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Abstract: In the electricity market, prosumers are becoming more and more prevalent due to the
fast development of distributed energy resources and demand response management, which also
promote the appearance of peer-to-peer (P2P) trading mechanisms for energy. Optimization-based
methods are efficient tools to design the P2P energy trading negotiation mechanism. However,
the main drawback for market mechanisms based on optimization methods is that the incentive
compatibility cannot be satisfied, which means participants can obtain more profit by providing
untruthful biddings. To overcome this challenge, a novel consensus mechanism based on Proof of
Solution (PoSo) is proposed for P2P energy trading. The optimization results will be verified by
neighboring agents according to the KKT conditions in a fully decentralized and symmetric manner,
which means agents will check each other’s solutions. However, the verification process may leak
the private information of agents, and a privacy-preserving consensus mechanism is designed using
Shamir’s secret sharing method. After that, we explore a method to realize that trusted agents can
recover the right information even under the misbehavior of malicious agents by inheriting the
philosophy of Practical Byzantine Fault Tolerance (PBFT). The numerical results demonstrate the
effectiveness and efficiency of our proposed consensus mechanisms. In more detail, (1) when the
message delivery success rate is not lower than 0.7, the consensus mechanisms almost guarantee
success; (2) if the proportion of untrusted agents satisfies 4 f + 1 ≤ Nωn , the proposed method
guarantees the correctness of the consensus verification results; (3) the communication times among
agents can be highly reduced by more than 60% by only verifying the optimality of the received
results for the first three and last few iterations.

Keywords: P2P energy trading mechanism; consensus alternating ADMM; proof of solution consen-
sus mechanism; Shamir’s secret sharing; practical byzantine fault tolerance

1. Introduction

The ever-increasing distributed energy resources (DERs) and energy system man-
agement (ESM) [1] are changing the approach of power system operation and turning
traditional producers and consumers into prosumers. The increase in prosumers means
the need for a full decentralized energy trading mechanism that permits prosumers to
negotiate and trade with each other freely without a central organization or institute. Thus,
the network architecture is also changing to decentralized. The peer-to-peer (P2P) network
is defined to be a fully decentralized and symmetric architecture as in [2], in which partic-
ipants share their resources with each other without the intervention of an intermediary
entity [3]. It is in this context, as a new generation of energy management framework, P2P
trading mechanism [4] encourages prosumers to participate in the energy market actively.

A traditional distributed energy system mainly adopts centralized optimization, which
can directly obtain the optimal energy trading scheduling. However, with the rapid de-
velopment of renewable energy, a large amount of accessed distributed energy generation

Symmetry 2023, 15, 1561. https://doi.org/10.3390/sym15081561 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15081561
https://doi.org/10.3390/sym15081561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym15081561
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15081561?type=check_update&version=1


Symmetry 2023, 15, 1561 2 of 22

equipment makes the centralized optimization method consume a lot of time and com-
puting resources. As a result, the energy trading mechanism is moving towards a more
open and decentralized direction. Compared with centralized optimization, distributed
optimization can realize parallel computation while maintaining the optimality of trading
results, which is a better method to implement and design a new energy trading mech-
anism. Ref. [5] used the generalized fast dual ascent method to propose a P2P energy
trading mechanism that considers the safety constraints of distribution network; Ref. [6]
proposed a primal dual gradient algorithm to clear the energy market in a P2P manner;
Ref. [7] improved the method to a primal dual sub-gradient algorithm for P2P trading;
Ref. [8] proposed relaxed consensus + innovation (RCI) that aims to solve multilateral
and bilateral energy economic dispatch in a completely decentralized manner. All the
above researches are based on deriving the first-order function of a Lagrange equation
of individual optimization problems, and then updating the variables by using different
types of gradient descent methods. The advantage is that the calculation speed of single
iteration is fast, but the disadvantage is that convergence requires many iterations and
the communication cost is high. Compared with other methods, the Alternating Direction
Method of Multipliers (ADMM) [9] is widely used because of its completely distributed
architecture, less iterations for convergence and better potential for parallel computing
performance. Standard ADMM [10,11] is an efficient tool for the design of P2P energy
trading negotiation mechanism, but usually a coordinator is required to help with the
convergence; to overcome this drawback to construct a completely decentralized market,
Ref. [12–16] improved the standard ADMM to consensus ADMM (CADMM), which has a
fully decentralized scheme without a central coordinator.

However, the main challenge of optimization-based methods is encouraging pro-
sumers to cooperate in such an untrusted environment. Most of the optimization-based
methods use a locational marginal pricing (LMP) mechanism, which cannot satisfy “incen-
tive compatibility” (Each player can maximize his goal according to his true preferences.)
and “market efficiency” (Market efficiency can be maximized when outcomes maximize
social welfare.) Market participants can exercise “market power” by offering untruthful
prices and quantities. When profit maximizing producers adopt strategies to manipulate
prices, LMP may cause a large loss in economic efficiency. To address this challenge, the
existing P2P energy trading mechanisms mainly adopt the VCG mechanism [17–19] to
satisfy incentive compatibility. The VCG mechanism induces truth-telling behavior in a
dominant strategy equilibrium, that is, it is profit-maximizing for each player to reveal
his true marginal cost, no matter what action the other players take. However, the main
problem is that it still cannot satisfy the property of revenue adequacy, which refers to a
condition in which the market operator never incurs a financial deficit. Thus, we are trying
to find another method to build an incentive-compatible P2P electricity market.

Fortunately, we find that consensus mechanisms in the blockchain are efficient tools
to ensure the correctness and authenticity of submitted results. It defines how parties can
agree on the state and behavior in a system. The best known and most widely used consen-
sus mechanism is Proof of Work (PoW) [20], which is mostly used in Bitcoin and Ethereum.
However, PoW is also known for wasting a lot of time and effort to solve a difficult but
meaningless mathematical puzzle. The criticism of PoW has led to other consensus mecha-
nisms such as Proof of Stake (PoS) [21], Practical Byzantine Fault Tolerance (PBFT) [22] and
Delegated Byzantine Fault Tolerance (DBFT) [23]. These consensus mechanisms enable
various applications in finance, supply chain management and energy [24–26].

However, existing consensus mechanisms are not able to support optimization meth-
ods and problems, and it is challenging to design a suitable and efficient consensus mech-
anism for an optimization-based P2P energy trading mechanism. In this work, a novel
consensus mechanism on the basis of Proof of Solution (PoSo) is proposed [27], which sim-
ulates PoW by replacing meaningless mathematical puzzles with meaningful optimization
problems. Additionally, we further improve the consensus mechanism by reducing the
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number of verification and implement privacy protection. Compared with previous works,
the main contributions are listed below.

• First of all, a negotiation mechanism using consensus ADMM is designed for P2P
energy trading. Social welfare can be maximized in a fully decentralized manner.
After that, a PoSo-inspired consensus mechanism is developed for this P2P energy
trading mechanism. After solving individual local optimization problems to obtain
an optimal solution, agents will broadcast the equivalent accumulated Karush–Kuhn–
Tucker (KKT) conditions to neighbor agents for optimality validation. It is worth
noting that, similar to PoW, checking whether a given solution satisfies the KKT
condition for optimality is much easier than obtaining the solution. Compared to the
original work, the biggest contribution of the proposed P2P energy trading consensus
mechanism is that no central delegate is required, and agents do not need to share their
private information with a central leader. In addition, agents who fail in validation
are subject to a significant penalty attached to the objective function. The novel
consensus mechanism can overcome the deficiency of the LMP mechanism, and create
an incentive compatible P2P energy market.

• However, our proposed consensus mechanism requires a mass of communication time
due to many iterations to converge, and the private information cannot be protected.
To solve these two problems, first we propose to reduce the number of consensus
verification by only verifying the solutions in a few iterations at the beginning and
the end. Second, we proposed a privacy-preserving consensus mechanism that is
resistant to a proportion of untrusted agents. The private information is divided into
encrypted pieces by using Shamir’s secret sharing scheme, which will be distributed
to corresponding neighboring agents. Then, a PBFT-based method is designed to
realize that trusted agents can recover the right results even under the misbehavior of
malicious agents who may manipulate the encrypted pieces to cause incorrect results.

The rest of the paper is organized as follows: Section 2 presents related works, Section 3
presents the formulation of P2P energy trading and the negotiation mechanism for the P2P
energy market, followed by the consensus mechanism and improvements for it in Section 4.
Numerical results are presented in Section 5. Finally, in Sections 6 and 7, discussions,
conclusions, and future perspectives are drawn.

2. Related Work
2.1. Consensus ADMM

ADMM is an efficient tool to design distributed and parallel algorithms for machine
learning problems at a large scale [9]. It can be applied to convex optimization problems
with special equality constraints as follows:

minimize f (x) + g(z)

subject to Ax + Bz = c.
(1)

ADMM solves the above problem based on the augmented Lagrangian function,
which is formulated as below:

Lρ(x, y, z) = f (x) + g(z) + yT(Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2. (2)

Here, y is a dual variable or Lagrangian multiplier for the equality constraint (Ax +
Bz = c), and ρ is a positive penalty parameter. ADMM obtains optimal solutions by
updating the variables in an alternating way as below:

xt+1 = arg min
x

Lρ(x, zt, yt) (3a)

zt+1 = arg min
z

Lρ(xt+1, z, yt) (3b)

yt+1 = yt + ρ(Axt+1 + Bzt+1 − c), (3c)
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With the development of high performance computing, ADMM is an important choice
to solve the above constraint problems. At this point, the global consistency optimization
strategy comes into play. The objective function is decomposed into N sub-objective
functions or subsystems. Each one tries to compute a local solution xi that is constrained
to be equal to the global variable z. The global consensus optimization problem can be
formulated as follows:

min
N

∑
i=1

fi(xi)

s.t. xi = z.

(4)

Here, xi is the local solution for the i-th subsystem, and fi is the loss function of the i-th
subsystem. All local xi solutions construct the global variable z, and z links and connects
the data of the various subsystems. The augmented Lagrangian function of problem (4) is
formulated as:

Lρ(x1, . . . , xN , z, y) =
N

∑
i=1

( fi(xi) + yT(xi − z) + (ρ/2)‖xi − z‖2). (5)

ADMM addresses it by updating variables as below:

(xi)t+1 = arg min
xi

( fi(xi) + (yi)
T
t (xi − zt) + (ρ/2)‖xi − zt‖2) (6a)

zt+1 =
1
N

N

∑
i=1

((xi)t+1 + (1/ρ)(yi)t) (6b)

(yi)t+1 =(yi)t + ρ((xi)t+1 − zt+1) (6c)

The above equations reveals that the iterative steps of ADMM can be executed in
parallel. This algorithm can be further simplified by computing the averages of x and y.
The z-update and y-update can be written as

zt+1 =xt+1 + (1/ρ)yt (7a)

yt+1 =yt + ρ(xt+1 − zt+1) (7b)

Substituting (7a) into (7b) can obtain that yt+1 = 0 and zt+1 = xt+1. Finally, we derive
the consensus ADMM, and it can be simply formulated as

(xi)t+1 = arg min
xi

(
fi(xi) + (yi)

T
t (xi − xt) + (ρ/2)‖xi − xt‖2

)
(8a)

(yi)t+1 =(yi)t + ρ((xi)t+1 − xt+1) (8b)

2.2. Consensus Mechanisms for P2P Energy Trading

For traditional blockchain, there are several mature consensus mechanisms. When
combined with energy trading, it is also likely to adopt a more traditional mechanism or
slightly modified one to meet the requirements of the system. Several common consensus
mechanisms, e.g., Proof-of-Work (PoW), Proof-of-Stake (PoS), and Practical Byzantine Fault
Tolerance (PBFT) [28], are introduced as follows.

A comparison table, Figure 1, shows the merits and demerits of different consensus
mechanisms used in P2P energy trading.
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Consensus 

Mechanism
Idea Right of accounting Advantages Disadvantages

PoW
Based on the computing 

resources

Through the node's 

computing resources to 

capture

1. Easy to implement

2. The security is high and 

the attack is difficult

1. Huge energy consumption

2. Long confirmation time

PoS Based on the stake

The node with the highest 

equity gets the accounting 

right

1. Reduce the 

consumption of 

computing resources

2. Improve block 

generation efficiency

1. Complex protocols

2. Make the rich richer and 

the poor poorer

PBFT
Based on State 

Machine Replication

Most of the slave node 

responses are the final 

results

1. No tokens are required 

for rewards

2. Improving consensus 

efficiency

1. Only 1/3 corrupt nodes 

can be tolerated

2. Complex consensus 

confirmation processes

PoSo
Based on optimization 

problem solution

Delegates take turns to be 

an interim leader

1. Replace meaningless 

puzzles with useful 

optimization problems

2. Reduce computing 

resources consumption

1. Sacrifice decentralization

2. Private information is 

easy to leak during the 

consensus process

Figure 1. Comparison of different consensus mechanisms used in P2P energy trading.

2.2.1. Proof-of-Work

In the PoW mechanism, consensus proof is achieved by solving a difficult problem,
which is to find a nonce to form a hash value that satisfies the condition. Since solving
this problem requires a large amount of computing resources, but it can be easily verified
by other nodes, the double-spending can be avoided to some extent. However, PoW
is also known for wasting a lot of time and effort to solve a difficult but meaningless
mathematical puzzle [29]. Since PoW was originally used in Bitcoin, the most common
consensus mechanism for blockchain-based energy transactions is PoW. A blockchain-
based edge-as-a-service framework is proposed in [30] for secure energy trading between
electric vehicles (EVs), and PoW is used to help EVs reach consensus. In [31], the blockchain
is designed to accommodate the decentralized nature of P2P markets and is developed
using the PoW consensus mechanism.

2.2.2. Proof-of-Stake

The criticism of PoW has led to other consensus mechanisms. In PoS systems, instead
of competing, miners maintain a set of verifiers that participate in the block creation process.
Each node verifies that it has an interest in the grid, and this interest is used to determine
the likelihood that the node will add the next transaction block to the blockchain. The
system requires participants to prove ownership of the currency. However, this mechanism
tends to make the rich richer and the poor poorer. Compared with the PoW mechanism,
the PoS mechanism does not need to search for a suitable nonce to solve a difficult puzzle,
which saves energy and improves efficiency. In [32], the demand response program is
verified based on the PoS consensus mechanism. Each distributed energy producer in the
grid can either act as a verifier of energy transactions or become the next valid block miner,
and each verifier holds a certain stake. The authors of [33] proposed that by using PoS in
P2P energy trading, miners sacrifice part of their stake to compensate for power losses and
narrow the price gap in traditional prosumer-to-grid trading. In addition, the proposed
model also improves the income of producers and saves the cost of consumers through the
designed pricing mechanism, which is helpful to increase the social welfare.

2.2.3. Practical Byzantine Fault Tolerance

The PBFT algorithm is a replication algorithm that can tolerate Byzantine faults. The
algorithm is feasible in an asynchronous environment. PBFT is suitable for small networks
because the consensus process requires three rounds of voting, and each round of voting
is broadcast. Because it does not have the same mining process as PoW, it saves a lot
of computing resources. When the proportion of malicious nodes is less than 1/3, the



Symmetry 2023, 15, 1561 6 of 22

correct consensus can be reached. In [34], relying on blockchain smart contract technology,
a distributed reputation system RBT is designed to realize distributed and automated
reputation management. It is used to implement a PBFT-based delegated consensus and
reputation-based auction in a P2P energy trading system. Considering that most user nodes
are trusted, a fast PBFT algorithm is proposed in [35] to achieve efficient consensus for P2P
energy trading. The consensus algorithm is executed to store transactions, support data
traceability, and improve transaction efficiency.

2.2.4. Proof of Solution

In PoW-based blockchains, participants are competing to solve a difficult but meaning-
less mathematical puzzle in order to become the interim leader. The winner will become
the leader and announces the block containing the latest state of the network. Other par-
ticipants will accept a block if and only if it passes validation. A block is deemed to be
valid if the puzzle was correctly solved and the latest state of the network was generated
by following strict rules. It is worth noting that the math problems are difficult to solve but
easy to verify, so other participants will not expend a lot of effort to verify them.

The novel consensus mechanism PoSo is inspired by PoW. The difference is that
PoSo replaces meaningless mathematical puzzles with useful and meaningful optimization
problems. Like the solutions of mathematical puzzles in PoW, the solutions of optimization
problems in PoSo are difficult to find, but easy to verify. Specifically, if the optimization
problem is convex, then x∗ is an optimal solution if and only if x∗ satisfies the KKT
conditions. Obviously, it is much easier to verify whether a given x∗ satisfies the optimality
condition than to find it. However, unlike PoW, PoSo does not spend huge amounts
of computing resources on nonsensical problems. These advantages expand the use of
blockchain in various applications that require optimization, but do not have a central
trusted authority to run it.

As shown in Figure 2, in a PoSo scenario, all participants select a delegation of
participants interested in managing the collaborative network. An interim leader, elected
by the delegates, is charged with coming up with the best solution. The other delegates
are followers who validate and exchange the solutions they receive. If followers agree on
a solution, they broadcast the solution to every participant. Participants trust a solution
if it is approved by a majority of delegates. Any leader who is deemed incompetent or
dishonest will be removed from the delegation and replaced by another representative.

Participants select 

a delegation

Delegates select

A leader

Leader obtains an

Optimal solution

Leader sends the 

optimal solution 

to followers

Followers verify 

and exchange the 

received solution

If the solution is optimal, 

each delegate broadcasts 

it to all participants

If the solution is not optimal, delegates will 

remove the dishonest leader from the delegation

Figure 2. Flow chart of PoSo.
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3. Negotiation Mechanism for P2P Energy Trading
3.1. Problem Formulation

An illustration of P2P energy markets is shown in Figure 3 [36]. Prosumers will nego-
tiate the simultaneous price and energy for multi-lateral transactions based on predefined
trading rules. It can be seen that the P2P energy market is much more decentralized com-
pared to the existing centralized market, where all participants must provide and share all
private information (such as cost or utility functions, power boundaries, and generation
uncertainty) to a central coordinator, who centrally determines energy dispatches. In a P2P
market, all agents are free to negotiate prices and quantities for multilateral transactions
without leaking any private information.

Existing
Market

Figure 3. P2P energy trading market architecture.

There are a few agents in the P2P energy market who act as sellers if they have surplus
renewable energy generation, such as wind generators or solar panel; or as buyers to meet
their energy demand, such as EV charging. In this section, we first model the P2P energy
trading process, and the social welfare maximization problem is built.

First of all, before the negotiation process, each prosumer will first determine the role
(seller or buyer) according to the power generation and consumption. The power En of
each agent n ∈ Ω is split into the number of bilateral transactions with a set of neighboring
agents m ∈ ωn as

En = ∑
m∈ωn

Enm, ∀n ∈ Ω. (9)

A positive En indicates residual energy, a negative value indicates energy demand;
thus, a positive Enm indicates sale or production, and a negative one means purchase
or consumption. For simplicity, En = {En1, . . . , Enm, m ∈ ωn} is used to represent all
transactions of agent n between neighboring agents. The power of agent n shall be bounded
as follows:

En ≤ En ≤ En, ∀n ∈ Ω (10)

For renewable resources producer, the lower bound En is set to zero, and the upper
bound En is set to the forecast power generation.

Each agent is restricted to be either a producer or a consumer, that is EnEn ≥ 0. Thus,
the variable is constrained to be positive (Enm ≥ 0) if it is a producer, and negative (Enm ≤ 0)
if it is a consumer, as follows:
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{
Enm ≥ 0, ∀(n, m) ∈ (Ωp, ωn)

Enm ≤ 0, ∀(n, m) ∈ (Ωc, ωn)
(11)

where Ωp and Ωc denote the set of producers and consumers, respectively. Finally, a set of
equilibrium constraints is used to represent the market equilibrium among agents:

Enm + Emn = 0, ∀(n, m) ∈ (Ω, ωn). (12)

To simplify the presentation of the process, quadratic functions are commonly used to
model the producer generation cost and consumer utility as follows:

Cn(En) = anE2
n + bnEn, (13)

where an and bn are predetermined positive constants according to the equipment and
consumers’ preference.

Finally, the objective of a P2P energy market is to maximize the social welfare of all
agents while satisfying these constraints. The problem can be equivalently formulated as a
cost minimization problem as below:

min ∑
n∈Ω

Cn(En) (14a)

s.t. En ≤ En ≤ En ∀n ∈ Ω (14b)

Enm ≥ 0 ∀(n, m) ∈ (Ωp, ωn) (14c)

Enm ≤ 0 ∀(n, m) ∈ (Ωc, ωn) (14d)

Enm + Emn = 0 ∀(n, m) ∈ (Ω, ωn) (14e)

The above problem is a convex optimization problem, which has a unique optimal
solution and can be obtained by centralized methods such as interior point methods. How-
ever, the centralized approach needs to leak the private information of all agents, which is
unacceptable in practical applications. It is necessary to design a decentralized negotiation
mechanism to achieve the optimal scheduling of the above optimization problem (14)
without leaking any individual information.

Remark 1. If the product differentiation or preference is considered, the bilateral trading costs
are calculated as linear functions of the quality traded with each neighboring agents C̃n(En) =

∑m∈ωn cnmEnm. The bilateral trading coefficients cnm are affected by emissions, transport distance,
size of prosumers, etc. The different preference or value cnm will influence the prices between agents.
For example, the long distance between agent n and m will generate a high transmission fee, and
cause a price between n and m, which will be λnm + cnm, where λnm represents the traded price
provided from agent n to m for amount Enm. Since we focus on the consensus mechanism in this
paper, the product differentiation is not considered, but the proposed method is still workable when
including it.

3.2. Negotiation Mechanism

In this section, a decentralized negotiation mechanism based on consensus ADMM is
proposed for P2P energy trading, which is shown in Figure 4. Agents will solve individual
optimization problems to determine the optimal biddings, and then communicate and
share the updated energy quantities and prices to neighbor trading agents. The negotiation
process will run iteratively until convergence, which is decided by the Market Operator
(MO). The MO collects updated transaction information and sends a termination signal
after the balance between each pair of agents is met. The proposed negotiation mechanism
focuses on a deterministic clearing algorithm for a single time period of the previous day,
and it can be easily extended to multiple time periods [15,16].
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Prosumer Agent 1

Share energy quantities 𝑬
and prices 𝝀

Local

Solver

Prosumer Agent 2

Solve local 

optimization 

problem

Prosumer Agent 3

Local

Solver

Market OperatorEnergy quantities 𝑬

Termination signal

Local

Solver

Figure 4. Schematic diagram of the P2P energy trading negotiation mechanism.

Local Update for Each Agent: At the beginning, each agent randomly calculates and
broadcasts the initial energy price and quantity in parallel. Each agent will then iteratively
update the energy amounts and prices of its neighbors until equilibrium.

Then, at a given iteration k, each agent n ∈ Ω will update its amount of energy traded
with neighbor agents by solving an optimization problem as follows.

min
Ek+1

n

Cn(En) + ∑
m∈ωn

[
λk

nm

(
Fk

nm−Enm

)
+

ρ

2

(
Fk

nm−Enm

)2
]

s.t. En = ∑
m∈ωn

Enm

En ≤ En ≤ En

Enm ≥ 0, ∀(n, m) ∈ (Ωp, ωn)

Enm ≤ 0, ∀(n, m) ∈ (Ωc, ωn)

(15)

where λnm is the traded price for amount Enm, and it is also the dual variable for the balance
constraints (12); Fnm = Enm−Emn

2 represents the median value of the energy amount between
n and m. After obtaining the updated energy amount, each agent will update the energy
prices λk+1

nm as follows:

λk+1
nm =

[
λk

nm −
ρ

2

(
Ek+1

nm + Ek+1
mn

)]+
, (16)

where [.]+ denotes the max(., 0).
Local Update for Market Operator: Since Cn(En) is strictly convex, it suffices to

guarantee that our algorithm converges to the global optimum point [37]. The algorithm
converges when the total primary residuals (the squared difference between each pair of
traded amount) and total dual residuals (the squared difference between the amount of
two successive iterations) is smaller than the global stopping criterion as follows:

Rk+1 , ∑
n∈Ω

∑
m∈ωn

(Ek+1
nm + Ek+1

mn )2 ≤ χr, (17a)

Tk+1 , ∑
n∈Ω

∑
m∈ωn

(Ek+1
nm − Ek

nm)
2 ≤ χt, (17b)

where χr and χt are predetermined positive and very small constants. The MO must be
trusted, and can be the community manager or the authorized representative of all agents.
The MO will collect the energy of all transactions to check whether the algorithm converges
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by (17), and broadcast a termination signal to all agents if the convergence conditions
are met.

4. Privacy-Preserving P2P Energy Trading Consensus Mechanism
4.1. PoSo-Based Consensus Mechanism

In last section, we propose a negotiation mechanism for P2P energy trading, which
is based on the marginal price. However, under the LMP mechanism, the agents who
dominate the prices can earn more profit by taking some dishonest strategies. To solve this
problem, in this section, a new consensus mechanism is proposed for P2P energy trading
based on PoSo, which is an effective way to prevent agents from dishonest behavior.

Reviewing the PoSo flow chart again, a delegate is first selected from participants,
and a temporary leader is further elected from the delegate. The leader will solve the
social welfare maximization problem to propose an optimal solution, while the followers
in the delegate verify the optimality to decide whether to accept it or not. Although this
mechanism has good computational efficiency, it is not suitable for P2P energy trading due
to the unwillingness of prosumers to share private information with the central leader.

Therefore, to solve this problem, an improved and revised version of the PoSo mech-
anism is designed to fit our proposed CADMM-based P2P energy trading negotiation
mechanism [38], which can well protect the private information. Each agent solves in-
dividual optimization problems (15) to obtain an optimal solution, and neighbor agents
verify the equivalent KKT conditions to prove its optimality. Then, in turn, the agent will
also check the solution of neighbor agent. Thus, the consensus mechanism is running in a
symmetric manner.

The main advantage is that no authorization is required and the agent does not need to
convey private information to the central leader. All agents can solve the local optimization
problem in parallel and broadcast the results to neighboring agents for optimality verification.

In more detail, the KKT conditions for local updates (15) are listed as in (18).

∂Cn( ∑
m∈ωn

Enm)− λk
nm + ρ(Enm − Fk

nm)− µ
n
+ µn − δnm = 0, ∀(n, m) ∈ (Ωp, ωn)

∂Cn( ∑
m∈ωn

Enm)− λk
nm + ρ(Enm − Fk

nm)− µ
n
+ µn + δnm = 0, ∀(n, m) ∈ (Ωc, ωn)

En ≤ ∑
m∈ωn

Enm ≤ En

Enm ≥ 0, ∀m ∈ ωn, if n ∈ Ωp

Enm ≤ 0, ∀m ∈ ωn, if n ∈ Ωc

− µ
n ∑

m∈ωn

Enm = 0, µn ∑
m∈ωn

Enm = 0

δnmEnm = 0, ∀m ∈ ωn

(18)

The above equations construct a nonlinear problem with primal variables En and dual
variables {µ

n
, µn, δnm}. {µn

, µn} are for constraints En ≤ En ≤ En, and δnm is for 0 ≤ Enm
(0 ≥ Enm).

However, if we choose to check all of these equations, it will cause a very large com-
putational and communication burden. Alternatively, we choose to verify the cumulative
KKT condition as below:

Nωn

(
2an ∑

m∈ωn

Enm+bn

)
= ∑

m∈ωn

λk
nm−ρ( ∑

m∈ωn

Enm− ∑
m∈ωn

Fk
nm)+Nωn ∆µn+ ∑

m∈ωn

δnm, ∀n ∈ Ωp

Nωn

(
2an ∑

m∈ωn

Enm+bn

)
= ∑

m∈ωn

λk
nm−ρ( ∑

m∈ωn

Enm− ∑
m∈ωn

Fk
nm)+Nωn ∆µn− ∑

m∈ωn

δnm, ∀n ∈ Ωc

(19)
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After each update, agent n will send a information set Ik
n to neighboring agents for

verification. The set contains information as below:

Ik
n =

{
an, bn, Ek+1

n = ∑
m∈ωn

Ek+1
nm , ∑

m∈ωn

λk
nm, Fk

n = ∑
m∈ωn

Fk
nm, ∆µn, ∑

m∈ωn

δnm

}
(20)

If the cumulative KKT conditions (19) are met, the optimality of the solution is also
successfully verified, and results are exchanged among other neighbor agents until the
majority of them are approved. An incentive and punishment mechanism is also designed.
In detail, if the verification fails, the dishonest agent n will be subject to a heavy fine,
which is expressed as adding a penalty indicator function ∆p(v) in the objective function.
If the result is optimal, ∆p(v) = ∆p(0) = 0; on the contrary, ∆p(v) = ∆p(1) = −P.
Here, P is a predefined penalty that will be distributed equally among all verifiers who
participate in the consensus process. This new consensus mechanism can motivate agents to
participate honestly in the energy market and achieve an incentive compatible market. An
illustrative example is shown in the Figure 5, and the consensus mechanism is summarized
in Algorithm 1.

Send
𝑵𝝎𝒏 , 𝒂𝒏, 𝒃𝒏, 𝑬𝒏

𝒌+𝟏 , 𝑭𝒏
𝒌 ,



𝒎∈𝝎𝒏

𝝀𝒏𝒎
𝒌 , 𝚫𝝁𝒏, 

𝒎∈𝝎𝒏

𝜹𝒏𝒎

Neighbors verify the 

optimality of the 

received solutions

Neighbors exchange 

the verification result

Figure 5. Diagram of the consensus mechanism for P2P energy trading.

Algorithm 1: The improved PoSo-based consensus mechanism for P2P energy
trading.

1 for Agent n in Ω do
2 Agent n solves individual optimization problem to obtain the optimal

solutions {∑m∈ωn Ek+1
nm , ∆µk+1

n , ∑m∈ωn δk+1
nm }

3 Agent n sends the solutions together with
{Nωn , an, bn, ∑m∈ωn λk

nm, ∑m∈ωn Fk
nm} to neighbor verifiers.

4 for Agent m in ωn do
5 Validate the optimality of the received solution by checking if the

cumulative KKT conditions (19) hold.
6 if The verification passes then
7 Forward vm = 0 to other neighbors.
8 else
9 Forward vm = 1 to other neighbors.

10 if Over 50% of the verification results vm = 0 then
11 Complete the consensus verification, set v = 0, and ∆p(v) = 0.
12 else
13 Complete the consensus verification, set v = 1, and ∆p(v) = −P.
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Similar to other blockchain consensus mechanisms, the proposed consensus mech-
anism is only effective if the number of honest neighbor agents exceeds the number of
dishonest agents. An effective consensus mechanism indicates that all participants take
actions based on the correct and identical optimal solution. As long as there are honest
neighbor agents in the verifiers list, all honest agents will eventually see the optimal solu-
tion, so the consensus verification succeeds. In other words, as long as there are a majority
of honest neighbor agents, the optimality of the received solution can be successfully
verified. When more than 50% of the neighbor agents obtain the same verification result,
anyone can trust the result because a non-optimal solution is impossible to be accepted by
more than half of the neighbor agents. However, if dishonest agents dominate the verifiers
set, they may also control the verification outcome.

4.2. Protect the Private Information and Resist Malicious Agents

In the consensus verification process, agents have to send private information {an, bn}
to neighboring agents. However, there may be dishonest nodes who will collect individ-
ual privacy to take strategy and earn more profit. Additionally, they may not complete
the verification work or deliberately disapprove the optimality of the received solutions.
Thus, the proposed method should resist untrusted agents who have this misbehavior. In
this section, we propose a privacy-preserving consensus mechanism that is resistance to
untrusted agents, who may collect individual privacy or destroy the consensus verification
process. Here, we assume that there are always no more than f of N agents are untrusted
and malicious in the neighboring agents set.

4.2.1. Algorithm

The proposed privacy-preserving consensus mechanism is illustrated in Figure 6. The
agent m5 is malicious, who will not forward any messages.

Agent n 

Agent 𝒎𝟏

Agent 𝒎𝟐

Agent 𝒎𝟑

Agent 𝒎𝟒

Agent 𝒎𝟓

Generate

{ 𝒂𝒏 𝒎, 𝒃𝒏 𝒎}

Pre-prepare Prepare Commit Reply
Secret

Generation

Calculate and send

𝑺𝒏𝒎
𝒌

Derive 𝑺𝒏
𝒌 and

Verify the solutions

Figure 6. Flowchart of the privacy-preserving consensus mechanism.

Briefly speaking, an agent generates Nωn pieces of encrypted data and separately
submits encrypted aggregated information to each corresponding neighboring agent. Then,
we use a PBFT-based method [39] to realize that the trusted agents can recover the right
result even under the misbehavior of malicious agents.

In detail, first of all, in the secret generation phase, before the negotiations begin,
agent n would generate pieces of the encrypted an and bn using Shamir’s Secret Sharing
scheme [40]. It constructs polynomials

fan(ξ) = an + dan ,1ξ + dan ,2ξ2 + . . . + dan , f ξ f , (21a)

fbn(ξ) = bn + dbn ,1ξ + dbn ,2ξ2 + . . . + dbn , f ξ f , (21b)
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where dan , dbn are randomly generated. Then, for each neighboring agent m ∈ ωn, agent
n generates encrypted information { fan(m), fbn(m)}, m = 1, 2, . . . , Nωn . Here, we use
{[an]m, [bn]m} to denote { fan(m), fbn(m)} for simplicity.

The encryption algorithm has two important properties as follows:
(i) The algorithm is a ( f + 1, Nωn) threshold scheme. The actual information {an, bn} of

agent n can be decrypted using (22) only if at least f + 1 encrypted messages are collected.

an =
f+1

∑
m=1

[an]m

f+1

∏
l=1,l 6=m

−l
l −m

, (22a)

bn =
f+1

∑
m=1

[bn]m

f+1

∏
l=1,l 6=m

−l
l −m

. (22b)

(ii) It is additively homomorphic. That is to say, only when the sum of at least f + 1
agent n encrypted information is collected, can (23) be used to decrypt the sum of agent
n information.

an + bn =
f+1

∑
m=1

([an]m + [bn]m)
f+1

∏
l=1,l 6=m

−l
l −m

. (23)

As far as we know, Shamir’s secret sharing is the simplest scheme that satisfy the
above properties in the domain of real numbers. Our approach remains valid for other
schemes with the same properties, such as the Brickell scheme [41].

We then try to explore a way to realize that trusted agents can always recover correct
information even under the misbehavior of malicious agents. This algorithm inherits the
idea of PBFT. Specifically, in the Pre-prepare phase, agent n obtains the updated solution
∑m∈ωn Ek+1

nm after iteration k, agent n calculates aggregated piece information Sk
nm as follows:

Sk
nm = Nωn

(
2[an]m ∑

m∈ωn

Ek+1
nm + [bn]m

)
+ ρ ∑

m∈ωn

Ek+1
nm , ∀m ∈ ωn, (24)

and sends them to corresponding neighboring agents; then, in the Prepare phase, each agent
m will broadcast Sk

nm to all agents in ωn; after that, in the Commit phase, when receiving
Sk

nm from no less than 3 f agents, each agent send a Commit message to others; finally,
in the Reply phase, when receiving Commit messages from no less than 3 f + 1 agents
(including itself), agent m derives the correct aggregated result Sk

n = Nωn(2an ∑m∈ωn Ek+1
nm +

bn) + ρ ∑m∈ωn Ek+1
nm by executing Algorithm 3. In short, the agent enumerates all possible

decryption results, and most of these possible results are considered correct.
After the result reconstruction process, each neighboring agent validates the optimality

of the received solutions Ek
n by (19) according to the correct results. Algorithms 2 and 3

introduce the procedure of the privacy-preserving consensus mechanism for agent n and
correct result decryption method.

4.2.2. Security Analysis

Theorem 1: If the proportion of untrusting neighboring agents is less than 1/4, i.e.,
4 f + 1 ≤ Nωn , the proposed method guarantees the correctness of the consensus verifica-
tion result.

Proof 1: The Reply phase ensures the correctness of the aggregation result Sk
n. In

detail, when an agent receives no less than 3 f + 1 Commit messages, at least 2 f + 1
Commit messages were sent by trusted agents. Therefore, a trusted agent can obtain at
least C f+1

2 f+1 correct results in Algorithm 3. Untrusted agents may tamper with pieces of
their encrypted messages to cause trusted agents to decrypt incorrect results. However,
even if the untrusted agents send f of 3 f + 1 Commit messages, the trusted agent exports
incorrectly aggregated data up to C f+1

2 f times [42]. Therefore, the trusted agent always

outputs the correct result Sk
n in Algorithm 3.
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Algorithm 2: Privacy-preserving consensus mechanism for agent n.

1 //Secret Generation
2 Agent n generates the piece of encrypted private information {[an]m, [bn]m} of

corresponding neighboring agents.
3 //Pre-prepare phase
4 Agent n Calculate Sk

nm = Nωn(2[an]m ∑m∈ωn Ek+1
nm + [bn]m) + ρ ∑m∈ωn Ek+1

nm , and
broadcast it to all agents in ωn.

5 //Prepare phase
6 for Each agent m in ωn do
7 When receive Sk

nm, broadcast it to other agents in ωn.

8 //Commit phase
9 for Each agent m in ωn do

10 when receiving Sk
nm from no less than 3 f agents, send a Commit message to

others.
11 //Reply phase
12 for Each agent m in ωn do
13 when receiving Commit messages from no less than 3 f + 1 agents (including

itself), derive the correct result Sk
n by executing Algorithm 3.

14 Validate the optimality of the received solutions by (19) according to the correct Sk
n.

Algorithm 3: Correct aggregated result decryption method.

1 Let D denote the set of agents who sent Commit messages.
2 Construct all subsets of D: Γ1, . . . , Γu, where each subset has f + 1 agents.

Obviously, u = (3 f+1
f+1 ).

3 for l = 1 : u do
4 Calculate sl = Nωn(2an ∑m∈ωn Ek+1

nm + bn) + ρ ∑m∈ωn Ek+1
nm according to Sk

nm
provides by agents in Γl .

5 Output the major result in {s1, . . . , su} as the correct result.

4.3. Improve the Efficiency of the Consensus Mechanism

In a distributed optimization method-based P2P energy trading mechanism, it usually
takes many iterations to converge, which will cause a mass of communication time for the
consensus mechanism. Additionally, since agents have to exchange information with each
other to reach a consensus, the communication complexity is O(k× N3), where k is the
iterations for convergence, and N is the numbers of agents in the market. It is undeniable
that our algorithm is inefficient when dealing with a large number or prosumers, but there
are two ways to improve efficiency.

First, it can be discovered that the verification equation contains the previous results
{∑m∈ωn λk

nm, ∑m∈ωn Fk
nm}. It means that if a dishonest agent constructs an incorrect solution

at a certain iteration to pass the verification, it probably will not pass in the next iteration
unless it proceeds to solve the local problems using the sub-optimal solutions, but it may
result in economic loss. Therefore, the optimal solutions are linked to each other to form a
“chain”, and it is sufficient to verify the optimality of only the first and last few iterations. To
be specific, for each agent n, we only verify the solutions of the first three iterations and last
few iterations according to the residuals (17). When the maximal value of Rk+1 and Tk+1

is less than αχ, the consensus verification process is activated. The smaller α means less
consensus verification. The α is chosen to be 10 in this work. By using this low-frequency
consensus mechanism, the computational burden can be highly reduced.

Second, in the energy community, prosumers usually have frequent or fixed trading
partners. Thus, it is better to divide the network into different shards according the
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transaction history, and prosumers only need to communicate with others in the same
shard. In this way, the communication complexity can be highly reduced, and more shards,
lower complexity. How to reasonably allocate prosumers to different shards is the focus of
our future work.

5. Results

This section provides numerical results for the performance evaluation of the proposed
P2P energy trading privacy-preserving consensus mechanism through different case studies.
A 13-node meshed distributed network with five sellers and seven buyers is considered as
in [6] for illustration and discussion. The parameters {an, bn, En, En} of agents are listed in
the Table 1 and are chosen randomly for simulation. In the network, sellers have renewable
energy generation, such as solar power or wind generator. The power output lower bounds
of sellers or producers are all set to 0, and the power output upper bounds En are the
forecast renewable power generation in the real time. Buyers are houses equipped with
controllable appliances, and the upper bounds are all set to −1, which means the minimal
energy demand is 1 kW. As shown in Figure 7, each agent is connected to a bus. Bus 1 is
the reference bus. Sellers are located on buses 2, 5, 8, 10 and 11, while buyers are on buses
3, 4, 6, 7, 9, 12 and 13. All agents can communicate with each other through a connected
virtual communication network, and solid lines constitute a physical electrical network.
The stopping conditions χr and χt are both set to 10−5 in the simulation.

1

2 3 4 5 6

7 8 9 10 11

12 Seller Buyer13

L1

L2 L3 L4 L5

L6

L7 L8 L9 L10
L11

L13 L14

L12

Figure 7. Schematic diagram of the test system.

Table 1. Agents’ parameters of a simple case study.

Agent Bus an bn En [kW] En [kW]

S1 2 0.04 2.1 0 7
S2 5 0.046 2.5 0 4
S3 8 0.06 3.2 0 6
S4 10 0.03 4 0 8
S5 11 0.04 3 0 10
B1 3 0.056 3 −7 −1
B2 4 0.075 4 −9 −1
B3 9 0.042 5 −8 −1
B4 3 0.056 6 −5 −1
B5 4 0.036 4.5 −6 −1
B6 9 0.025 7 −6.5 −1
B7 9 0.04 5.5 −7.5 −1
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5.1. Convergence Performance of the Negotiation Mechanism

For the convergence performance of the negotiation mechanism, we use the value of
total primary and dual residuals to measure it. The convergence process of the negotiation
algorithm is shown in Figure 8, from which it can be seen that the total local primary
and dual residuals keep decreasing with oscillation, and all transactions between sellers
and buyers converge after 36 iterations. Compared with other distributed optimization
algorithms, such as consensus + innovation [8] and gradient-based methods [6], the ADMM-
based algorithm has a very good convergence speed.

Table 2 shows the final power transaction quantities among agents of the case study.
Since there is no line constraint, the power transactions prices among agents will converge
to the same value, which is 4.29 $/kW. We also use the Power Transfer Distribution Factors
(PTDF) model to calculate the flows on each line. Figure 9 shows the line flows of the
test system.

0 5 10 15 20 25 30 35
Iteration

0

20

40

60

80

100
Total local primary residuals

Total local dual residuals

Figure 8. Convergence of the negotiation algorithm.

Table 2. Final power transactions quantities among agents.

S1 S2 S3 S4 S5

B1 0.19 kW 0.19 kW 0.19 kW 0.23 kW 0.19 kW
B2 0.15 kW 0.19 kW 0.19 kW 0.34 kW 0.13 kW
B3 2.09 kW 1.27 kW 1.45 kW 0.82 kW 2.38 kW
B4 0.62 kW 0.43 kW 1.05 kW 1.21 kW 1.69 kW
B5 0.59 kW 0.01 kW 0.53 kW 0.43 kW 1.32 kW
B6 1.46 kW 0.80 kW 1.23 kW 0.98 kW 2.04 kW
B7 1.91 kW 1.11 kW 1.36 kW 0.87 kW 2.26 kW

5.2. Performance of the Consensus Mechanism

After each agent completes the verification for the optimality of received solutions,
they need to share the consensus results to other neighboring agents. In this process,
the message may be lost due to packet dropout, node crash, or malicious attack. Thus,
we assume that the message delivery has a success rate, which is set to constant for all
agents. In this section, we demonstrate the performance of the consensus mechanism under
different message delivery success rates. The results are shown in Figure 10, from which we
can find that the consensus success rate keeps increasing with the increase in the message
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delivery success rate, and when the message delivery success rate is not lower than 0.7, the
consensus mechanisms almost guarantee success.

1

2 3 4 5 6

7 8 9 10 11
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Seller Buyer

13
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L12

0
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Figure 9. Flows on each line of the test system.
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Figure 10. Success rate of the consensus mechanism under different success rate of message delivery.

5.3. Performance of the Privacy-Preserving Consensus Mechanism

In this paper, we propose a privacy-preserving consensus mechanism to protect the
private information of agents. Agent n first constructs the pieces of encrypted information
{[an]m, [bn]m}, and then calculates Sk

nm = Nωn(2[an]m ∑m∈ωn Ek+1
nm + [bn]m) + ρ ∑m∈ωn Ek+1

nm ,
which will be sent to corresponding neighboring agents. By using the Shamir’s secret
sharing method, the private information {an, bn} and traded energy quantities ∑m∈ωn Ek+1

nm
can be well protected. Table 3 shows the plaintext Sk

n and ciphertext Sk
nm of a seller in a

certain iteration. It can be seen that the ciphertext is totally different from the plaintext, and
an attacker cannot obtain the true value.



Symmetry 2023, 15, 1561 18 of 22

Table 3. The plaintext and ciphertext using Shamir’s Secret Sharing.

Neighboring Agent Plaintext Sn Ciphertext Snm

B1 36.60 7,272,133.495513787
B2 36.60 14,544,230.391027808
B3 36.60 21,816,327.286541834
B4 36.60 29,088,424.182055857
B5 36.60 36,360,521.07756989
B6 36.60 43,632,617.973083906
B7 36.60 50,904,714.86859793

Then, we assume that there are malicious agents who will manipulate the shared
information Sk

nm to make the recovery value wrong. To be specific, the malicious agents
will add a random value to the Sk

nm, and broadcast it to other neighboring agents during
the consensus process. Table 4 shows the recovery results set {s1, . . . , su} of a trusted
agent with and without malicious attack. It can be seen from the table that, under one
malicious agent attack, the major result in {s1, . . . , su} is still the right result. However,
if there are two malicious agents in the neighboring agents’ set, one trusted agent may
receive two fake messages Sk

nm from the two malicious agents, then in the six (C2
4) recovery

results, there will be five wrong results, and it is impossible to obtain the right result from
the recovery set as shown in the third column in Table 4. Therefore, if the proportion of
untrusted agents satisfy 4 f + 1 ≤ Nωn , the proposed method guarantees the correctness
of the consensus verification results. Figure 11 shows the success rate of the consensus
mechanism under different numbers of malicious agents. With the increase in malicious
agents, the success rate decreases quite fast. When f = 3, i.e., there are three malicious
agents in the neighboring agents, the success rate is only about 20%.

Table 4. The recovery results set {s1, . . . , su} with and without malicious agents.

No Malicious Agent ( f = 0) One Malicious Agent ( f = 1) Two Malicious Agent ( f = 2)

36.60 −3644.287 −8518.492
36.60 −29,410.494 −947.18
36.60 −781.375 36.6
36.60 36.60 52,052.002
36.60 36.60 −1674.418
36.60 36.60 −182.018
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Figure 11. Success rate of privacy-preserving consensus mechanism under different number of
malicious agents.
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5.4. Computational Efficiency Improvement for the Consensus Mechanism

The computational efficiency improvement for the consensus mechanism is shown in
Figure 12. We use the communication times among agents to measure the performance.
It can be seen that after taking the strategy, i.e., only verify the optimality of the received
results for the first three and last few iterations, the communication times among agents
can be highly reduced by more than 60%, from 15,120 to 5880 (α = 100) and 3360 (α = 10).
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Figure 12. Communication times forthe consensus mechanism under different values of α.

6. Discussion

The most valuable achievement of this paper is the privacy-preserving consensus
mechanism, which provides a secure and efficient method to ensure the incentive compat-
ibility of an optimization-based P2P energy trading mechanism. Using our method, all
agents can spontaneously and collaboratively guarantee the optimality of the solutions, i.e.,
all agents will obey the negotiation mechanism to decide the energy biddings. However,
our consensus mechanism has some limitations. First, it is only applicable to optimization
problems where the objective function and constraints are continuously differentiable. It is
not suitable for integer programming (IP) problems because the optimal solution cannot be
verified using KKT conditions. Second, for privacy-preserving methods, the proportion
of untrusted representatives is less than 1/4. While it can effectively protect privacy, it
performs slightly worse on dishonesty tolerance. In our future work, we will focus on
improving the consensus mechanism to handle more complex optimization problems,
increase the tolerance of dishonesty, and apply it to blockchain-based systems to prove
their effectiveness and performance.

7. Conclusions

For an optimization-based P2P energy trading mechanism, it is a challenge that to
encourage agents to honestly cooperate in a trustless environment. In this work, an
improved and revised PoSo-inspired consensus mechanism is proposed for P2P energy
trading. The solutions solved by each agent will be verified by neighboring agents based on
the KKT conditions, and a privacy-preserving method is designed to protect agents’ private
information using Shamir’s Secret Sharing scheme. A PBFT-based method is designed to
recover the correct result even under the malicious attacks from untrusted agents. In the
simulation, we demonstrate the convergence of the negotiation mechanism, effectiveness
of consensus mechanism, privacy protection performance and computational efficiency
improvement for the consensus mechanism. The results prove that our proposed consensus
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mechanism can effectively verify the correctness of the solutions without a central authority
and well-protect agents’ privacy under a proportion of malicious attackers.
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Nomenclature

Cn(·) Production cost or utility function of agent n
n, m Indices for agents
E, E Boundaries of power
an, bn Coefficients of the quadratic function of agent n
Ω Set of agents
Ωp Set of energy producers
Ωc Set of energy consumers
ω Set of neighboring agents
λnm Energy prices provided by n to m
En Power injection or total traded quantity of agent n
Enm Traded energy quantity from agent n to m
Fnm Intermediate value of traded energy quantity between agent n to m
ρ Penalty factor
χr, χt Stopping criterion
R Total local primary residuals
T Total local dual residuals
{µ

n
, µn} Dual variables for constraints En ≤ En ≤ En

δnm Dual variables for constraints 0 ≤ Enm (0 ≥ Enm)
∆p(·) Indicator function for consensus fine
v Consensus verification result
f Number of untrusted agents in the neighboring agents set
dan , dbn Randomly generated coefficient for Shamir’s Secret Sharing functions
[an]m, [bn]m Encrypted piece of information for agent m
Sk

nm Encrypted aggregated information from agent n to m
Sk

n Decrypted aggregated result
α Tuning parameter to control the number of consensus verification
D Set of agents who sent Commit messages
Γ Subset of D
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