− z− z2 ≥ 0 , z(1− z) ≥ 0 . (22)

This requires that 0 ≤ z ≤ 1. As a concrete example, we consider Einstein gravity
coupled to massive vector theory (Proca theory)

L =
√
−g(R− 2Λ− 1

4 F2 − 1
2 µ2 A2) . (23)

To admit metric (4) as a solution, the cosmological constant Λ, the coupling constant
µ, and the vector field A in the Proca theory should have the following forms,

Λ = − z2 + z + 4
2`2 , µ2 =

2z
`2 , A =

√
2(1− z)

z
rz dy . (24)

Thus, the reality condition requires that 0 < z ≤ 1.
In fact, although the total energy momentum tensor in the Einstein–Proca–Λ theory

satisfies only the NEC but violates both the weak and strong energy condition, the energy-
momentum tensor of the Proca field

ρA =
(1− z)(2 + z)

`2 = −pA
1 = pA

3 , pA
2 = − (1− z)(2− z)

2`2 , (25)

satisfies all the energy conditions, namely the strong energy condition and dominant energy
condition, since 0 < z ≤ 1. It is well known that the culprit of violating weak or strong
energy condition in these cases is the cosmological constant.

4. Asymptotic Symmetries

The complete set of gauge transformation of Einstein gravity with quadratic-curvature
extension is generated by infinitesimal diffeomorphism (since the Proca theory admits
metric (4) as a solution only when 0 < z ≤ 1, we consider Einstein gravity with quadratic-
curvature extension for deriving the asymptotic symmetry to have a consistent study for a
generic value of z),

δξ gµν = Lξ gµν . (26)

The asymptotic symmetry is the residual gauge transformation that preserves the
required gauge and boundary conditions. We will follow the Fefferman–Graham gauge,

grr =
`2

r2 , grA = 0 , (27)

where A = (y, t, x). The residual gauge transformation preserving the Fefferman–Graham
gauge can be solved as follows:

• Lξ grr = 0 =⇒ ξr = − 1
2 rΨ(y, t, x).

• Lξ grA = 0 =⇒ ξA = YA(y, t, x)− `2

2 ∂BΨ
∫ ∞

r
dr′
r′ gAB,

where gAB is the inverse metric. For a generic z, it is very hard to impose boundary
conditions to study asymptotic symmetries in a unified way. Alternatively, we apply the
solution phase space method [17–19] to investigate the asymptotic (symplectic) symmetry
of the system. The solution phase space method was originally introduced for the Near-
Horizon Extremal Geometries (NHEGs) [17,18]. Since the NHEG is absent of dynamical
physical perturbations [20], it is natural to consider the action of diffeomorphisms on the
NHEG to construct the classical phase space. In our study, the theory (16) depends on the
dynamical exponent z, namely for each choice of z, there is a corresponding theory and
fall-off conditions. So, the solution phase space method is particularly useful for us to study
asymptotic symmetries for a generic choice of z.
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We find a solution phase space of the theory (16), which is given by

ds2 =
`2

r2 dr2 + r2zΦ(t)2dy2 + 2r2 dtdx − r2
[

y f1(t) + f2(t) + x f3(t) +
`2 f3(t)Φ′(t)

2Φ(t)r2 − `2Φ′′(t)
Φ(t)r2

]
dt2 , (28)

where a prime denotes a derivative on t. There are four arbitrary functions of time t, namely,
Φ(t), f1(t), f2(t), f3(t) which represent four types of independent diffeomorphisms. They
are dynamical fields of the phase space. However, they only represent boundary dynamics
as they are introduced from the action of diffeomorphisms on the homogeneous space-
time (4). There is no propagating degree of freedom in the phase space. The dual theory of
the 2D Galilean field theory is from boundary gravity in the context of AdS/CFT [5,21].

The most generic residual gauge transformation preserving the phase space is charac-
terized by

Ψ(y, t, x) = ψ(t) , Yy(y, t, x) = Y1y + Y2 ,

Yt(y, t, x) = L(t) , Yx(y, t, x) = [ψ(t)− ∂tL(t)]x + M(t) ,
(29)

where Y1 and Y2 are real and constant. Note that we choose all symmetry parameters to be
field independent.

To manifest the fact that the spacetime is scaling invariant asymptotically, we need to
perform a double expansion in terms of both 1

r and 1
y in the region of a large r and large y

and set f1(t) = Φ(t). The asymptotic form of the metric is

ds2 =
`2

r2 dr2 + r2zΦ(t)2dy2 + 2r2dtdx− r2yΦ(t)dt2 + sub-leading terms , (30)

The leading part of the metric is invariant under the scaling transformation,

x → λkx , t→ λt , r → λ−
k+1

2 r ,

y→ λk−1−ay , Φ(t)→ λaΦ(t) .
(31)

The condition f1(t) = Φ(t) will further yield that

ψ(t) = (k + 1)L′(t) . (32)

To summarize, the asymptotic symmetry that preserves the scaling-invariant phase
space (28) is generated by

ξr = −1
2
(k + 1)L′(t)r ,

ξy = Y1y + Y2 ,

ξt = L(t) ,

ξx = M(t) + kxL′(t)− `2

4
(k + 1)

L′′(t)
r2 .

(33)

5. Asymptotic Symmetry Algebra

The asymptotic Killing vectors (33) satisfy the standard Lie algebra

[ξ1, ξ2]
µ = ξν

1∂νξ
µ
2 − ξν

2∂νξ
µ
1 . (34)
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The algebra is closed and the Jacobi identity of the symmetry algebra is guaranteed by
the Jacobi identity of the Lie algebra of three vectors. In terms of the basis vectors

Lm =
1
2
(k + 1)(m + 1)tmr∂r − tm+1∂t − k(m + 1)tmx∂x

+
`2

4
(k + 1)m(m + 1)tm−1 1

r2 ∂x ,

Mm = −tm+k∂x , B = ∂y , D = y∂y ,

(35)

the asymptotic algebra is

[Ln, Lm] = (n−m)Lm+n , (36)

[Ln, Mm] = (kn−m)Mm+n , (37)

[Mn, Mm] = 0 , (38)

[B, B] = 0 , [D, D] = 0 , [D, B] = − k− 1
k + 1

B , (39)

[B, Lm] = 0 , [B, Mm] = 0, (40)

[D, Lm] = 0 , [D, Mm] = 0 . (41)

The first three lines of the above equations are precisely the symmetry algebra (3)
derived from the dual 2D field theory side [10]. We have two more generators D and B
from the extra dimension y which commute all the modes Lm and Mm.

The Killing vector that generates the Galilean transformation of the background
metric (4) is

G ≡ ∂y +
1
2

t∂x . (42)

It is of course included in the asymptotic Killing vectors which in mode expansion (35)
is given by

G = B− 1
2

M1−k . (43)

The scaling symmetry

∆ ≡ −1
2

r∂r +
k− 1
k + 1

y∂y +
t

k + 1
∂t +

kx
k + 1

∂x , (44)

in mode expansion (35) is given by

∆ =
k− 1
k + 1

D− 1
k + 1

L0. (45)

Two translations along the t and x directions are L−1 and M−k. The four Killing
vectors form a closed subalgebra of the asymptotic symmetry algebra,

[G, G] = 0 , [∆, ∆] = 0 , [∆, G] = − k− 1
k + 1

G , (46)

[G, L−1] = −
1
2

M−k , [∆, L−1] = −
1

k + 1
L−1 , (47)

[G, M−k] = 0 , [∆, M−k] = −
k

k + 1
M−k . (48)

The commutators of G and ∆ with other modes are
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[G, Lm] =
1
2
[(m + 1)k− 1]Mm+1−k , (49)

[∆, Lm] =
m

k + 1
Lm , (50)

[G, Mm] = 0 , (51)

[∆, Mm] =
m

k + 1
Mm . (52)

6. Conclusions

In this paper, we present an alternative realization of the holographic dual for the 2D
Galilean field theory with anisotropic scaling. The isometry of the bulk spacetime is isomorphic
to the global symmetry of the 2D Galilean field theory. And the bulk spacetime is a vacuum
solution of the Einstein gravity with quadratic-curvature extension. For some restricted range
of the dynamical exponent z, the bulk spacetime is also a solution of the Einstein–Proca
theory. We find a solution phase space which admits the vacuum solution. The residual
gauge transformation preserving the solution phase space, namely the asymptotic symmetry
of this system, recovers precisely the enhanced local symmetry of the 2D Galilean field theory
in [10]. Since the dual gravity theory is in 4D, our proposal is an example of a codimension-2
holography, and we have two more symmetry transformations from the extra dimensions. We
show that the algebra of the two extra symmetry generators is closed and the generators of
the two extra symmetry commute with all the generators of the 2D enhanced local symmetry.
In our construction, the extra dimension is not a Killing direction and there is no conserved
quantity associated to this extra direction. So, it can not be interpreted as a particle-number
circle, such as in the Schrodinger theories [22] arisen from the TsT transformation [23] or
Melvin twist of AdS space [24]. The extra dimension y in our case is not compacted, so one
cannot get rid of it by dimensional reduction [25]. However, in our construction, one can
realize the enhanced local symmetry of the boundary field theory as asymptotic symmetry of
the dual gravity system in a double expansion in large r and large y. Correspondingly, the
dual field theory is supposed to be defined on the corner of the 4D boundary; see, e.g., in [26]
for a comprehensive introduction of the corner proposal and references therein.

As an ending remark, it is worth mentioning that our construction is temporarily re-
stricted in 4D with a ground state. It is definitely of interest to generalize our construction to
higher dimension or black hole solutions (thermal state) to incorporate various anisotropic
invariant field theories in different perspectives, such as the theories studied in [27–32].
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