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Abstract: Asymmetric distributions, as opposed to symmetric distributions, may be more resilient
to extreme values or outliers. Furthermore, when data show substantial skewness, asymmetric
distributions can shed light on the underlying processes or phenomena being investigated. In this
direction, the size-biased Bilal distribution (SBBD) is suggested in this study as a generalization to the
Bilal distribution. The length-biased and area-biased Bilal distributions are discussed in detail as two
special cases. The main statistical properties of the distribution including the rth moment, coefficients
of variation, skewness, kurtosis, moment generating function, incomplete moments, moments of
residual life, harmonic mean, Fisher’s information, and the Rényi entropy as a measure of uncertainty
are presented. Graphical representations of the cumulative distribution, probability density, odds,
survival, hazard, reversed hazard rate, and cumulative hazard functions are presented for further
explanation of the distribution behavior. In addition, the methods of moments and maximum
likelihood estimates are taken into account for estimating the model parameters. A simulation study
is carried out to see the efficiency of the maximum likelihood in terms of standard errors and bias.
Real data sets of precipitation and myeloid leukemia patients are considered to show the practical
significance of the suggested distributions as an alternative to some well-known distributions such as
the Rama, Rani, Bilal, and exponential distributions. It is found that the size-biased Bilal distribution
is right-skewed and has a superior fitting performance compared to the other distributions in this
study.

Keywords: Bilal distribution; size-biased distribution; skew distribution; reliability analysis; Rényi
entropy; weighted distribution; lifetime distribution

1. Introduction

One of the most crucial objectives of a statistician is to describe real-world situations
using probability distributions. In many real-world applications, including the fields of
medicine, actuarial science, engineering, industry, and finance, modeling and interpreting
lifetime data are crucial. This has led researchers to concentrate on creating families of
probability distributions in recent decades. The size-biased distributions appear when the
gathered data in actual life scenarios are assigned based on a weight function rather than
randomly. Size-biased distribution refers to the distribution that results in sampling process
selecting sample units with a probability that is proportional to some size measure of the
unit. The concept of weighted distributions was first proposed by [1] to accurately model
real data. Over the last 25 years, some fitting models for scanned data have been collected
using the weighted distributions technique. Assume that the random variable X has a
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probability density function (pdf) f (x); then, the pdf of the weighted random variable Xw
is obtained using the following:

fw(x) =
w(x) f (x)
E[w(X)]

(1)

such that E[w(X)] exists and the normalization factor, w(x), makes the overall probability
equal to 1. The concept of length-biased sampling was first introduced by [2], and then [3]
formulated and explored this idea broadly in the context of modeling statistical data
when the conventional method of employing standard distributions was proven to be
ineffective. Ref. [3] introduced a special case of the weighted distribution known as size-
biased distribution of order t and if the weighted function has the form w(x) = xt, the pdf
is obtained using the following:

ft(x) =
xt f (x)
Et(X)

. (2)

For t = 1 and t = 2, the obtained distributions are called length-biased and area-biased
distributions, respectively.

Furthermore, due to the importance of the weighted distributions, many researchers
studied it in various cases. Ref. [4] talked about using weighted binomial distribution
to model human families and determine the size of wildlife families. The relationship
between initial reliability measures and size-biased distribution was outlined by [5]. Ref. [6]
provided the theory of bivariate weighted distribution. Ref. [7] proposed the length-
biased weighted Maxwell distribution. Ref. [8] suggested size-biased weighted transmuted
Weibull distribution. Length and area-biased Maxwell distributions were introduced by [9].
Ref. [10] proposed size-biased Ishita distribution. Weighted power Lomax distribution
and its length-biased form were proposed by [11]. For modeling skewed and heavy-tailed
data, Ref. [12] presented the normal weighted inverse Gaussian distribution. Ref. [13]
offered weighted generalized Quasi Lindley distribution. Ref. [14] suggested general-
ized weighted exponential distribution. Ref. [15] introduced weighted Gamma–Pareto
distribution, and [16] investigated a modified weighted Pareto distribution of Type I.

Ref. [17] offered a new continuous lifetime distribution, called Bilal distribution (BD),
which is demonstrated to belong with the class of novel renewal failure rates that are
better than average. The Bilal distribution’s density function is always unimodal, with
around 25% and 28% less skewness and kurtosis than the exponential distribution’s density
function, respectively. The distribution function, qth quantiles, and failure rate function,
on the other hand, are in compact form, and the distinct moments are expressed explicitly
in terms of the exponential function. He defined the probability density function of BD as
follows:

fBD(x; θ) =
6
θ

(
1− e−

x
θ

)
e−

2x
θ , x ≥ 0, θ > 0 (3)

where EBD(X) = 5
6 θ, VBD(X) = 13

36 θ2, coefficient of variation CV = 0.72, kurtosis
Ku = 6.443786982, and the corresponding cumulative distribution function (CDF) is de-
fined as follows:

FBD(x; θ) = 1−
(

3− 2e−
x
θ

)
e−

2x
θ , x ≥ 0, θ > 0 (4)

It is of interest to note here that base Bilal distribution has a one parameter and the
suggested modifications each has one parameter with suitable weight functions which
yields more flexibility in modeling a variety of real data sets for simple usage. The novelty
of this research lies in combination the Bilal distribution with the weighted distribution
to modify the Bilal distribution for modeling real data sets. To our knowledge, this is
the first work on length-biased and area-biased Bilal distributions. The rest of this paper
is organized as follows: The size-biased Bilal distribution and some of its properties are
presented in Section 2. Section 3 addresses some certain distributional features of the
suggested length-biased and area-biased Bilal distributions. In Section 4, the applicability
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of the proposed models is demonstrated based on two real data sets. Finally, the paper is
concluded in Section 5.

2. Structure of the SBBD

This section introduces the size-biased Bilal distribution of the order t, expressed using
Equation (2). Then, the length and area-biased Bilal distributions are derived as two special
cases. The pdf of the size-biased Bilal random variable, XSBBD, of order t is expressed using

fSBBD(x; θ) =
xt fBD(x; θ)

EBD(Xt)
=

6t+1θ−t−1

Γ(t + 1)(3t+1 − 2t+1)
xte−

2x
θ

(
1− e−

x
θ

)
, x > 0, θ > 0, (5)

and the corresponding CDF is as follows:

FSBBD(x; θ) =
2t+1[Γ(t + 1)− Γ

(
t + 1, 3x

θ

)]
+ 3t+1[Γ(t + 1, 2x

θ

)
− tΓ(t)

]
(2t+1 − 3t+1)Γ(t + 1)

,t = 1, 2, . . . ; x, θ > 0, (6)

where Γ(t) =
∞∫
0

zt−1e−zdz is the gamma function and Γ(a, t) =
∞∫
t

za−1e−zdz is the incom-

plete gamma function. Figure 1 shows the pdf plots of SBBD for various schemes, where
θ = 0.9 and 0.3 with t = 1, 2, 3, 4, 5, 6, 7. It is clear that SBBD can take various shapes
depending on the value of the parameters θ and t. For example, when t = 1, SBBD is
skewed to the right for both values θ = 0.9, 0.3, increasing and then decreasing as in both
the plots, and is semi-symmetric for t = 7 with θ = 0.3. These different shapes give the
distribution more flexibility in modeling some type of data.

Symmetry 2023, 15, 1578 3 of 21 
 

 

2

( ; ) 1 3 2e e 0, 0,
x

BD

x

F x xθ θθ θ
− − 

= −


≥− > 


 (4)

It is of interest to note here that base Bilal distribution has a one parameter and the 
suggested modifications each has one parameter with suitable weight functions which 
yields more flexibility in modeling a variety of real data sets for simple usage. The novelty 
of this research lies in combination the Bilal distribution with the weighted distribution to 
modify the Bilal distribution for modeling real data sets. To our knowledge, this is the first 
work on length-biased and area-biased Bilal distributions. The rest of this paper is orga-
nized as follows: The size-biased Bilal distribution and some of its properties are pre-
sented in Section 2. Section 3 addresses some certain distributional features of the sug-
gested length-biased and area-biased Bilal distributions. In Section 4, the applicability of 
the proposed models is demonstrated based on two real data sets. Finally, the paper is 
concluded in Section 5. 

2. Structure of the SBBD 
This section introduces the size-biased Bilal distribution of the order t, expressed us-

ing Equation (2). Then, the length and area-biased Bilal distributions are derived as two 
special cases. The pdf of the size-biased Bilal random variable, SBBDX , of order t is ex-
pressed using  

( )
21 1

1 1

( ; ) 6( ; ) 1
( ) ( 1) 3 2

x xt t t
tBD

SBBD t t t
BD

x f xf x x e e
E X t

θ θθ θθ
+ − − − −

+ +

 
= = − Γ + −  

, 0, 0x θ> > , (5)

and the corresponding CDF is as follows: 

( )

1 1

1 1

3 22 ( 1) 1, 3 1, ( )
,(

2 3 ( 1)
; )

t t

tSBBD t
F

x xt t t t t
x

t
θ θθ

+ +

+ +

      Γ + − Γ + + Γ + − Γ         
− Γ

=    
+

1, 2,...; , 0,t x θ= >  (6)

where 1

0

( ) t zt z e dz
∞

− −Γ =    is the gamma function and 1( , ) a z

t

a t z e dz
∞

− −Γ =    is the in-

complete gamma function. Figure 1 shows the pdf plots of SBBD for various schemes, 
where 0.9θ =   and 0.3 with 1, 2,3t =  ,4,5,6,7. It is clear that SBBD can take various 
shapes depending on the value of the parameters θ   and t. For example, when 1t =  , 
SBBD is skewed to the right for both values 0.9,0.3,θ =  increasing and then decreasing 
as in both the plots, and is semi-symmetric for 7t =   with 0.3θ =  . These different 
shapes give the distribution more flexibility in modeling some type of data. 

  

Figure 1. The plots of SBBD for θ = 0.9 (left) and θ = 0.3 (right) with t = 1, 2, 3, 4, 5, 6, 7.

Theorem 1. The rth moment of the size-biased Bilal distributed random variable, XSBBD, is obtained
using the following equation:

E(Xr) =
θr(2r+t+1 − 3r+t+1)Γ(r + t + 1)

6r(2t+1 − 3t+1)Γ(t + 1)
,θ > 0, r + t > −2 (7)
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Proof. To prove the theorem, the rth moment is defined as follows:

E(Xr) =
∞∫
0

xr fSBBD(x; θ) dx

=
∞∫
0

xr 6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)
xte−

2x
θ

(
1− e−

x
θ

)
dx

= 6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)

(
∞∫
0

xr+1e−
2x
θ dx−

∞∫
0

xr+te−
3x
θ dx

)
= 6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)

(
Γ(r+t+1)

( 2
θ )

r+t+1 −
Γ(r+t+1)

( 3
θ )

r+t+1

)
= 6t+1θ−t−1Γ(r+t+1)θr+t+1

Γ(t+1)(3t+1−2t+1)

(
3r+t+1−2r+t+1

6r+t+1

)
=

θr(2r+t+1−3r+t+1)(r+t)!
6r(2t+1−3t+1) t!

.

�

For r = 1, 2, 3, 4 in Equation (7), we obtain the first four moments, respectively, for the
origin of X:

E(X) =
θ
(
2t+2 − 3t+2)(t + 1)!
6(2t+1 − 3t+1)t!

, E
(

X2
)
=

θ2(2t+3 − 3t+3)(t + 2)!
36(2t+1 − 3t+1)t!

,

E
(

X3
)
=

θ3(2t+4 − 3t+4)(t + 3)!
216(2t+1 − 3t+1)t!

, E
(

X4
)
=

θ4(2t+5 − 3t+5)(t + 4)!
1296(2t+1 − 3t+1)t!

.

Theorem 2. If X has a SBBD, then the moment generating functions of XSBBD is obtained using
the following equation:

MX(w) =
6t+1

3t+1 − 2t+1

[
(2− θw)−(t+1) − (3− θw)−(t+1)

]
,w <

3
θ

, t > −2. (8)

Proof. The proof is similar to the proof of Theorem (1), considering the following:

MX(w) =

∞∫
0

ewx fSBBD(x; θ) dx.

�

Theorem 3. The rth incomplete moment of the SBBD is defined as follows:

E
(
Xr

IM−SBBD
)
=

3r+t+1
[
Γ
(

r + t + 1, 2h
θ

)
− Γ(r + t + 1)

]
+ 2r+t+1

[
Γ(r + t + 1)− Γ

(
r + t + 1, 3h

θ

)]
(2t+1 − 3t+1)Γ(t + 1)

. (9)

Proof. Recall the pdf in (5), the incomplete rth moment of the SBBD can be proved as
follows:
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E
(
Xr

IM−LBBD
)
=

h∫
0

xr fLBBD(x; θ)dx

= 6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)

h∫
0

xr+t
(

e−
2x
θ − e−

3x
θ

)
dx

= 6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)

 θ2−r−t−1hr+t
(

h
θ

)−r−t(
Γ(r + t + 1)− Γ

(
r + t + 1, 2h

θ

))
−θ3−r−t−1hr+t

(
h
θ

)−r−t(
Γ(r + t + 1)− Γ

(
r + t + 1, 3h

θ

))


= 6t+1

Γ(t+1)(3t+1−2t+1)

[
2−r−t−1

(
Γ(r + t + 1)− Γ

(
r + t + 1, 2h

θ

))
− 3−r−t−1

(
Γ(r + t + 1)− Γ

(
r + t + 1, 3h

θ

))]
=

3r+t+1[Γ(r+t+1, 2h
θ )−Γ(r+t+1)]+2r+t+1[Γ(r+t+1)−Γ(r+t+1, 3h

θ )]
(2t+1−3t+1)Γ(t+1)

.

�

Rényi entropy is a statistical mechanics and information theory concept that gauges
how random or uncertain a system is. The Rényi entropy of the random variable X as

defined by [18] is expressed using Hα(X) = 1
1−α log

(
∞∫
0

f (x)αdx

)
, α > 0,α 6= 1.

Theorem 4. The Rényi entropy of the SBBD is obtained using the following:

Hα(XSBBD) =
1

1− α
log

{(
6t+1θ−t−1

Γ(t + 1)(3t+1 − 2t+1)

)α α

∑
j=0

(−1)α−j
(

α
j

)
(αt)!

(
3α− j

θ

)−(αt+1)
}

. (10)

Proof. The Rényi entropy of the size-biased distributed random variable X can be derived
as follows:

Hα(XLBBD) = 1
1−α log

∞∫
0

(
6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)
xte−

2x
θ

(
1− e−

x
θ

))α

dx

= 1
1−α log

{(
6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)

)α ∞∫
0

xαte−
2αx

θ

(
1− e−

x
θ

)α
dx

}

= 1
1−α log

{(
6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)

)α ∞∫
0

xαte−
2αx

θ

α

∑
j=0

(−1)α−j
(

α
j

) (
e−

x
θ

)α−j
dx

}

= 1
1−α log

{(
6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)

)α α

∑
j=0

(−1)α−j
(

α
j

)∞∫
0

xαte−
2αx

θ

(
e−

x
θ

)α−j
dx

}

= 1
1−α log

{(
6t+1θ−t−1

Γ(t+1)(3t+1−2t+1)

)α α

∑
j=0

(−1)α−j
(

α
j

)
(αt)!

(
3α−j

θ

)−(αt+1)
}

.

�

3. Special Cases of the SBBD

In this section, by setting t = 1, 2 in Equation (5), we obtain the pdfs of the sug-
gested length-biased Bilal distribution (LBBD) and area-biased Bilal distribution (ABBD),
respectively:

fLBBD(x; θ) =
36

5 θ2

(
x− xe−

x
θ

)
e−

2x
θ , x > 0, θ > 0, (11)

fABBD(x; θ) =
108

19 θ3

(
x2 − x2e−

x
θ

)
e−

2x
θ , x > 0, θ > 0. (12)
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For various distribution parameter values, the pdf plots of the LBBD and ABBD are
shown in Figure 2. The pdfs of the recommended distributions are skewed to the right and
become more flat as the values of θ increase. Furthermore, depending on the parameter
values, the pdfs of the ABBD and LBBD can display a variety of behaviors.

Symmetry 2023, 15, 1578 6 of 21 
 

 

( ) ( )

( )

( )

21 1

1 1
0

1 1 2

1 1
0

1 1 2

1 1

61 1log
( 1) 3 21

61 log 1
1 ( 1) 3 2

61 log
1 ( 1) 3 2

x xt t
t

LBBD t t

t t x x
t

t t

t t x
t

t t

x e eH dxX
t

x e e dx
t

x e
t

α

θ θ
α

α αα
α θ θ

α α
α θ

θ
α

θ
α

θ
α

+ − −∞ − −

+ +

+ − − ∞
− −

+ +

+ − −
−

+ +

  
−=    Γ + −−   

     = −     − Γ + −    
 

=   − Γ + − 





( )

0

1 1 2

1 1
0

0

0

(

2
61 log

1 (
)

1) 3

1)

( 1

j
j

j

j
j

x

t

t
j

t x x
t

t

e dx

x x

j

j e e d
t

θ

α α

αα
α

αα
α α θ θ

α

αθ
α

∞
−

+ − − ∞
− −

+

−

−

=

−

−

=
+

     
   

    =      − Γ + −   

 
−  

 

 
−  

 









 

( )1

( 1)1

1
0

161 log .( )!
1 ( 1)

)
3 2

3( 1
t

j
t t

t t
j

jt
t j

αα
α

α
θ αα

θ
α

α

− +

=

+ − −

+ +
−

   − =      − Γ +





−  
 −    
  

□ 

3. Special Cases of the SBBD 
In this section, by setting 1, 2t =   in Equation (5), we obtain the pdfs of the sug-

gested length-biased Bilal distribution (LBBD) and area-biased Bilal distribution (ABBD), 
respectively: 

2

2
36( ; ) e e , ,0, 0

5

x x

LBBDf x x xx θ θθ θ
θ

− −


>

 
= − > 


 (11)

2
2 2

3
108( ; ) 0.

1
0,

9
,ABB

x x

Df x x x e e xθ θθ θ
θ

− − 
= >− > 

 
 (12)

For various distribution parameter values, the pdf plots of the LBBD and ABBD are 
shown in Figure 2. The pdfs of the recommended distributions are skewed to the right 
and become more flat as the values of 𝜃 increase. Furthermore, depending on the param-
eter values, the pdfs of the ABBD and LBBD can display a variety of behaviors. 

  
Figure 2. The pdf plots of the LBBD and ABBD when 1, 2,3, 4,5, 6, 7θ = . 

  

Figure 2. The pdf plots of the LBBD and ABBD when θ = 1, 2, 3, 4, 5, 6, 7.

The CDFs of the LBBD and ABBD, respectively, are expressed using the following:

FLBBD(x; θ) = 1− 9e−
2x
θ (θ + 2x)− 4e−

3x
θ (θ + 3x)

5θ
, (13)

FABBD(x; θ) = 1− 27
19 θ2 e−

2x
θ

(
θ2 + 2x2 + 2θx

)
+

4
19

e−
3x
θ

(
9x2

θ2 +
6x
θ

+ 2
)

. (14)

Some of the CDFs plots of the LBBD and ABBD when θ = 1, 2, 3, 4, 5, 6, 7 are presented
in Figure 3.
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3.1. Moments and Related Measure

The moments and related measures, coefficients of variation (Cv), skewness (Sk),
and kurtosis (Ku), the incomplete moments and moment of the residual lifetime, moment
generating function, reliability functions of the proposed distributions are all described in
this section in closed expressions. Also, the parameters estimation, Fisher’s information
and entropies, as well as the order statistics are presented.

The rth moments of the LBBD and ABBD by setting t = 1, 2 in Equation (7), respec-
tively, are obtained using the following:

E(Xr
LBBD) =

1
5

(
θ

6

)r(
3r+2 − 2r+2

)
Γ(r + 2) and E(Xr

ABBD) =
1

38

(
27
2r −

8
3r

)
θrΓ(r + 3),

for θ > 0 and r = 1, 2, . . ..
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An alternative formulation of a real-valued random variable’s probability distribution
is the moment-generating function (mgf). The mgf of the LBBD and ABBD, respectively,
are expressed using the following:

MXLBBD(w) = − 36(2θw− 5)

5(θ2w2 − 5θw + 6)2 and MXABBD(w) =
216
19

(
1

(θw− 3)3 −
1

(θw− 2)3

)
.

The Lorenz ([19]) and Benforroni [20] curves are used to measure inequality using
the incomplete moments of a probability distribution. The rth incomplete moments of the
LBBD and ABBD from Theorem (2) by setting t = 1, 2, respectively, are defined as follows:

E
(
Xr

IM−LBBD
)

=
h∫

0
xr fLBBD(x; θ)dx

= 1
5

(
θ
6

)r{
2r+2

[
Γ
(

r + 2, 3h
θ

)
− (r + 1)!

]
+ 3r+2

[
(r + 1)!− Γ

(
r + 2, 2h

θ

)]}
,

and

E
(
Xr

IM−ABBD
)

=
h∫

0
xr fABBD(x; θ)dx

= 4
19

(
θ
3

)r{( 3
2
)r+3

[
(r + 2)!− Γ

(
r + 3, 2h

θ

)]
+
[
Γ
(

r + 3, 3h
θ

)
− (r + 2)!

]}
.

The residual life is the time after a component lives up to time (t ≥ 0) until the time
of failure, which is determined by the conditional random variable X− t|X > t . Hence,
the rth moment of the residual lifetime (MRL) of the LBBD and ABBD, respectively, are
distinct:

E
(
Xr

MRL−LBBD
)

= 1
SLBBD(s;θ)

∞∫
s
(x− s)r fLBBD(x; θ)dx

= 1
SLBBD(s;θ)

{
θr−1Γ(r+1)

5(6r)
e−

3s
θ

[
3r+2es/θ(θ + θr + 2s)− 2r+2(θ + θr + 3s)

]}
,

E
(
Xr

MRL−ABBD
)

= 1
SABBD(s;θ)

∞∫
s
(x− s)r fABBD(x; θ)dx

= 1
SABBD(s;θ)

{
θr−2Γ(r+1)

19(3r)(2r+1)
e−

3s
θ

{
3r+3es/θ

[
θ2(r + 1)(r + 2) + 4θ(r + 1)s + 4s2]

−2r+3[θ2(r + 1)(r + 2) + 6θ(r + 1)s + 9s2] }}
.

The harmonic means of the LBBD and ABBD are defined as follows:

HLBBD =
5θ

6
and HABBD =

19 θ

15
.

The rth quartiles of the LBBD and ABBD, respectively, are the solutions for Qr in the
following equations:

e−
3Qr

θ

5θ

[
9eQr/θ(θ + 2Qr)− 4(θ + 3Qr)

]
=

r
4

,

and

e−
3Qr

θ

19θ2

[
27eQ/θ

(
θ2 + 2Q2

r + 2θQr

)
− 4
(

2θ2 + 9Q2
r + 6θQr

)]
=

r
4

, r = 1, 2, 3,

where Q1, Q2 and Q3 are respectively called the first, second and third quartiles.
The coefficient of skewness is used to determine the skewness of the distribution

and is expressed as Sk =
E(X3)−3µσ2−µ3

σ3 . For the LBBD and ABBD, correspondingly, the
coefficients of skewness are expressed as SkLBBD = 1.23386 and SkABBD = 0.514944.
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The top of the distribution’s flatness is measured by the coefficient of kurtosis, which

can be defined as Ku =
E(X4)−4µE(X3)+6E(X2)σ2+3E(X4)

σ4 . The LBBD and ABBD has the
coefficient of kurtosis KuLBBD = 5.35547 and KuABBD = 1.07703, respectively. The Cv is
defined as Cv = σ

µðand for the LBBD and ABBD, they are expressed as CvLBBD = 0.591959
and CvABBD = 4.79273, respectively.

Table 1 presents the values of the mean and standard deviation (SD) of the LBBD and
ABBD for different selections of θ. According to Table 1, as the value of θ rises, the mean
and standard deviation values of the LBBD and ABBD rise as well.

Table 1. The mean and standard deviation of the LBBD and ABBD for various values of θ.

θ µABBD σABBD µLBBD σLBBD

0.1 0.1711 0.0881 0.1267 0.0750
0.2 0.3421 0.1762 0.2533 0.1500
0.3 0.5132 0.2643 0.3800 0.2249
0.4 0.6842 0.3523 0.5067 0.2999
0.5 0.8553 0.4404 0.6333 0.3749
0.6 1.0263 0.5285 0.7600 0.4499
0.7 1.1974 0.6166 0.8867 0.5249
0.8 1.3684 0.7047 1.0133 0.5999
0.9 1.5395 0.7927 1.1400 0.6748
1 1.7105 0.8808 1.2667 0.7498

1.1 1.8816 0.9689 1.3933 0.8248
1.2 2.0526 1.0570 1.5200 0.8998
1.3 2.2237 1.1451 1.6467 0.9748
1.4 2.3947 1.2332 1.7733 1.0497
1.5 2.5658 1.3212 1.9000 1.1247
1.6 2.7368 1.4093 2.0267 1.1997
1.7 2.9079 1.4974 2.1533 1.2747
1.8 3.0790 1.5855 2.2800 1.3497
1.9 3.2500 1.6736 2.4067 1.4247
2 3.4211 1.7617 2.5333 1.4996

2.1 3.5921 1.8497 2.6600 1.5746
2.2 3.7632 1.9378 2.7867 1.6496
2.3 3.9342 2.0259 2.9133 1.7246
2.4 4.1053 2.1140 3.0400 1.7996
2.5 4.2763 2.2021 3.1667 1.8745

3.2. Reliability Functions

The survival function is frequently used to predict the probability that an event will
not occur after a specific amount of time or threshold in domains like survival analysis and
reliability engineering, among others. The survival function is defined as S(x) = 1− F(x),
and for the LBBD and ABBD, respectively, it is characterized as

SLBBD(x; θ) =
9ex/θ(θ + 2x)− 4(θ + 3x)

5θ
e−

3x
θ ,

and

SABBD(x; θ) =
27ex/θ

(
2x2 + 2xθ + θ2)− 4

(
9x2 + 6xθ + 2θ2)

19θ2 e−
3x
θ .

Figure 4 shows the survival functions plots of the LBBD and ABBD for θ = 0.1, 0.2, . . . , 0.7.
The plots reveal that the survival functions curves decreases and are skewed to the right.
The distances between each two curves depend on the parameters’ values.
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In survival analysis and reliability engineering, the hazard function is a basic idea.
It is utilized to simulate the instantaneous probability of an event (such as death, failure,
or the occurrence of a specific event) occurring at a given time, given that it has not yet
happened at that time. It is the ratio between the pdf and survival function of a random
variable X, H(x) = f (x)

1−F(x) . For the LBBD and ABBD, the hazard functions, respectively, are
expressed using

HLBBD(x; θ) =
36x
(

ex/θ − 1
)

9θex/θ(θ + 2x)− 4θ(θ + 3x)
,

and

HABBD(x; θ) =
108x2

(
ex/θ − 1

)
27θex/θ(θ2 + 2x2 + 2θx)− 4θ(2θ2 + 9x2 + 6θx)

.

Figure 5 presents the hazard functions of the LBBD and ABBD for some parameter
choices, and it is clear that the hazard functions curves are increasing with different ranges
depending on the parameter value.
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The reversed hazard rate (RH) function is distinct as the ratio between the life proba-
bility density to its distribution function as RH(x) = f (x)

F(x) . The RH functions for the LBBD
and ABBD, respectively, are defined as

RHLBBD(x; θ) =
36x
(

ex/θ − 1
)

θ
(

5θe
3x
θ − 9ex/θ(θ + 2x) + 4(θ + 3x)

) ,
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and

RHABBD(x; θ) =
108x2

(
ex/θ − 1

)
19θ3e

3x
θ − 27θex/θ(θ2 + 2x2 + 2θx) + 4θ(2θ2 + 9x2 + 6θx)

.

Figure 6 displays some plots of the reversed hazard functions of the LBBD and ABBD
for selected values of the parameters as θ = 0.1, 0.2, . . . , 0.7, where the reversed hazard
functions are decreasing for these parameter values.
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The odds function is obtained as the ratio between F(x) and S(x) as O(x) = F(x)
S(x) . The

LBBD and ABBD have the odds functions, respectively, defined by the following:

OLBBD(x; θ) =
5θe

3x
θ − 9ex/θ(θ + 2x) + 4(θ + 3x)
9ex/θ(θ + 2x)− 4(θ + 3x)

,

OABBD(x; θ) =
4
(
2θ2 + 9x2 + 6θx

)
− 27ex/θ

(
θ2 + 2x2 + 2θx

)
+ 19θ2e

3x
θ

27ex/θ(θ2 + 2x2 + 2θx)− 4(2θ2 + 9x2 + 6θx)
.

Some plots of the odds functions of the LBBD and ABBD for θ = 0.1, 0.2, . . . , 0.7 are
presented in Figure 7, which indicate that the curves are increasing for all parameter values.
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The cumulative hazard (CH) function of a random variable X from a univariate
continuous distribution is defined as CH(x) = −ln(1− F(x)). The CH for the LBBD and
ABBD, respectively, are expressed as

CHLBBD(x; θ) = −ln

(
9ex/θ(θ + 2x)− 4(θ + 3x)

5θ
e−

3x
θ

)
,
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and

CHABBD(x; θ) = −ln

(
27ex/θ

(
2x2 + 2xθ + θ2)− 4

(
9x2 + 6xθ + 2θ2)

19θ2 e−
3x
θ

)
.

Figure 8 shows some plots of the LBBD and ABBD cumulative hazard functions
at various values of θ = 0.1, 0.2, . . . , 0.7. It is obvious that the odds function of both
distributions is increasing and its values are larger for small values of θ.
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3.3. Parameters Estimation

The method of moments (MOMs) and maximum likelihood technique are used in this
section to estimate the LBBD and ABBD parameters. Let X1, X2, . . . , Xn be a random sample
of size n selected from a pdf f (x) and CDF F(x). The method of moments estimators of

the distributions parameter are θ̃LBBD = 15
19 X and θ̃ABBD = 38

65 X, where X =
n
∑

i=1

xi
n is the

sample mean.
To find the maximum likelihood estimators of the distribution parameter, let x1, x2, . . . , xn

be the sample observations of X1, X2, . . . , Xn from the LBBD and ABBD. The log-likelihood
functions are, respectively, obtained using the following:

ln (L)LBBD = n log
(

36
5

)
+ n log

1
θ2 − 2

n

∑
i=1

xi
θ
+

n

∑
i=1

log xi +
n

∑
i=1

log
(

1− e−
xi
θ

)
,

ln (L)ABBD = n log
(

108
19

)
+ n log

1
θ3 − 2

n

∑
i=1

xi
θ
+

n

∑
i=1

log x2
i +

n

∑
i=1

log
(

1− e−
xi
θ

)
.

The partial derivatives of these equations with respect to the parameter θ are obtained
using the following:

∂ ln (L)LBBD
∂θ

=
n

∑
i=1

2xi
θ2 −

n

∑
i=1

xie−
xi
θ

θ2
(

1− e−
xi
θ

) − 2n
θ

,
∂ln(L)ABBD

∂θ
=

n

∑
i=1

2xi
θ2 −

n

∑
i=1

xie−
xi
θ

θ2
(

1− e−
xi
θ

) − 3n
θ

.

The exact solution of these nonlinear equations is not easy, so one may maximize them
by using some optimization approaches as the Newton–Raphson method. Table 2 provides
some values of the MLE θ̂ABBD and θ̂LBBD, and the corresponding standard errors (SE) for
various distributions parameter with sample sizes n = 40, 80, 120, 160, 200, 240, and 500.
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Table 2. The MLE θ̂ABBD and θ̂LBBD with SE for selected values of θ and n.

n θ θ̂ABBD SE
(
θ̂ABBD

)
θ̂LBBD SE

(
θ̂LBBD

)
2 2.0002 0.1628 2.0003 0.1871
3 3.0003 0.2442 3.0005 0.2807

40 5 5.0005 0.4069 5.0008 0.4678
7 7.0007 0.5697 7.0011 0.6549
10 10.0010 0.8141 10.0016 0.9356

2 2.0023 0.1152 2.0027 0.1325
3 3.0034 0.1728 3.0040 0.1987

80 5 5.0057 0.2881 5.0066 0.3312
7 7.0080 0.4033 7.0093 0.4637
10 10.0114 0.5762 10.0133 0.6624

2 2.0010 0.0940 2.0011 0.1081
3 3.0014 0.1410 3.0017 0.1621

120 5 5.0024 0.2350 5.0029 0.2702
7 7.0033 0.3291 7.0040 0.3783
10 10.0048 0.4700 10.0057 0.5405

2 2.0004 0.0814 2.0005 0.0936
3 3.0006 0.1221 3.0008 0.1404

160 5 5.0010 0.2035 5.0013 0.2339
7 7.0014 0.2849 7.0018 0.3275
10 10.0020 0.4070 10.0026 0.4680

2 1.9996 0.0728 1.9997 0.0837
3 2.9995 0.1092 2.9995 0.1255

200 5 4.9991 0.1819 4.9991 0.2092
7 6.9988 0.2547 6.9988 0.2928
10 9.9982 0.3640 9.9983 0.4183

2 1.9997 0.0664 1.9997 0.0764
3 2.9995 0.0997 2.9995 0.1146

240 5 4.9992 0.1661 4.9992 0.1909
7 6.9989 0.2325 6.9989 0.2673
10 9.9984 0.3322 9.9985 0.3819

2 1.9995 0.0460 1.9994 0.0529
3 2.9992 0.0690 2.9992 0.0794

500 5 4.9987 0.1151 4.9986 0.1323
7 6.9982 0.1611 6.9980 0.1852
10 9.9974 0.2301 9.9972 0.2645

Table 2 demonstrates that the standard errors values for both MLE estimators θ̂ABBD
and θ̂LBBD, which shows that distributions parameters are decreasing for larger sample
sizes for fixed parameter values.

3.4. Fisher’s Information and Entropies

This subsection introduces the Fisher’s information (FI) as well as the Rényi entropy
of the LBBD and ABBD.

Theorem 5. The Fisher’s information of ABBD and LBBD, respectively, are as follows:

FIABBD(θ) =
3.77457

θ2 and FILBBD(θ) =
2.85636

θ2 .
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Proof. Take the log of the ABBD pdf as

log( fLBBD(x; θ)) = log
(

36
5θ2

)
+ log(x) + log

(
1− e−

x
θ

)
− 2x

θ
.

The first and second derivatives of log( fLBBD(x; θ)) with respect to θ respectively are
as follows:

∂

∂θ
log( fLBBD(x; θ)) =

x
θ2

(
1

1− ex/θ
+ 2
)
− 2

θ
,

∂2

∂θ2 log( fLBBD(x; θ)) =
2
θ3

(
θ + x

(
1

ex/θ − 1
− 2
))
− x2ex/θ

θ4
(
ex/θ − 1

)2 .

Hence,

FILBBD(θ) = −E
(

∂2

∂θ2 log[ fLBBD(x; θ)]
)

= − 36
5θ5

∞∫
0

[
2x
(

θ + x
(

1
ex/θ−1

− 2
))
− x3ex/θ

θ(ex/θ−1)
2

](
1− e−

x
θ

)
e−

2x
θ dx

= − 2195−24π4

50θ2 = 2.85636
θ2 .

Similarly,
FIABBD(θ) = −E

(
∂2

∂θ2 log[ fABBD(x; θ)]
)

= − 24(109−108Zeta[5])
19θ2 = 3.77457

θ2 .

�

Some values of the Fisher’s information for both of LBBD and ABBD are presented in
Table 3 for selected values of the parameter θ.

Table 3. Fisher’s information values of the LBBD and ABBD for some values of θ.

θ FILBBD(θ) FIABBD(θ) θ FILBBD(θ) FIABBD(θ)

1 3.77457 2.85636 12 0.02621 0.01984
2 0.94364 0.71409 13 0.02234 0.01690
3 0.41940 0.31737 14 0.01926 0.01457
4 0.23591 0.17852 15 0.01678 0.01270
5 0.15098 0.11425 16 0.01474 0.01116
6 0.10485 0.07934 17 0.01306 0.00988
7 0.07703 0.05829 18 0.01165 0.00882
8 0.05898 0.04463 19 0.01046 0.00791
9 0.04660 0.03526 20 0.00944 0.00714
10 0.03775 0.02856 21 0.00856 0.00648
11 0.03120 0.02361 22 0.00780 0.00590

Table 3 reveals that the values decrease as the distribution’s parameter values rise, and
they eventually approach zero for high parameter values.

According to information theory, a random variable’s entropy measures the average
amount of uncertainty, information, or surprise that could result from its potential outcomes.
From Equation (10), the Rényi entropies of the LBBD and ABBD, respectively, are obtained
using the following:

Hα(XLBBD) =
1

1− α
log

[(
36
5θ2

)α α

∑
j=0

α!(−1)α+j
(

α
j

) (
3α− j

θ

)−(α+1)
]

,
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Hα(XABBD) =
1

1− α
log

[(
108
19θ3

)α α

∑
j=0

(2α)!(−1)α+j
(

α
j

)(
3α− j

θ

)−(2α+1)
]

.

Table 4 presents the values of the suggested Rényi entropies of the distributions. It is
evident that when the values of α for θ = 3.8 increase, the Rényi entropies values decrease.
Also, for fixed α, the Rényi entropies values of θ = 3 are less than their counterparts when
θ = 8.

Table 4. Hα(XABBD) values with θ = 3.8 for some values of α.

θ=3 θ=8

α LBBD ABBD LBBD ABBD

2 1.91705 2.1183 2.89788 3.09913
3 1.83624 2.03994 2.81706 3.02077
4 1.78815 1.99309 2.76898 2.97392
5 1.75559 1.96127 2.73642 2.94210
6 1.73178 1.93796 2.71261 2.91879
7 1.71348 1.92001 2.69431 2.90083
8 1.69888 1.90568 2.67971 2.88651
9 1.68693 1.89392 2.66776 2.87475
10 1.67692 1.88408 2.65775 2.86491
11 1.66840 1.87570 2.64923 2.85653
12 1.66104 1.86845 2.64187 2.84928
13 1.65462 1.86212 2.63545 2.84295
14 1.64895 1.85654 2.62978 2.83737
15 1.64390 1.85156 2.62473 2.83239
16 1.63938 1.84710 2.62021 2.82793
17 1.63530 1.84308 2.61613 2.82390
18 1.63160 1.83942 2.61243 2.82025
19 1.62822 1.83608 2.60905 2.81691
20 1.62512 1.83302 2.60595 2.81385
21 1.62227 1.83021 2.60310 2.81104

3.5. Order Statistics

In statistical theory, order statistics are essential, especially in the idea of extreme value.
Consider a random sample X1, X2, . . . , Xm of size m selected from f (x) with F(x). Let
X(1:m), X(2:m), . . . , X(m:m) be the corresponding order statistics of the sample. The jth order
statistics pdf is defined as follows:

f(j:m)(x) =
m!

(j− 1)!(m− j)!
× [F(x)]j−1[1− F(x)]m−j f (x), forj = 1, 2, . . . , m. (15)

For simplicity, we use [1− F(x)]m−j =
∞
∑

a=0

(
m− j

a

)
(−1)a[F(x)]a. Now, Equation (15)

will be

f(j:m)(x) =
m!

(j− 1)!(m− j)!
f (x)

∞

∑
a=0

(
m− j

a

)
(−1)a[F(x)]a+j−1.

Therefore, the pdf for the LBBD and ABBD jth order statistics, respectively, are obtained
using

fLBBD(j:m)(x; θ) = m!
(j−1)!(m−j)!

36
5 θ2 x

(
1− e−

x
θ

)
e−

2x
θ

∞
∑

a=0

(
m− j

a

)
(−1)a

×
[
1− 9

5θ e−
2x
θ (2x + θ)− 4e−

3x
θ (3x + θ)

]a+j−1
,

(16)
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and

fABBD(j:m)(x; θ) = 108 m!
19 θ3(j−1)!(m−j)! x2e−

2x
θ

(
1− e−

x
θ

) ∞
∑

a=0

(
m− j

a

)
(−1)a

×
[
1− 27

19 θ2 e−
2x
θ
(
θ2 + 2x2 + 2θx

)
+ 4

19 e−
3x
θ

(
9x2

θ2 + 6x
θ + 2

)]a+j−1
.

(17)

For j = 1, m in Equations (16) and (17), for both LBBD and ABBD, respectively, we can
obtain the pdfs of the minimum (min) and maximum (max) order statistics. Figure 9 shows
three-dimensional plots of the pdf of the min and max order statistics of the ABBD and
LBBD when m = 7.
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4. Applications to Real Data

In this section, we demonstrate the applicability of the proposed ABBD and LBBD
distributions using two real data sets.

The first data consists of thirty consecutive measurements of March precipitation (in
inches) throughout a 30-year period in Minneapolis. The data set values are 0.32, 0.47, 0.52,
0.59, 0.77, 0.81, 0.81, 0.9, 0.96, 1.18, 1.20, 1.20, 1.31, 1.35, 1.43, 1.51, 1.62, 1.74, 1.87, 1.89, 1.95,
2.05, 2.10, 2.20, 2.48, 2.81, 3.0, 3.09, 3.37, and 4.75. The same data are considered by [21,22].

The second one consists the survival times (in months) of 20 acute myeloid leukemia
patients discussed by [23], and the observations are 2.226, 2.113, 3.631, 2.473, 2.720, 2.050,
2.061, 3.915, 0.871, 1.548, 2.746, 1.972, 2.265, 1.200, 2.967, 2.808, 1.079, 2.353, 0.726, and 1.958.

The descriptive statistics for both data sets are presented in Table 5, and it is clear
that both data sets are skewed to the right. The density, histogram, box and total time
on test (TTT) plots for both data sets are shown in Figure 10. The P-P plots of the fitted
distributions for the both data sets are displayed in Figure 11. The estimated pdfs of the
suggested and competitive distributions are shown in Figure 12.



Symmetry 2023, 15, 1578 16 of 19

Table 5. Descriptive statistics of the data sets.

Data n Mean SD Median Min Max Range Skew Kurtosis SE

Set 1 30 1.68 1 1.47 0.32 4.75 4.43 1.03 0.93 0.18
Set 2 20 2.18 0.84 2.17 0.73 3.92 3.19 0.11 −0.57 0.19
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Since the proposed distributions in this study have just one parameter, we compared
them to certain existing distributions that likewise have just one parameter for a fair
comparison.

In order to explain how adaptable LBBD and ABBD are, we are going to evaluate them
in contrast to a variety of well-recognized models, including Rani ([24]), Exponential, Rama
([25]) and Bilal distributions with pdfs, which are respectively expressed as follows:

o f (x; θ) = θ5

θ5+24

(
θ + x4)e−θx, x > 0, θ > 0,

o f (x; θ) = θe−θx, x ≥ 0, θ > 0,

o f (x; θ) = θ4

θ3+6

(
1 + x3)e−θx, x > 0, θ > 0,

o f (x; θ) = 6
θ

(
1− e−

x
θ

)
e−

2x
θ , x ≥ 0, θ > 0.

We used the maximum likelihood method to estimate these distributions parameters
and fit them to the data sets. To compare the results, we used the negative maximized
log-likelihood values (l), the Hannan–Quinn information criterion (HQIC), the Bayesian
information criterion (BIC), the Akaike information criterion (AIC), and the Consistent
Akaike information criterion (CAIC) defined as AIC = −2l+ 2κ, CAIC = −2l+ 2κ n

n−κ−1 ,
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BIC = −2l+ κ ln(n), HQIC = 2κ ln(ln(n))− 2l, where n is the sample size and κ is the
number of parameters. The results are displayed in Table 6 and the best model is indicated
by lower AIC, BIC, CAIC, HQIC values for goodness of statistics. For the first data set, the
LBBD fits the data better than other distributions and similarly, the ABBD fits the second
data set due to the lowest values of these measures. Therefore, both suggested models are
considered as best fitted models as compared to the competitors considered in this study.
These results are supported by Figures 10–12 where it is seen that the proposed models fit
both data sets well.

Table 6. The AIC, CAIC, BIC, HQIC, and K-S values for the data sets.

Data Measures
Model

ABBD LBBD Rama Exp Rani Bilal

Data Set 1

AIC 79.361 78.183 90.880 92.949 96.997 80.734
CAIC 79.504 78.326 91.023 93.092 97.140 80.877
BIC 80.762 79.584 92.281 94.350 98.398 82.136

HQIC 79.810 78.632 91.328 93.397 97.445 81.183
Erro 0.092 0.143 0.134 0.109 0.111 0.265

MML 38.681 38.091 44.440 45.474 47.499 39.367
MLE 0.976 1.322 1.634 0.597 1.833 2.019

Data Set 2

AIC 53.648 56.329 64.411 73.248 66.567 61.55
CAIC 53.870 56.552 64.633 73.470 66.789 61.774
BIC 54.644 57.325 65.407 74.244 67.562 62.548

HQIC 53.842 56.524 64.605 73.443 66.761 61.746
Erro 0.148 0.229 0.140 0.102 0.122 0.4247

MML 25.824 27.165 31.206 35.624 32.283 29.776
MLE 1.283 1.737 1.403 0.458 1.630 2.645

5. Conclusions

In this study, size-biased Bilal distribution is suggested as a modification of the base
Bilal distribution. Two special cases of the SBBD are derived, LBBD and ABBD. The
survival function, hazard function, reversed hazard rate function, odds function, and
cumulative hazard function of the LBBD and ABBD are obtained. Further statistical
features include moments, incomplete moments, moment generating function, and the
rth moment. Fisher’s information and entropies, order statistics and harmonic mean are
presented. Also, the method of moments and the maximum likelihood estimation methods
are used for estimating the unknown distributions parameters. Finally, using two real data
sets, the suggested model’s applicability is demonstrated. According to the findings in this
study, the ABBD and LBBD models may be deemed as competitive models with superior
capacity than the other models studied in this paper. As expected, the new distributions
are probable to garner interest from academics in other fields. In the future, the ranked set
sampling techniques can be used to estimate the distribution parameters (see [26]).
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