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Abstract: Images captured during rainy days present the challenge of maintaining a symmetrical
balance between foreground elements (like rain streaks) and the background scenery. The interplay
between these rain-obscured images is reminiscent of the principle of symmetry, where one element,
the rain streak, overshadows or disrupts the visual quality of the entire image. The challenge lies not
just in eradicating the rain streaks but in ensuring the background is symmetrically restored to its
original clarity. Recently, numerous deraining algorithms that employ deep learning techniques have
been proposed, demonstrating promising results. Yet, achieving a perfect symmetrical balance by
effectively removing rain streaks from a diverse set of images, while also symmetrically restoring the
background details, is a monumental task. To address this issue, we introduce an image-deraining
algorithm that leverages multi-scale dilated residual recurrent networks. The algorithm begins by uti-
lizing convolutional activation layers to symmetrically process both the foreground and background
features. Then, to ensure the symmetrical dissemination of the characteristics of rain streaks and
the background, it employs long short-term memory networks in conjunction with gated recurrent
units across various stages. The algorithm then incorporates dilated residual blocks (DRB), composed
of dilated convolutions with three distinct dilation factors. This integration expands the receptive
field, facilitating the extraction of deep, multi-scale features of both the rain streaks and background
information. Furthermore, considering the complex and diverse nature of rain streaks, a channel
attention (CA) mechanism is incorporated to capture richer image features and enhance the model’s
performance. Ultimately, convolutional layers are employed to fuse the image features, resulting in a
derained image. An evaluation encompassing seven benchmark datasets, assessed using five quality
metrics against various conventional and modern algorithms, confirms the robustness and flexibility
of our approach.

Keywords: image deraining; image restoration; deep learning; computer vision; image processing

1. Introduction

Rainy weather is a prevalent natural phenomenon. During such conditions, outdoor
images often suffer from quality degradation due to the refraction of rain and obscuring
of background objects [1]. This results in image blur, deformity, and loss of detail. These
issues have a significant impact on subsequent image processing and analysis [2], which
are vital to various computer vision systems [3], such as autonomous driving [4,5] and road
surveillance [6]. As a result, the development of image-deraining algorithms has gained
substantial attention from researchers globally. In recent years, single image-deraining
algorithms [7] have predominantly been classified into two categories: model-driven and
data-driven. The conventional image-deraining techniques are primarily model-driven,
influenced by image decomposition, sparse coding, and priors based on Gaussian mixed
models. However, since traditional methods establish models for specific rain streaks,
they struggle to remove complex and diverse rain streaks. Additionally, with the advent
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of convolutional neural networks (CNNs), generative adversarial networks (GAN), and
semi/unsupervised learning techniques, image-deraining algorithms have shifted toward
data-driven strategies, making extensive use of deep learning algorithms. In typical model-
driven deraining algorithms, Li et al. [8] used bilateral filters to decompose a rainy image
into high-frequency and low-frequency images. Afterward, they employed dictionary
learning and sparse coding to remove rain streaks from the high-frequency image and,
finally, combined it with low-frequency information to obtain the derained image. However,
this method heavily relies on the preprocessing of bilateral filters, resulting in blurred
background details. Jiang et al. [9] used a Gaussian mixture model (GMM) to model the
rain layer and the background layer by calculating the distribution of the rain streaks of
different angles and shapes, thus achieving deraining. However, this algorithm can only
effectively remove rain streaks in light rain and struggles with heavy or sudden rain. In data-
driven deraining algorithms, Fu et al. [10] proposed DerainNet, based on CNNs, to extract
features and achieve deraining. Furthermore, they referred to the residual network [11]
to further propose the deep detail network to reduce the mapping range from the input
to output, making the learning process easier. Li et al. [12] used a recalibration network
to progressively remove rain streaks at different stages and obtain a clean background
image. Zhang et al. [13] applied the GAN [14,15] to image deraining, and used an ensemble
residual perceptual classifier to adapt to the rainwater density information. Although
the performance of deep learning algorithms has significantly improved compared to
traditional algorithms, there are still some issues, such as the size and direction of the rain
streaks being ignored, resulting in residual rain; during the rain removal process, due to
the inability to distinguish between rain streaks and background textures, the background
details are lost.

To address the aforementioned issues, this paper proposes an image-deraining algo-
rithm based on multi-scale dilated residual recurrent networks. The algorithm employs
a dilated residual network (DRN) to extract the multi-scale features and utilizes dilated
convolution (DC) with different dilation rates to accomplish multi-scale rain streak removal.
In the adjacent stages of rain streak removal, LSTM networks and gated recurrent unit
(GRU) networks are used to, respectively, convey the mapping relationships of the rain
streaks and background, ensuring the extraction of rain removal and the background detail
information, progressively achieving deraining and obtaining rain-free images.
Contributions:

• We developed an image-deraining algorithm that harnesses the power of multi-scale
dilated residual recurrent networks. This sophisticated tool is capable of not only
effectively eliminating rain streaks from images but is also adept at restoring the
intricate details of the background.

• We deployed convolutional activation layers (CAL) at the initial stage of the algorithm
to glean the elementary features. Subsequently, we employed a combination of long
short-term memory networks and gated recurrent units, which enabled an effective
propagation of both the rain streaks’ characteristics and background details across
different stages of the process.

• We incorporated DRB, composed of DC with three distinct dilation factors, to expand
the receptive field and facilitate the extraction of the deep, multi-scale features of
both the rain streaks and background information. Additionally, we added a CA
mechanism to capture the richer image features and enhance the model’s performance
given the complex and diverse nature of rain streaks.

• We performed a comprehensive evaluation of the approach using five benchmark
datasets, assessed using five quality metrics against eighteen conventional and modern
algorithms, verifying the robustness and flexibility of the proposed method.

2. Related Work

Traditional deraining methods regard rainy images as a combination of background
and rain streaks. Kang et al. [16] decomposed images into high- and low-frequency com-
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ponents and, through dictionary learning and sparse coding, further learned rain streak
information. Although it effectively removed the light rain streaks, it led to background
blurring. Chen et al. [17] introduced exclusivity into sparse coding, separating the back-
ground layer from the nonlinear combination of the rain and background layers, thus
achieving deraining. While this method retained a clean background, the rain residuals
remained. Li et al. [12] treated deraining as an image optimization process. By construct-
ing iterative layers, the rain streaks were progressively removed from the background
layer. Using prior information from a specific rain layer, the background texture details
were removed from the rain streak layer. However, due to the diversity in the direction
of the rain streaks, this method could not remove varied rain streaks and suffered from
rain residuals. Li et al. [16] utilized a GMM to simulate the rain and background layers
and, by constraining information, dynamically learned different rain streaks to achieve
deraining. Kim et al. [18] constructed a robust learning-based framework that unfolds in
three critical steps: first, image decomposition is accomplished using guided filters; next,
a frequency-based haze and rain removal network is applied; and, finally, the image is
restored based on an atmospheric scattering model using the predicted transmission maps
and the rain-removed images.

In recent years, many researchers have utilized neural networks for image deraining.
Fu et al. [19] proposed a deep detail network, which uses guided filters to decompose the
image into detail and base layers, and inputs the detail layer into the CNN for deraining.
Yang et al. [20] proposed a network based on DC for the joint detection and removal
of the rain streaks, which detects the location of the rain streaks and uses a recursive
framework for deraining, but suffers from the loss of the background details. Yu et al. [21]
introduced a PHMNet that is designed for single image deraining, built upon a two-branch,
coarse-to-fine framework. Notably, they have created a hybrid-modulated module within
a two-branch structure, specifically designed to integrate and modulate the features of
the rain-free layers and rain streaks. Li et al. [22] proposed a squeeze-and-excitation
recursive network that takes into account the size of the rain streaks and removes them
in stages through squeeze-and-excitation modules. Jiang et al. [23] introduced a multi-
scale progressive fusion network that removes multi-scale rain streaks through a pyramid
structure but results in blurry image backgrounds. Tang et al. [24] skillfully utilized
the dilation technique, enabling the effective consolidation of contextual information
while preserving spatial resolution. Subsequently, they harnessed a gated subnetwork to
amalgamate the intermediate features across various levels. To enhance the learning and
application of the rain streaks, they embedded an LSTM module to create a link between the
different recurrences, facilitating the transfer of knowledge about rain streaks from earlier
stages to subsequent ones. Chen et al. [25] proposed an end-to-end multi-scale hourglass
fusion network that accurately captures rain streak features through multi-scale extraction,
hierarchical distillation, and information aggregation. Huang et al. [26] put forward a
rain removal method underpinned by directional gradient priors, aiming to preserve
the original rain image’s structural information to the maximum extent while effectively
eliminating rain streaks. Initially, to address the issue of the residual rain streaks, they
constructed two directional gradient regularization terms upon the foundation of the sparse
convolutional coding model, tasked with constraining the directional information of the
rain streaks. Subsequently, they designed a multi-scale dictionary for convolutional sparse
coding, which was incorporated into the rain layer coding within the directional gradient
prior terms, to detect rain streaks of varying widths. Zhang et al. [14] proposed a deraining
network based on generative adversarial networks. Son et al. [27] proposed a two-stage
network. The first stage creates low-resolution facial images, effectively removing heavy
rain to enhance visibility. This is achieved through an interpretable image degradation
network, specifically designed to predict physical parameters like rain streaks, transmission
maps, and atmospheric light. For the second stage, the goal is to reconstruct high-resolution
facial images from the low-resolution outputs generated in the first stage. To facilitate
this, they utilize facial component-guided adversarial learning, which notably amplifies
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the expression of the facial structures, but results in darker images. To address this issue,
Cao et al. [28] proposed a gated multi-scale feature fusion two-stage density-aware network,
designing three discriminators targeting color, gradients, and gray levels for the targeted
removal of the artifacts. Wei et al. [29] proposed a deraining network, which initially
incorporates an attention mechanism into the generator. This directs the rain-removal
process to focus primarily on areas near the rain line, which, in turn, helps preserve
the background details. Secondly, a multi-scale discriminator is utilized, discriminating
the produced image across different scales to enhance its quality. Lastly, they introduce
perceptual-consistency loss and internal feature perceptual loss to diminish the artificial
features in the generated image, thereby making it more visually convincing and realistic.

3. Proposed Method

This paper has outlined a multi-scale dilated residual recurrent network for image
deraining. Our methodology involves classifying rain into distinct layers and progressively
eliminating them through a cyclical process. We use LSTM and GRU networks to transmit
the relationships among the pixel points across different stages of the process and employ
a DRN to extract the features at multiple scales. The LSTM network is utilized to maintain
a continuity of rain streak information across various stages, facilitating the removal of the
different types of rain streaks. It takes inputs from the input convolutional layer, the rain
streak layer from the preceding stage, and the background layer from the previous stage.
This network is characterized by five gates, including input, forget, and output gates, which
modulate the flow of information. The GRU network is used to capture the dependencies
over varying time scales, which is crucial in extracting the background information over
successive stages. At each stage, it ingests the shallow features from the input convolutional
layer, outputs from the background recurrent layer of the preceding stage, and outputs
from the rain streak recurrent layer of the current stage. It has two primary gates, a reset
and an update gate, controlling the amalgamation of previous and current information. The
DRN plays a significant role in identifying and eliminating rain streaks across various scales
due to its capacity to capture multi-scale contextual information. We have used dilated
residual blocks, each comprising three activation layers with varied dilation rates, to extract
multi-scale features effectively. Moreover, CA is incorporated into the LSTM network to
bolster the extraction of rain streak information. This mechanism prioritizes certain aspects
of the input data while reducing the emphasis on others, aiding the model to concentrate
on the salient features. Finally, we employ a loss function to assess the performance of the
algorithm. We use the negative structural similarity (SSIM) as the network’s loss function,
which takes into account luminance, contrast, and structural metrics that align more closely
with human visual perception.

We believe that our model takes a comprehensive approach to image deraining by
maintaining the integrity of the background details while effectively removing the rain
streaks.

3.1. Network Structure

Owing to the variety in both the size and direction of rain streaks, this paper classifies
rain into distinct layers and employs a cyclical approach to progressively eliminate rain
streaks of varying sizes and orientations. Since LSTM and GRU networks are capable of
transmitting the relationships among the pixel points across different stages, and DC is
adept at extracting features at multiple scales, this paper introduces an image-deraining al-
gorithm predicated on a multi-scale dilated residual network. The comprehensive structure
is illustrated in Figure 1.
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Figure 1. Overall structure of the multi-scale dilated residual recurrent network.

At every stage of the process, a convolutional activation layer is initially utilized to
extract the rudimentary features of the rain streaks. To make use of the valuable data from
the preceding stage, an LSTM network is employed to establish the connections between the
distant pixel points, thereby guiding the subsequent stage of rain removal and facilitating
the extraction of the multi-directional rain streak features. Following this, a dilated residual
network is harnessed to uncover the deep multi-scale features. This network is composed
of three stacked DRB, each featuring three dilation CAL with varied dilation rates. This
structure ensures the comprehensive extraction of the rain streaks across multiple scales.
Building on this foundation, CA is invoked to augment the extraction of the rain streak
information. Ultimately, a convolutional layer is deployed to merge the rain streak features.
For the retrieval of the background texture information, a similar approach is adopted as
with the rain streak feature extraction. The background layer employs a GRU network to
relay information from one stage to the adjacent one. Additionally, given the richer texture
information within the background layer, its dilated residual network incorporates five
DRB. Within each stage, the LSTM and GRU networks manage the interaction between
the rain streaks and the background. Collectively, the framework leverages a multi-scale
dilated residual recurrent network to achieve deraining while maintaining the integrity of
the background details. The fundamental structure of each stage is depicted in Figure 2.

Figure 2. Architecture of the multi-scale dilated residual recurrent network at stage t.
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3.2. Derain Model

In the field of image deraining, the prevailing models generally conceptualize a rain
image as an integration of two distinct constituents: the rain streaks and the background.
The rain streaks are delineated by n tiers of data, denoted as (xr), while the background
is depicted by an equivalent n tiers of data, represented as (xb). The distributional char-
acteristics inherent to the rain are employed to ascertain the manner in which these two
components are amalgamated. Predicated on the assumption that the rain streaks at a
uniform depth exhibit a degree of homogeneity in terms of size and direction, it becomes
feasible to aggregate them into singular layers. The specific model is delineated as follows:

y =
n

∑
t=1

xt
r +

n

∑
t=1

xt
b (1)

In Equation (1), y represents the observed rain image that we aim to analyze. This ob-
served rain image is composed of two main elements: the rain streaks and the background.
The first term on the right side of the equation, ∑n

t=1 xt
r, represents the rain streaks in the

image. The rain streaks are modeled as tiers of data, denoted by (xr)t, where t ranges from
1 to ‘n’. This is based on the assumption that the rain streaks at a uniform depth exhibit
a degree of homogeneity in terms of size and direction and, thus, can be aggregated into
singular layers or tiers. The second term, ∑n

t=1 xt
b, represents the background of the image,

which is also broken down into n tiers of data, represented as (xb)
t. The overall aim of our

model, therefore, is to decompose the observed rain image y into these two components:
the rain streaks and the background. This decomposition is the first step in image deraining,
a process that involves removing the rain streaks from the image to recover a clean and
clear background.

3.3. LSTM

The LSTM network, a type of recurrent neural network, is particularly well-suited
for adjusting rainy images to its ability to remember and propagate information over long
sequences, which is crucial in tracking and removing rain streaks over successive stages of
an image. At the tth stage, the LSTM network is fed with inputs from three sources: the
input convolutional layer

(
ut

r
)
, the rain streak layer from the preceding t− 1th stage

(
ht−1

r
)
,

and the background layer from the previous stage
(

hι−1

b

)
. This configuration enables the

LSTM network to maintain a continuity of rain streak information across various stages,
thereby facilitating the removal of the different types of rain streaks. The LSTM network is
characterized by five gates: an input gate

(
hι−1

b

)
, a forget gate

(
f rt), a gating mechanism(

grt), a cell unit
(
ct

r
)
, and an output gate

(
ot

r
)
. The input gate modulates the volume of

information that is permitted to enter the cell unit, the forget gate determines the extent of
information retention from the preceding stage, and the output gate regulates the quantity
of information that is discharged from the cell unit. The mathematical representation of
these gates is as follows:

it
r = σ

(
W riu ∗ ut−1

r + W rihb
∗ ht−1

b + W rihr ∗ ht−1
r + bri

)
(2)

f t
r = σ

(
W r f u ∗ ut−1

r + W r f hb
∗ ht−1

b + W r f hr ∗ ht−1
r + br f

)
(3)

ot
r = σ

(
W rou ∗ ut−1

r + W rohb
∗ ht−1

b + W rohr ∗ ht−1
r + bro

)
(4)

gt
r = tanh

(
W rgu ∗ ut−1

r + W rghb
∗ ht−1

b + W rghr ∗ ht−1
r + brg

)
(5)

ct
r = f t

r � ct−1
r + it

r � gt
r (6)
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ht
r = ot

r � tanh
(
ct

r
)

(7)

In the aforementioned equations, the symbol ∗ denotes 2D convolution, while σ
signifies the sigmoid function. The elements W and b correspond to the convolution
matrix and the bias vector, respectively. The operator � is indicative of element-wise
multiplication. The term ht

r refers to the output emanating from the rain streak recurrent
layer at the tth stage.

3.4. Gated Recurrent Unit

The GRU network, a variant of the recurrent neural network, is particularly adept at
this task due to its capacity to capture dependencies over varying time scales, which is
crucial in extracting background information over successive stages of an image. A notable
advantage of the GRU network is its reduced parameter count compared to the LSTM
network, rendering it a more computationally efficient choice for transmitting information
in the background layer, thereby mitigating computational overheads.

At the tth stage, the GRU network ingests the shallow features from the input convo-
lutional layer

(
ut

r
)
, outputs from the background recurrent layer of the preceding (t− 1)th

stage
(
ht−1

r
)
, and outputs from the rain streak recurrent layer of the current tth stage (ht

r).
This methodology enables the effective extraction of background information across a
multitude of stages. The architecture of the GRU network includes a reset gate

(
rbt) and

an update gate
(
zbt). The reset gate determines the degree to which information from

the previous stage amalgamates with the input information prior to entering the cell unit.
Conversely, the update gate controls the proportion of the hidden state information retained
during the current stage. The mathematical representation of these gates is as follows:

rt
b = σ

(
Wbru ∗ ut−1

b + Wbrhb
∗ ht−1

b + Wbrhr ∗ ht−1
r + bbr

)
(8)

zt
b = σ

(
Wbzu ∗ ut−1

b + Wbzhb
∗ ht−1

b + Wbzhr ∗ ht−1
r + bbz

)
(9)

ĥ
t
b = tanh

(
Wbĥu ∗ ut

b +
(
Wbĥr ∗ rt

b
)
� ht−1

b + bbĥ

)
(10)

ht
b =

(
1− zt

b
)
� ht−1

b + zt
b � ĥ

t
b (11)

In the above equation, ĥ
t
b represents the output of the hidden layer; ht

b represents the
output of the background recurrent layer at the tth stage.

In our ablation study, we evaluated the performance of a dual GRU that utilized
residual mapping. The results demonstrated a quantitative improvement. However, the
rain streak layer extracted by dual GRU tends to incorporate certain textural contents
from the background image. As a result, when the derained image undergoes excessive
subtraction, it may exhibit an overly smoothed appearance. To advance our methodology,
we implemented LSTM and GRU modules for the purpose of extracting rain streaks and
predicting a clean background image, respectively. At the tth stage, the formulation can be
described as follows:

rt = Fr

(
y, rt−1

)
(12)

xt = Fx

(
y, xt−1, rt

)
(13)

where Fr and Fx denote two interconnected modules, i.e., LSTM and GRU, utilized for
the extraction of the rain streak layer and the clean background image layer, respectively.
As illustrated in Figure 3, LSTM and GRU are employed to disseminate the deep features
throughout the rain streak and background image layers, respectively. In our study, the
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interaction between LSTM and GRU potentially enhances the efficiency of the deraining
process.

Figure 3. Structure of LSTM and GRU modules at stage t.

To this end, as illustrated in Figure 4, we suggest fostering an interaction between
LSTM and GRU by propagating their hidden states across the stages. In Figure 4, the hidden
state ht within the LSTM is disseminated across the stages to enhance rain streak extraction.
Concurrently, this state is also inputted into the GRU, and the process is reciprocated.
Specifically, the LSTM within Fr at stage t accepts the features from the previous input
layer, which is represented as follows: zt

r = fr
(
y, rt−1).

Figure 4. A detailed view of the LSTM and GRU shows how the hidden states ht and hr are not only
propagated through the LSTM layer X and GRU layer R (as denoted by dashed lines) but also create
an interaction between layer R and layer X (illustrated by solid lines). Note that the term ‘Conv’ here
signifies convolutional matrices and bias vectors.

3.5. Dilated Residual Network

In the specific application of rain streak removal, the DRN exhibits significant utility.
Given the considerable variation in size, shape, and orientation of the rain streaks within
an image, they present a multi-scale challenge. The DRN’s capacity to capture multi-
scale contextual information empowers it to effectively identify and eliminate the rain
streaks across the various scales. Moreover, the residual connections inherent to the
DRN assist in preserving the intricate details of the original image, ensuring that the
rain streak removal process does not inadvertently compromise the image’s quality. The
classic residual network (CRN) [30] consists of residual blocks, with each block utilizing
convolutional layers that share the same kernel size. Its fundamental structure is depicted
in Figure 5.
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Figure 5. Structure of residual module.

While the CRN has been widely utilized in deraining tasks, the homogeneity of the
convolutional kernel (CK) falls short in extracting the multi-scale features of the diverse
rain streaks. DC serves as an enhancement of standard convolution with a kernel size of k,
introducing d− 1 spaces between the elements of the CK. This modification expands the
kernel size to d(k− 1) + 1, effectively augmenting the receptive field [31]. In response to
this, this present study introduces a DRN, specifically designed to possess a receptive field
commensurate with the varying sizes of the rain streaks. This network is assembled by
iteratively stacking DRB. Each of these blocks comprises three 3× 3 DC activation layers
with dilation factors assigned at 1, 5, and 10, respectively. Through the implementation of
DC, the receptive field of the network is magnified, facilitating the effective extraction of
the multi-scale features. Figure 6 delineates the structure of the DRB.

Figure 6. Structure of dilated residual module.

3.6. Channel Attention

The attention mechanism, a notable advancement in the realm of deep learning, has
proven to be a pivotal factor in augmenting the efficacy of a multitude of models. It operates
by selectively prioritizing certain facets of the input data while diminishing the emphasis
on others, thereby emulating the human cognitive process of allocating ‘attention’. This
mechanism equips the model with the capacity to distribute varying weights to disparate
segments of the input, thereby enabling it to concentrate more intensively on the salient
features and less so on the irrelevant ones.

In light of the rich information encapsulated within rain streaks, a CA mechanism is
integrated into the LSTM network to bolster the extraction of the rain streak information. In
Figure 1, CA is placed right after DRN to further extract the rain pattern information. To ap-
ply CA in our specific case, the technique of depthwise separable convolution (DSC), which
includes depth convolution and pointwise convolution, is utilized in this scenario. Depth
convolution possesses the ability to extract features across various channels, while point-
wise convolution serves to combine the features between these channels. Consequently,
the attention mechanism employs DSC with a CK of 3 to distill the feature information
from the rain streak channel. Within the framework of the CA module, the input features
are initially fused with information from the channel domain via DSC. This is followed by
the integration of the global features through the average pooling layer. Ultimately, the
spatial features are generated using a conventional convolution layer. The architecture of
this mechanism is illustrated in Figure 7.
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Figure 7. Structure of channel attention module.

3.7. Loss Function

Within the purview of machine learning and deep learning, a loss function serves as a
metric for assessing the proficiency of an algorithm in modeling the provided data. If the
algorithm’s predictions significantly diverge from the actual results, the loss function yields
a high value. Over time, via the process of optimization, the value of the loss function is
progressively minimized, thereby enhancing the performance of the model.

In the domain of deep learning, the mean squared error (MSE) is frequently employed
as a loss function. However, its application tends to induce background blurring in images.
The SSIM loss function, on the other hand, considers luminance, contrast, and structural
metrics, which are more in line with human visual perception. In light of these considera-
tions, this paper employs the SSIM as the network’s loss function. The output values of
SSIM range between 0 and 1; a value closer to 1 indicates that the restored image closely
resembles the original, signifying a superior result. The mathematical representation for
the loss function is as follows:

LF = SSIM
(
xt, xgt

)
(14)

where xt represents the image after rain removal; xgt represents the ground truth image
without rain.

SSIM =

(
2µxt µxgt + c1

)(
2σxtxgt + c2

)
(

µx2
t
+ µx2

gt
+ c1

)(
σx2

t
σ2

x2
gt
+ c2

) (15)

where µxt represents the mean of xt; µxgt signifies the mean of xgt; σ2
xt denotes the variance

of xt; σ2
xgt represents the variance of xgt; σxtxgt denotes the covariance of xt and xgt; and c1

and c2 are constants to avoid having the fraction equal to zero.

4. Experiment and Result Analysis

In this study, the rain removal algorithm, which is predicated on a multi-scale dilated
residual recurrent network, is subjected to an experimental comparison with several repre-
sentative algorithms. These comparative analyses are conducted across different datasets,
providing a comprehensive evaluation of the algorithm’s performance in diverse scenarios.
This rigorous experimental design allows for a robust assessment of the proposed and prior
algorithms’ efficacy in removing rain streaks from images.

4.1. Network Configuration

The proposed methodology is executed utilizing the PyTorch framework, a popular
open-source machine learning library. The training process is conducted on a personal
computer equipped with an Intel Core i7 CPU operating at 3.6 GHz, complemented by
32 GB of RAM. For the purpose of GPU-accelerated computation, an NVIDIA TITAN Xp
graphics card is employed. This hardware configuration provides the computational power
necessary to effectively train and evaluate the proposed model. During the training phase,
images are randomly cropped from the dataset to dimensions of 256 pixels by 256 pixels.
The model employs the Adam optimization algorithm for training, which is conducted
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over 100 epochs. The learning rate is initially set at 0.001 and is subsequently reduced by a
factor of 0.2 at the 31st, 51st, and 81st epochs.

4.2. Datasets

The experiment entails the training of a rain removal algorithm, which leverages a
multi-scale dilated residual recurrent network. This training process is executed on two
distinct datasets: Rain100L [20] and Rain100H [20]. Rain100L comprises 300 sets of training
images and 200 sets of test images. The images within this dataset are characterized by rel-
atively sparse rain streaks, providing a specific context for the training process. Conversely,
Rain100H is composed of 1700 sets of training images and 200 sets of test images. This
dataset is distinguished by the presence of rain streaks in five unique directions, resulting in
a comparatively denser distribution of streaks. In addition to these datasets, a test dataset,
Rain128, is created by randomly selecting a diverse range of images from the Rain800 [14]
dataset. This diverse selection of datasets ensures a comprehensive and robust evaluation
of the rain removal algorithm’s performance.

Furthermore, to substantiate the effectiveness of our model, we have incorporated
real-world rainy image datasets, i.e., SPA-Data [32], Real147 [33], RIS [34], and RID [34].
These images serve solely for the purpose of evaluation, providing a practical context
in which to assess the performance of our model. This use of real-world images aids in
demonstrating the model’s potential applicability and robustness in handling real-world
deraining tasks.

4.3. Quantitative Metrics

Quality assessment is a vital component of image processing and analysis, providing
a quantitative evaluation of an algorithm’s effectiveness in preserving or improving the
quality of an image. A range of metrics have been devised for this purpose, each offering
unique strengths and limitations. These metrics can be broadly divided into two categories:
nonreference algorithms, which do not necessitate a reference image for comparison, and
full-reference algorithms, which juxtapose the processed image with an original, unaltered
reference image. In this study, we utilize an array of quality metrics for evaluation, includ-
ing the SSIM [35], VP-NIQE [36], PSNR [37], SSEQ [38], and LPIPS [39]. Furthermore, SSIM
is employed to analyze the similarity of the corresponding images in terms of illumination,
structure, and contrast. PSNR calculates the peak signal-to-noise ratio in decibels between
two images. LPIPS, a system based on CNN, assesses image quality using perceptual
patch similarity. VP-NIQE [36] evaluates the image quality and predicts image error by
integrating the fidelity and naturalness measurements of the natural images. The SSEQ
model conceptually integrates structure and texture similarity and is capable of assessing
the quality of a distorted image across multiple distortion categories.

Generally, higher values of SSIM and PSNR indicate superior visual quality in the
enhanced results. Conversely, lower values of SSEQ, LPIPS, and VP-NIQE suggest that the
visual quality has less color distortion and a more pleasing perceptual effect.

4.4. Ablation Study

In order to determine the effectiveness of each individual component within our
proposed deraining network, we carried out a comprehensive set of ablation studies.
Each of these studies is meticulously designed to assess the network’s performance when
one or more of its integral modules were removed. Different modules are utilized for
the rain streak recurrent layer and background recurrent layer, specifically including:
LSTM for the rain streak recurrent layer and GRU for the background recurrent layer
(LSTM+GRU), GRU for the rain streak recurrent layer and LSTM for the background
recurrent layer (GRU+LSTM), and both layers using GRU (GRU+GRU). More specifically,
three configurations are considered:

• The first configuration utilizes LSTM for the rain pattern recurrent layer and GRU for
the background recurrent layer (denoted as LSTM+GRU).
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• The second configuration applies GRU for the rain pattern recurrent layer and LSTM
for the background recurrent layer (denoted as GRU+LSTM).

• The third configuration employs GRU for both layers (denoted as GRU+GRU).

We executed the ablation experiments on the Rain200H dataset, maintaining a con-
sistent configuration for each experiment to ensure a fair evaluation. Upon conducting
empirical evaluations, it has been demonstrated that the configuration where LSTM is used
for the rain pattern recurrent layer and GRU for the background recurrent layer exhibits
superior performance. The comparative results of these configurations are presented in
Figure 8.

(a) Component-based assessment using PSNR. (b) Component-based assessment using SSIM.

Figure 8. Results of the ablation study.

4.5. Analysis of Loss Function

In the arena of deep learning-based deraining methods, the training phase is crucial in
determining the effectiveness of the model. During this phase, the model learns to differen-
tiate between the rain streaks and the actual content of the image, with the ultimate goal of
effectively removing the rain streaks while retaining the original details of the image. To
facilitate this learning process and measure the model’s performance, we employed various
loss functions. These loss functions are essential as they measure the discrepancy between
the model’s output and the ground truth image. The primary aim during the training phase
is to minimize this discrepancy. Selecting the appropriate loss function can significantly
influence the deraining model’s performance. For this reason, it is imperative to carefully
consider and evaluate the different loss functions for this task. In our training phase, we
employed three different loss functions, such as negative SSIM, MSE, and a combination
of MSE and SSIM, i.e., MSE, SSIM. The choice of these specific loss functions was made
based on their known effectiveness in tasks related to image processing. SSIM measures
the similarity between two images, which makes it an excellent choice for ensuring our
model’s output closely resembles the ground truth image. MSE is a popular choice due
to its simplicity and efficacy in measuring the average squared difference between the
estimated values and the actual value. Lastly, we combined MSE and SSIM to exploit the
strengths of both these loss functions. The comparison of these different loss functions and
their impact on the model’s performance is detailed in Figure 9. We found that the SSIM
loss function offered superior performance compared to MSE and the combined function,
i.e., MSE, SSIM. This conclusion is drawn based on the lower loss value it produced and
the more visually appealing deraining results. Hence, based on the empirical evidence,
we selected SSIM as the primary loss function in our model to enhance its performance in
image deraining. We believe this selection allows our model to generate more accurate and
visually pleasing deraining results.
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(a) Loss functions measurement using PSNR. (b) Loss functions measurement using SSIM.

Figure 9. Comparison results of different loss functions in terms of PSNR and SSIM. The loss function,
i.e., SSIM acheived better results as compared to MSE and combination of MSE and SSIM.

4.6. Quantitative Analysis

In this section, we have undertaken a comprehensive set of experiments with the aim of
objectively assessing the performance of our proposed model, juxtaposing it with previously
established models. We have chosen SSIM and PSNR as the metrics for evaluation, given
their widespread acceptance and utility in assessing the quality of image processing tasks.
For this experiment, our proposed algorithm is rigorously benchmarked against a selection
of state-of-the-art algorithms. This includes the DID-MDN [13], ResGuideNet [40], and
SSIR [33]. The evaluation process involves testing these algorithms on two classic synthetic
datasets, Rain100H and Rain100L, which are widely used in the field for benchmarking
purposes. Additionally, a more generalized test dataset, Rain128, is also employed to ensure
a broad evaluation of the algorithm’s performance. The outcomes of these evaluations are
succinctly presented in Table 1. The performance of our proposed algorithm is highlighted
in bold, drawing attention to its comparative effectiveness. This rigorous evaluation process
provides a clear and objective assessment of our proposed model’s performance in the
context of existing state-of-the-art deraining algorithms.

Table 1. Evaluating the performance of various deraining algorithms on test datasets by measuring
PSNR and SSIM.

Methods
Datasets

Rain100H Rain100L Rain128

Year PSNR SSIM PSNR SSIM PSNR SSIM

DID-MDN [13] 2018 25.92 0.84 36.12 0.96 32.35 0.89

ResGuideNet [40] 2018 27.89 0.89 36.69 0.95 34.77 0.96

SSIR [33] 2019 22.47 0.71 32.37 0.93 24.12 0.88

NJS [41] 2022 26.22 0.77 34.17 0.93 28.44 0.90

CID [42] 2023 32.98 0.91 37.88 0.95 36.22 0.94

TRNR [43] 2023 30.02 0.92 38.65 0.97 37.02 0.95

Ours 2023 33.72 0.94 39.53 0.99 36.61 0.97

An analysis of Table 1 reveals that the proposed model outperforms other algorithms
on the Rain100H and Rain100L datasets in terms of both PSNR and SSIM. Specifically,
on the Rain100H dataset, the algorithm exhibits improvements in the PSNR values in
comparison to the DID-MDN [13], ResGuideNet [40], SSIR [33], NJS [41], CID [42], and
TRNR [43] algorithms, respectively. Furthermore, it demonstrates increases in the SSIM val-
ues relative to the DID-MDN [13], ResGuideNet [40], SSIR [33], and TRNR [43] algorithms,
respectively. Moreover, the performance of recent research [42] is also better in terms of
PSNR and SSIM. In conclusion, the algorithm proposed in this paper achieves substantial
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enhancements in the removal of rain streaks and the restoration of fine details. While the
PSNR evaluation metric for the algorithm is marginally lower than that of TRNR [43] on
the synthetic Rain128 dataset, subsequent experiments indicate that our model exhibits
markedly superior performance compared to TRNR [43] in deraining real-world images.

To further substantiate the efficacy of both the proposed model and its predecessors,
an additional experiment is conducted. This experiment involves a quantitative analy-
sis utilizing three key metrics: PSNR, SSIM, and LPIPS. The comparative performance
of several deraining algorithms is graphically represented in Figure 10. As depicted in
Figure 10, the proposed algorithm demonstrates superior performance over several estab-
lished algorithms, including DGSM [44], ResGuideNet [40], DJRDR [20], RSECAN [22],
SSIR [33], DHCN [45], DPNet [46], and SIDBRN [47] in terms of the PSNR values when
tested on the Rain100L and Rain100H datasets. Similarly, the SSIM and LPIPS values of
the proposed model also show significant improvements, further reinforcing the model’s
superior performance. This consistent outperformance across multiple metrics and datasets
underscores the robustness of the proposed model and its potential for practical application
in the field of image deraining.

(a) PSNR values on Rain100L. (b) PSNR values on Rain100H.

(c) SSIM values on Rain100L. (d) SSIM values on Rain100H.

(e) LPIPS values on Rain100L. (f) LPIPS values on Rain100H.

Figure 10. Performance analysis of PSNR, SSIM, and LPIPS results for deraining models on Rain100L
and Rain100H datasets.
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4.7. Qualitative Analysis of Synthetic Rain Images

This section aims to elucidate the efficiency of the model using synthetic images. To
assess the performance of the algorithm developed in this study, we chose four different
algorithms to compare rain removal efficacy against ours. The test utilized images from
the Rain800 [14] dataset, with the results depicted in Figures 11 and 12. It is observable
that under torrential rain conditions, the DGSM [44], ResGuideNet [40], and DJRDR [20]
algorithms tend to excessively remove the background along with the rain, as they are
unable to distinguish between the rain streaks and background textures, resulting in a
significant loss of the background details. The DGSM [44] algorithm, constrained by its
single scale, is ineffective in accurately restoring the edge details. The ResGuideNet [40]
algorithm leaves behind some rain streaks as well. In contrast, our proposed algorithm
is capable of distinguishing the rain streaks from the background textures, efficiently
removing the rain and essentially restoring the background details, thereby improving
the visual quality. In cases where the rain streaks are accumulated, the DGSM [44] and
SIDBRN [47] algorithms exhibit noticeable rain remnants. While the DJRDR [20] algorithm
manages to remove most of the rain streaks, some still remain. However, our algorithm
stands out as it is not only effective in removing the accumulated rain streaks but also
maintains the image’s background details, resulting in superior visual outcomes.

Figure 11. Visual results obtained by proposed and different prior deraining models using synthetic
rain images.
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Figure 12. Visual results obtained by proposed and different prior deraining models using synthetic
rain images.

4.8. Qualitative Analysis of Real Rain Images

In an effort to validate the applicability and effectiveness of the proposed method
within real-world scenarios, we have conducted an experiment using real rainy images that
are randomly taken from the SPA-Data [32] dataset. A review of these images revealed in
Figure 13 showed that while prior methods can remove most of the rainwater obstruction,
they struggle with the removal of useful texture details in the background. Additionally,
these methods also face the issue of the incomplete removal of large raindrops. As evi-
denced in Figure 13, the image processed by RSN [48] exhibits obvious rain streak residues.
Moreover, it can be observed that both the DJRDR [20] method and the RSECAN [22]
method suffer from excessive deraining, leading to some details becoming blurred and
distorted. The second last column in the visual results reveals that the MSPFN [23] method
has a limited ability to remove dense rain streaks. In contrast, our proposed method can
thoroughly remove most of the rain streaks while effectively maintaining the color and
details of the background.

To further substantiate the robustness of our proposed method, we selected random
real rainy images from the SPA-Data dataset for a subjective comparison. The rain patterns
in the SPA-Data dataset are relatively sparse, and most learning-based methods demon-
strate good deraining effects. However, as shown in Figure 13, the visual results of RSN [48]
are low in contrast. Moreover, the RSECAN [22] and DJRDR [20] methods leave behind
some rain streak residues, and the MSPFN [23] method exhibits an excessive smoothing
problem and restricted capacity to eliminate densely packed rain streaks. In contrast, our
proposed method demonstrates commendable efficacy in removing rain streaks and pre-
serving background details, further underscoring its robustness and potential for practical
application.
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Figure 13. Visual results obtained by proposed and different prior deraining models using real rainy
images.

It is important to note that while the proposed deraining algorithm put forward in
this study achieved remarkable results on the real rainy image dataset, the complexity of
the backgrounds in the rainy images is highly variable. Therefore, there can be significant
differences in rainy images captured in various settings, such as rural fields versus urban
streets, in terms of background composition and rain streak patterns. This implies that the
choice of training datasets for real rainy images can impact the performance of the final
model across different scenarios. Upon examining the deraining results, it is evident that
the deraining algorithm proposed in this study excels in removing a substantial proportion
of rain streaks in real rainy images, compared to the conventional and learning-based
algorithms depicted in Figures 12 and 13. It achieved this with a minimal loss of detail
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and color distortion. In addition, the algorithm proposed herein demonstrates a notable
enhancement in deraining efficacy on real rainy images and exhibits a distinct advantage
in both rain streak elimination and background preservation.

Moreover, we provide another two full-reference deep quality measures for com-
parison in order to assess the deraining performance of the proposed and prior models.
The new quality metric is visual perception nature image quality evaluation, which is
the most recent novel perceptual image error metric; VP-NIQE [36] can predict the image
quality score and simulate the top-down structure of the human visual system in image
perception. Furthermore, the SSEQ [38] offers accurate forecasts of human quality ratings
on both textures and natural pictures and resistance to minor geometric aberrations. We
evaluate these two metrics on three datasets including the Real147 [33], RIS [34], and
RID [34] datasets. The quantitative results are illustrated in Table 2. The results show that
our method achieves the best performance in both metrics, which further illustrates the
superiority of the proposed method.

Table 2. Quantitative analysis of prior models and ours in terms of SSEQ and VP-NIQE.

Datasets

Methods

LPNet [49] RSN [48] CLGN [50] VRGNet [51] MSPFN [23] Mltdnet [52] RWS [53] Ours

Metrics

SSEQ VP-
NIQE SSEQ VP-

NIQE SSEQ VP-
NIQE SSEQ VP-

NIQE SSEQ VP-
NIQE SSEQ VP-

NIQE SSEQ VP-
NIQE SSEQ VP-

NIQE

RIS 53.111 53.111 53.111 4.831 47.033 5.374 47.033 6.013 48.801 5.679 46.224 7.152 44.562 6.889 43.911 6.080
Real147 30.509 4.831 30.587 4.064 34.261 3.979 34.127 4.003 32.555 3.897 31.312 3.897 30.115 3.925 29.208 3.880
RID 18.353 5.686 31.745 5.686 34.994 4.058 24.263 5.087 20.821 4.995 18.811 4.125 17.721 3.962 16.488 3.80

5. Strengths and Weaknesses

The novel image-deraining algorithm proposed in this article demonstrates a num-
ber of significant strengths. By addressing the complex challenges associated with the
removal of diverse rain streaks and the preservation of background details, it exhibits
both robustness and flexibility. This approach effectively preserves and recovers the back-
ground details while eliminating various rain streaks. The integrity of the original image
is maintained, a feature often compromised in other deraining methods. Importantly, the
algorithm achieves a balance between the preservation of the background details and the
removal of the rain streaks, often seen as competing objectives in this field. The use of
a multi-scale dilated residual recurrent network, the integration of deep and multi-scale
features, and the application of convolutional layers to produce the final derained image
all contribute to its superior performance. The algorithm’s ability to discern and extract
features of both the rain streaks and background content is key to its success. However,
as is the case with all methods, there are areas that require further investigation and im-
provement. In more challenging scenarios, such as heavy rain or fog, the algorithm’s
performance needs to be enhanced. In future research, we aim to explore the potential of
incorporating more advanced attention mechanisms and transformers to further enhance
the model’s discerning abilities. By investigating the potential of applying this algorithm to
other related tasks, such as image denoising or dehazing, we hope to broaden the scope
and applicability of our research.

6. Conclusions

This article addresses the complex challenges associated with the removal of diverse
rain streaks, particularly given the limitations associated with the use of a single scale.
Additionally, it also tackles the issue of the background details becoming blurred in images
following the rain removal process. To address these challenges, we proposed an innovative
image-deraining algorithm that leverages a multi-scale dilated residual recurrent network.
The algorithm initiates its process by leveraging convolutional activation layers to distill the
elementary features. Following this initial step, it deploys LSTM in conjunction with GRU.
This combination serves to effectively disseminate the attributes of the rain streaks and the
background across various stages, thereby capturing the temporal dependencies and spatial
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correlations within the image. Subsequently, the algorithm integrates DRB, composed of
DC with three distinct dilation factors. This integration serves to expand the receptive
field of the model, a crucial step that facilitates the extraction of the deep and multi-scale
features. By doing so, the algorithm is able to more effectively discern and extract the
features of both the rain streaks and background contents. This multi-stage, multi-scale
approach allows the algorithm to capture a wide range of features from low-level details to
high-level patterns. This comprehensive feature extraction is key to the algorithm’s ability
to effectively separate the rain streaks from the background, thereby improving the quality
of the derained images. Ultimately, the deraining results are integrated using convolutional
layers to produce the final derained image. An extensive evaluation was conducted using
ten benchmark datasets and twelve quality metrics to assess the performance of twenty-
two conventional and modern algorithms. The results of this comprehensive evaluation
demonstrate that our approach exhibits both robustness and flexibility, outperforming
other methods under a variety of conditions. A key strength of our approach is its ability
to effectively preserve and recover the background details in images while simultaneously
eliminating various rain streaks. This capability is crucial as it ensures the integrity of
the original image is maintained, a factor that is often compromised in other deraining
methods. The preservation of the background details and the removal of the rain streaks
are often seen as competing objectives, with improvements in one area frequently leading
to compromises in the other. However, our approach manages to achieve a balance between
these two objectives, demonstrating its effectiveness and potential for practical application.

Looking ahead, future research will focus on further improving the algorithm’s perfor-
mance, particularly in more challenging scenarios, such as heavy rain or fog. Additionally,
we aim to explore the potential of incorporating more advanced attention mechanisms
and multi-scale approaches to further enhance the model’s ability to distinguish between
heavy rain streaks and the background details. We also plan to investigate the potential
of applying this algorithm to other related tasks, such as image denoising or dehazing,
thereby broadening the scope and applicability of our research.
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