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Abstract: Electrostatic nonlinear random Langmuir structures have been propagated in stochastic
magnetospheres, clouds and solar wind. A theoretical description of Langmuir waves can be modeled
by Schrödinger and Zakharov models with stochastic terms. It was explained that the stochastic
parameter affects the forcing, collapsing in strongly density turbulence and density crystalline
structures. The unified method has been implemented to provide new stochastic solutions for a
Zakharov system in subsonic limit with noises via the Itô sense. This unified approach provides
a variety of advantages, such as avoiding difficult calculations and explicitly providing pivotal
solutions. It is easy to use, efficient, and precise. The induced generated energy during the collapsing
of solar Langmuir wave bursts and clouds is determined by the solitonic formations. In addition, the
collapsing strong turbulence or forcing density crystalline structures depend mainly on stochastic
processes. Furthermore, electrostatic waves in clouds that may collapse are represented sometimes
as dissipative shapes. So, the results of this investigation could be applicable to observations of
energy seeding and collapsing in clouds. This energy is based on the electrostatic field and its related
densities’ perturbation in subsonic limits. Finally, it has been explored how noise parameters in the
Itô sense affect the solar wind Langmuir waves’ properties. So, the findings of this discussion may be
applicable to real observations of energy collapsing and seeding in clouds.

Keywords: stochastic Zakharov model; Brownian motion; subsonic limit; soliton; stochastic
structures

1. Introduction

Space environment discussions have improved the plasma wave characteristics in-
duced by ponderomotive pressures in dispersive areas [1–4]. The Langmuir structures’
turbulences were examined under weak conditions in [1]. Langmuir collapse and wave
turbulence in laser plasmas are introduced and investigated using numerical simulations
in two and three dimensions [2,3]. The physical model of ions waves and their behaviors
through the influence of ponderomotive forces was investigated [5]. The ponderomotive
forces that affected charged particle behaviors in high-frequency oscillations in sound
electromagnetic nonlinear environments were studied by Shakeel et al. [6]. The properties
of Langmuir’s freak waves in the electron-positron nonlinear complex fluid are explored
in nonlinear coupling modulations and small-amplitude limit. Symmetry can be used to
reduce the problem and provide solutions that meet specific boundary constraints [7–9].
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Over and above, several nonlinear applied systems can produce the observed stochas-
tic electromagnetic waves [10–14]. In applied science, NPDEs and symmetry are closely
related concepts. Symmetry is crucial for comprehending NPDEs in particular. A math-
ematical object’s symmetry is its invariance under specific transformations [15,16]. The
development of solitonic solutions for the NPDEs is crucial for understanding nonlinear
phenomena and describing physical processes in several scientific fields [17–22]. Mean-
field theories can theoretically investigate the presence of stochastic waves in physics
applications [23]. The examination of Markovian processes using measured-valued and
geometrical methods can provide insight into the strong stochastic processes in a nonlinear
state [24,25]. Additionally, parabolic semilinearly (nonlinearly) NPDEs were used to study
the nonlinear Fokker–Planck problem model. There are many methods for extracting wave
solutions from nonlinear partial differential nonlinear equations (NPDEs) by transforming
them into ordinary differential nonlinear equations (ODEs). The majority of these methods
are nonclassical symmetry reduction techniques. We seek to resolve the Zakharov equation
in the subsonic domain in the Itô sense defined by [6,26]:

iEt(x, t) +
1
2
Exx(x, t)−D(x, t) E(x, t)− iδE(x, t) Bt = 0 ,

Dtt(x, t)−Dxx(x, t)− 2 (| E(x, t) |2)xx = 0,
(1)

E e−iwpt denotes the normalized perturbed electrostatic field oscillations and D(x, t) denotes
normalized density perturbations. The noise Bt denotes the Brownian times derivative
of B(t) and δ represents the noise amplitude [27]. The Zakharov model for electrostatic
fields is described using Equation (1). Musher et al. investigated the weak Langmuir [1].
Eliasson et al. investigated the trapping of Langmuir waves in ion holes [28]. It is often
noted that Langmuir waves are excited and produced by a variety of nonlinear structures in
various envelope forms [29,30]. According to Hess et al. in [31,32], the Langmuir structures
in solar wind are the result of many types of solar emissions such as bursts and localized
nonlinear wave packets. A Brownian motion is a time-continuous stochastic process [33,34].
The following are the major properties of Brownian motion {B(t)}t≥0:

(i) B(t), t ≥ 0 is a continuous function of t, t denotes the time and B(t) ∼ N(0, t).
(ii) B(s)− B(t) and B(k)− B(u) are independent for s < t < u < k.
(iii) B(t)− B(s) has a normal distribution with a mean and variance of zero and t− s, respec-

tively, i.e., B(t)− B(s) ∼
√

t− s N(0, 1), N(0, 1) is a standard normal distribution.

The clouds with complex gravitational instabilities with implications for the creation of
dissipative and huge structures in space have been extensively studied [35–38]. The cooling
of cloud elements and gravitational collapse of particles of matter can both occur concur-
rently in clouds and space plasmas due to the radiative effects [35–38]. The temperature and
extremely precipitable water in the atmospheric column are impacted by clouds’ radiative
cooling [39,40]. Wen et al. used the fluid model to study the cooling of laser plasmas and
witness shockwaves [39]. On the other hand, it has been demonstrated that the instability of
anvil clouds in tropical strong convective processes depends on interactions between clouds
and radiation. Furthermore, by stabilizing the atmosphere through wave collapsing and
radiative cooling in clouds, it will have an effect on extensive convection [41–43]. In dusty
astrophysical self-gravity, the modulating effects of radiative condensations and cooling
with their perturbations on the structural propagation parameters have been explored [43].
Furthermore, a number of physical factors, including temperature ratio and grain charge
variations, have a significant impact on how clouds are seeded [44–46]. Those variables also
determine how electrostatic collapse occurs in dynamical cloud characteristics. Recently,
the new theoretical NLSE applications implies an important role in the interpretation of
many phenomena and observations that have become of large scientific significance. This
equation can be used and applied to compare with the observations of collapsing wave
energies and clouds seeding [46–48].
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In [26], the authors studied the system of equations for the ion sound and Langmuir
waves via the Bernoulli sub-equation approach. Namely, they consider this model in
a deterministic case. They also investigated the modulation instability analysis for this
model based on the standard linear stability analysis. Baskonus et al. introduced some
dark solutions for Equation (1), using the sine-Gordon expansion approach [5], Manafian-
presented solitons, kink, periodic and rational solutions for the ion sound and Langmuir
waves [49]. Kumar et al. employed the tanh–coth technique and introduced some soliton
solutions [50]. In [51], the authors investigated this system in a deterministic case to obtain
several solitary wave solutions, using two new analytical methods. The goal of this study
is to solve the Zakharov model in a subsonic limit, utilizing a unified method to provide
several stochastic solutions. Most standard papers considered the ion sound and Langmuir
waves system in a deterministic case. In contrast to these papers, we consider this model in
a stochastic case specifically forced by multiplicative noise in the Itô sense. To the best of
our knowledge, no previous study has been conducted utilizing this unified method for
solving this model in a stochastic sense. The presented solutions in this work demonstrate
certain important physics phenomena such as bursty electrostatic waves in cusps areas and
solar wind. In comparison to other methods, this unified method has a number of benefits,
including the avoidance of challenging calculations and the explicit provision of crucial
solutions. It is simple, effective and precise. We also present the potential equation for the
Zakharov model of the system dynamical equation.

This study is structured as follows: Section 2 briefly presents the unified method which
is used to extract stochastic solutions for Zakharov equations in the subsonic limit via the
Itô sense. The Zakharov model in the subsonic limit is described in Section 3. Section 3
provides some vital solutions to the Zakharov model’s subsonic limit. Section 4 introduces
a closed form of stochastic solutions for Equation (1). The physical explanation for the
stochastic solutions is described in Section 5. Finally, a summary of some conclusions is
provided in Section 6.

2. Description of the Method

We present the abbreviation of the unified method [52]. Consider the
following NLPDEs

Ψ(Q, Qx, Qt, Qxx, Qtt, Qxt, . . .) = 0. (2)

Utilizing the wave transformation:

Q(x, t) = Q(ζ), ζ = x− wt, (3)

w is the wave speed in Equation (2) transferred to the following ODE:

Φ(Q, Q′, Q′′, Q′′′, . . .) = 0. (4)

The following ODE was created from several applied science models of the form (2):

LQ′′ + MQ3 + NQ = 0. (5)

The constants L, M, and N are specific constants determined by the constants of the
main model and the wave speed.

The families of solutions for Equation (5) are [52]:

1. Family 1:

Q(ζ) = ±
√
−2N

M
sech

(
±
√
−N

L
ζ

)
. (6)
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2. Family 2:

Q(ζ) = ±
√
−35 N
18 M

sech2

(
±
√
− 5 N

12 L
ζ

)
. (7)

3. Family 3:

Q(ζ) = ±
√
−N
M

tanh

(
±
√

N
L

ζ

)
. (8)

3. Subsonic Limit Description

In the subsonic limit, Equation (1) is reduced to

iEt(x, t) +
1
2
Exx(x, t) + 2 | E(x, t) |2 E(x, t)− iδE(x, t) Bt = 0. (9)

The term δE(x, t) Bt denotes a stochastic noise term. Utilizing transformations

E(x, t) = Q(ζ)eiϕ+δB(t)−δ2t (10)

and
ζ = v x + ρ t, ϕ = cx + λt.

Equation (9) is reduced to

−1
2

c2Q(ζ) + 2Q3(ξ)e2δB(t)−2δ2t +
1
2

v2Q′′(ζ)− λQ(ζ) = 0, (11)

where ρ, c, λ, and v are constants. Taking the expectation of both sides to Equation (11)
yields

−1
2

c2Q(ζ) + 2Q3(ξ)e−2δ2t E(e2δB(t)) +
1
2

v2Q′′(ζ)− λQ(ζ) = 0. (12)

Since E(e2δB(t)) = e2δ2t, Equation (12) becomes

v2Q′′(ζ) + 4Q3(ζ)− (c2 + 2λ)Q(ζ) = 0. (13)

On the other hand, we have

(c v + ρ)Q′(ζ)− δ2Q(ζ) = 0, (14)

which gives

Q(ζ) = e
ζδ2

c v+ρ

with condition

ρ2
(
−c2 − 2λ

)
− 2cρv

(
c2 + 2λ

)
+ v2

(
−c4 − 2λc2 + δ4

)
+ 4(c v + ρ)2e−

2ηδ2
c v+ρ = 0.

Equation (13) is a dynamical system of a particle in the potential, which is defined as

V = − c2Q2(ζ)

2v2 − λQ2(ζ)

v2 +
Q4(ζ)

v2 . (15)

Hence, the exact solution for Equation (13) is:

Q(ζ) =

√
2
√

c2 + 2λe
√

c2+2λ(ρt+xv)
v

e
2
√

c2+2λ(ρt+xv)
v + 1

.
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Consequently, the solutions of Equation (9) and the corresponding electrostatic poten-
tial E(x, t) and the density distributions D(x, t) are

E(x, t) =
√

2
√

c2 + 2λe
√

c2+2λ(ρt+xv)
v

e
2
√

c2+2λ(ρt+xv)
v + 1

ei(cx+λt)+δB(t)−δ2t. (16)

D(x, t) = −e2(δB(t)−δ2t)

∣∣∣∣∣∣
√

2
√

c2 + 2λe
√

c2+2λ(ρt+xv)
v

e
2
√

c2+2λ(ρt+xv)
v + 1

∣∣∣∣∣∣
2

. (17)

4. Closed-Form Solutions

We produce further stochastic solutions for Equation (9). According to the unified
method, the stochastic solutions of Equation (9) are:

1. Family I:

Q1,2(x, t) = ±
√

c2 + 2λ

2
sech

(
±
√

c2 + 2λ

v
(v x + ρ t)

)
. (18)

Thus, the solutions for Equation (1) are

E1,2(x, t) = ±
√

c2 + 2λ

2
ei(cx+λt)+δB(t)−δ2t sech

(
±
√

c2 + 2λ

v
(v x + ρ t)

)
. (19)

D1,2(x, t) = −e2(δB(t)−δ2t)

∣∣∣∣∣
√

c2

2
+ λsech

(√
c2 + 2λ(ρt + xv)

v

)∣∣∣∣∣
2

. (20)

2. Family II:

Q3,4(x, t) = ±
√

35 (c2 + 2λ)

72
sech2

(
±
√

5 (c2 + 2λ)

2
√

3 v
(v x + ρ t)

)
. (21)

Thus, the solutions for Equation (1) are

E3,4(x, t) = ±
√

35 (c2 + 2λ)

72
ei(cx+λt)+δB(t)−δ2t sech2

(
±
√

5 (c2 + 2λ)

2
√

3 v
(v x + ρ t)

)
. (22)

D3,4(x, t) = − 1
72

ei(cx+λt)+δB(t)−δ2t

∣∣∣∣∣
√

35 (c2 + 2λ)sech2

(
±
√

5 (c2 + 2λ)

2
√

3 v
(v x + ρ t)

)∣∣∣∣∣
2

. (23)

3. Family III:

Q5,6(x, t) = ±
√

c2 + 2λ

2
tanh

(
±
√
−(c2 + 2λ)√

2 v
(v x + ρ t)

)
. (24)

Thus, the solutions for Equation (1) are

E5,6(x, t) = ±
√

c2 + 2λ

2
ei(cx+λt)+δB(t)−δ2t tanh

(
±
√
−(c2 + 2λ)√

2 v
(v x + ρ t)

)
. (25)

D5,6(x, t) = − ei(cx+λt)+δB(t)−δ2t

∣∣∣∣∣
√

c2 + 2λ

2
tanh

(
±
√
−(c2 + 2λ)√

2 v
ξ

)∣∣∣∣∣
2

. (26)
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5. Discussion of Results

The subsonic limit of the Zakharov system has been theoretically studied to obtain
mathematical forms of electrostatic fields and densities E(x, t) and D(x, t) as super, en-
velopes, and kink dissipative structures. These waves self-compressed and become trapped
in the voids of self-induced densities. Therefore, the principal mechanism for energy
dissipation for extreme turbulence is collapsing soliton–cavitons produced by extremely
inhomogeneous Langmuir turbulence.

A Zakharov model (1) with Brownian time-dependent function B(t) and noise term
in the Itô sense transformed to Equation (9). The expectation of (9) with E(e2δB(t)) = e2δ2t

reduced the model to a differential form that was solved to obtain several electrostatic
solutions. Equations (16) and (17) represent the exact field E(x, t) and density D(x, t) for
subsonic conditions. The properties of Equation (16) are represented in Figures 1–3. Figure 1
is a geometrical configuration of the random properties of both wave amplitude and energy
associated with the occurrence of collapse. Figure 2 denotes the huge soliton-like wave,
which begins to collapse with an increase in the random coefficient. In addition, it was
noted that the breathers wave has been formed in Figure 3.

On the other hand, to introduce different stochastic solutions, the unified solver
method was used for solving Equation (9) [52]. Many stochastic solutions for fields E(x, t)
and corresponding densities D(x, t) are given by Equations (18)–(26). The randomly
stochastic dark envelopes, dissipative shocks and shocks such as soliton fields and super
structures are obtained.

The stochastic characteristics of Equation (25) are illustrated in Figures 4 and 5. Figure 4
is a geometrical configuration of the tanh solution. The random features of both the wave
amplitude and energy for the forced random wave are shown in Figure 4. Figure 5 depicts
the super random forced soliton-like wave, which begins to grow with the increasing
random coefficient.

In the removal of noise impacts, Equations (16) and (17) read:

E(x, t) = ei(cx+λt)
√

2
√

c2 + 2λe
√

c2+2λ(t+xω)
ω

e
2
√

c2+2λ(t+xω)
ω + 1

. (27)

D(x, t) = −e2

∣∣∣∣∣
√

c2

2
+ λsech

(√
c2 + 2λ(t + xω)

ω

)∣∣∣∣∣
2

. (28)

Figure 1. Trajectory of E(x, t) for v = 0.05, ρ = 1, c = 1.5.
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Figure 2. Change of ReE(x, t) with x and t for v = 0.05, ρ = 1, c = 1.5.

Figure 3. Change of ReE(x, t) with x and t for v = 0.05, ρ = 1, c = 1.5.

Figure 4. Trajectory of E5(x, t) for v = 0.05, ρ = 1, c = 1.5.
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Figure 5. Change of ReE5(x, t) with x and t for v = 0.05, ρ = 1, c = 1.5.

To discuss the solitary behavior for δ = 0, some important structures are obtained;
i.e., the periodical envelope breathers field wave E1(x, t) = E(x, t) and bell shape solitons
E3(x, t) = E(x, t) are shown in Figures 6 and 7. In addition, the corresponding super
localized behavior of D3(x, t) = n(x, t) is plotted in Figure 8. Finally, the solitary structures
of solution E5(x, t) = E(x, t) are depicted in Figures 9–11. The E5(x, t) variations with x
and t are given in Figure 9. The dark envelope and localized super soliton are displayed
in Figures 10 and 11. The stable stationary soliton D5(x, t) = n(x, t) for a dissipative elec-
trostatic field is depicted in Figure 12. To sum up, the attributes of stochastic subsonic
Zakharov model solutions that are modulated with noise affected the energy properties of
the obtained electrostatic fields and densities.

Figure 6. Change of ReE1(x, t) with x and t for v = 0.05, ρ = 1, c = 1.5.

Figure 7. Change of |E3(x, t)| with x and t for v = 0.05, ρ = 1, c = 1.5.
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Figure 8. Change of D1(x, t) with x and t for v = 0.05, ρ = 1, c = 1.5.

Figure 9. Change of E5(x, t) with x and t for v = 0.05, ρ = 1, c = 1.5.

Figure 10. Change of ReE5(x, t) with x for v = 0.05, ρ = 1, c = 1.5.
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Figure 11. Change of |E5(x, t)| with x for v = 0.05, ρ = 1, c = 1.5 .

Figure 12. Plot of D5(x, t) with x for v = 0.05, ρ = 1, c = 1.5.

6. Conclusions

Important features including exactly solitary, dark envelopes and super behaviors were
applied to characterize the Zakharov stochastic model in a subsonic case. The influences of
random parameters in the amplitude, energy collapsing and seeding in clouds with types
of structural solutions have been examined. It was noted that the stochastic effects may
explain some modulations in the obtained collapsing or forced energy of solar Langmuir
burst waves. The applications of this theoretical investigation might be used in solar wind
energy and seeding in clouds applications.
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