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Abstract: Symmetry and asymmetry play vital roles in prediction. Symmetrical data, which follows a
predictable pattern, is easier to predict compared to asymmetrical data, which lacks a predictable
pattern. Symmetry helps identify patterns within data that can be utilized in predictive models, while
asymmetry aids in identifying outliers or anomalies that should be considered in the predictive model.
Among the various factors associated with storms and their impact on surface temperatures, wind
speed stands out as a significant factor. This paper focuses on predicting wind speed by utilizing
unified hybrid censoring data from the three-parameter Burr-XII distribution. Bayesian prediction
bounds for future observations are obtained using both one-sample and two-sample prediction
techniques. As explicit expressions for Bayesian predictions of one and two samples are unavailable,
we propose the use of the Gibbs sampling process in the Markov chain Monte Carlo framework to
obtain estimated predictive distributions. Furthermore, we present a climatic data application to
demonstrate the developed uncertainty procedures. Additionally, a simulation research is carried out
to examine and contrast the effectiveness of the suggested methods. The results reveal that the Bayes
estimates for the parameters outperformed the Maximum likelihood estimators.

Keywords: Burr-XII distribution; Markov chain Monte Carlo; unified hybrid censoring; Bayesian
prediction; climatic data

1. Introduction

Wind is the force that converts air pressure into air movement, causing the speed of the
wind to decrease as air pressure increases. When a mass of moving air slows down, its ki-
netic energy or momentum is converted into static atmospheric pressure. This relationship
indicates that higher wind speeds correspond to lower air pressure measurements. In addi-
tion to transporting hot or cold air, wind introduces moisture into the atmosphere, resulting
in changes in weather patterns. Therefore, changes in wind conditions directly impact the
weather. The direction of the wind is influenced by differences in air pressure. Wind flows
from areas of high pressure to low-pressure zones, and the wind’s speed determines the
degree of cooling. The UHCS, a generalised Type-I and Type-II HCS, was first introduced
by Balakrishnan et al. [1]. The following is a definition of it: Let T1 and T2 be values within
the range (0, ∞), where T2 is greater than T1, and let r and K be integers such that K < r < n.
The test ends at min{max {Zr:n, T1}, T2} if the Kth failure occurs before time T1, where Zr:n
represents the failure time of the rth unit. The test ends at the earliest possible time between
Zr:n and T2 if the Kth failure occurs between T1 and T2. If the kth failure occurs after time
T2, the experiment is terminated at ZK:n, where ZK:n denotes the failure time of the Kth
unit. By employing this censoring scheme, we can ensure that the experiment concludes
within a maximum duration of T2 with at least K failures. In such case, we can assure
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exactly K failures. The Burr-XII distribution was first developed by Burr [2] and has been
effectively used with a wide variety of observational data in many different fields. See
Shao [3], Wu et al. [4] and Silva et al. [5] for more information on Burr-XII’s applications.
There are several reasons for choosing the Burr distribution. Firstly, it encompasses only
positive values, making it particularly suitable for modeling hydrological or meteorological
data. Secondly, it possesses two shape parameters, enabling its adaptability to different
samples due to its ability to cover a wide range of skewness and kurtosis values. For fur-
ther discussion on this aspect, see Ganora and Laio [6]. Thirdly, the Burr-XII family is
extensive and includes various sub-models, such as the log-logistic distribution. Cook and
Johnson [7] utilized the Burr model to achieve improved fits for a uranium survey dataset,
while Zimmer et al. [8] explore the statistical and probabilistic properties of the Burr-XII
distribution and its relationship with other distributions commonly used in reliability
analysis. Tadikamalla [9] expanded the two-parameter Burr-XII distribution by introducing
an additional scale parameter, resulting in the TPBXIID. Since then, the applications of
the Burr-XII distribution have received increased attention. Tadikamalla also established
mathematical relationships among Burr-related distributions, demonstrating that the Lo-
max distribution is a special case of the Burr-XII distribution, and the compound Weibull
distribution generalizes the Burr distribution. Furthermore, Tadikamalla showed that the
Weibull, logistic, log-logistic, normal, and lognormal distributions can be considered as
special cases of the Burr-XII distribution through appropriate parameter choices. The TP-
BXIID offers significant flexibility by incorporating two shape parameters and one scale
parameter into its distribution function, allowing for a wide range of distribution shapes.
The TPBXIID is defined by the following cdf:

F(z; α, θ, γ) = 1−
[

1 +
( z

α

)θ
]−γ

, z > 0, α, θ, γ > 0, (1)

and the pdf is given by:

f (z; α, θ, γ) = θγα−θzθ−1
[

1 +
( z

α

)θ
]−(γ+1)

, z > 0, α, θ, γ > 0, (2)

The survival function S(z) can be obtained as:

S(z) =
[

1 +
( z

α

)θ
]−γ

, z > 0, (3)

and the failure rate function h(z) is given by:

h(z) = θγα−θzθ−1
[

1 +
( z

α

)θ
]−1

, z > 0, (4)

where the parameters γ and θ determine the shape of the density function, while α de-
termines its scale. When θ is greater than 1, the function has a shape that resembles an

upside-down bathtub and is unimodal, with the mode occurring at z = α
[

(θ−1)
(θγ+1)

] 1
θ . In the

case where θ is equal to 1, the function has an L-shape.
The TPBXIID can be reduced to well-known distributions as follows:

• Setting θ = 1 in Equation (1) results in the Lomax distribution.
• Setting α = 1 in Equation (1) leads to the Burr-XII distribution.
• Setting α = 1 and γ = 1 in Equation (1) yields the log-logistic distribution.

The shapes of the pdf, cdf, survival and failure rate functions of the TPBXIID for
different values of the parameters α, θ and γ are given in the Figures 1–4.
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(a)
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Figure 1. (a) The pdf of TPBXIID with α = 7.0, γ = 6.0 and for various values of the shape parameter
θ. (b) The pdf of TPBXIID with θ = 7.0, γ = 6.0 and for various values of the scale parameter α.
(c) The pdf of TPBXIID with α = 7.0, θ = 7.0 and for various values of the shape parameter γ.

(a)

~

(b)

~

(c)
Figure 2. (a) The cdf of TPBXIID with α = 7.0, θ = 11 and for various values of the shape parameter
γ. (b) The cdf of TPBXIID with θ = 7.0, γ = 8.0 and for various values of the scale parameter α.
(c) The cdf of TPBXIID with α = 7.0, γ = 8.0 and for various values of the shape parameter θ.

(a)

~

(b)
Figure 3. Cont.



Symmetry 2023, 15, 1552 4 of 24

(c)
Figure 3. (a) The survival function of TPBXIID with α = 10, γ = 8.0 and for various values of the
shape parameter θ. (b) The survival function of TPBXIID with θ = 7.0, γ = 8.0 and for various values
of the scale parameter α. (c) The survival function of TPBXIID with α = 10, θ = 7.0 and for various
values of the shape parameter γ.

(a)

~

(b)

~

(c)
Figure 4. (a) The hazard rate function of TPBXIID with α = 10, γ = 2.0 and for various values of the
shape parameter θ. (b) The hazard rate function of TPBXIID with θ = 4.0, γ = 2.0 and for various
values of the scale parameter α. (c) The hazard rate function of TPBXIID with α = 10, θ = 3.0 and for
various values of the shape parameter γ.

Properties of the TPBXIID

• The rth moment about the origin of a random variable Z distributed by a TPBXIID,
denoted by µ́r, is the expected value of Zr, symbolically,

µ́r = E(Zr) =
αr Γ( r

θ + 1)Γ(γ− r
θ )

Γ(γ)
, (5)

where
Γ(γ− r

θ
) 6= 0,−1,−2, . . . ,−∞.

• The variance of TPBXIID can be written as

θ2 =
α2 Γ(γ) Γ( 2

θ + 1)Γ(γ− 2
θ )− α2 Γ( 1

θ + 1)2Γ(γ− 1
θ )

2

Γ(γ)2 . (6)

• The qth quantile zq of the TPBXIID can be defined as

zq = α
[(

1− q
)−1

γ − 1
] 1

θ . (7)
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Belaghi and Asl conducted research on estimating the Burr-XII distribution using both
non-Bayesian and Bayesian methods in recent studies [10]. Another study by Nasir et al. [11]
introduced a new category of distributions, called Burr-XII power series, which has a strong
physical basis and combines the exponentiated Burr-XII and power series distributions.
Additionally, Jamal et al. [12] proposed an altered version of the TPBXIID distribution
that has flexible hazard rate shapes based on the common Burr-XII distribution.This study
has been examined by multiple authors, including Sen et al. [13], Dutta and Kayal [14],
Dutta et al. [15], and Sagrillo et al. [16].

Prediction plays a significant role in inferential statistics and is of great importance in
various practical domains such as meteorology, economics, engineering, and education greatly
rely on prediction for making informed decisions. Many life-testing experiments involve
predicting future observations. Several researchers, including Balakrishnan and Shafay [17],
AL-Hussaini and Ahmad [18], Shafay and Balakrishnan [19] and Shafay [20,21] have explored
Bayesian prediction methods for future observations using various types of observed data.

Recently, Ateya et al. [22] conducted a study on predicting future failure times using a
UHCS for the Burr-X model, with specific emphasis on engineering applications. In this
article, we address the same problem using UHCS but with additional considerations. Let
Z1:n < Z2:n < ... < Zn:n denote the order statistics from a random sample of size n from an
absolutely continuous distribution. Under the UHCS, we run into six situations, which are
listed below:

(I) 0 < zk:n < zr:n < T1 < T2,
(II) 0 < zk:n < T1 < zr:n < T2,
(III) 0 < zk:n < T1 < T2 < zr:n,
(IV) 0 < T1 < zk:n < zr:n < T2,
(V) 0 < T1 < zk:n < T2 < zr:n,
(VI) 0 < T1 < T2 < zk:n < zr:n.

In each situation, the experiment is terminated at T1, zr:n, T2, zr:n, T2, and zk:n, respec-
tively. Thus, the likelihood function of the UHCS Z = (Z1:n < Z2:n < ... < ZW:n) can be
expressed as:

L(z, θ) =
n!

(n−W)!

[ W

∏
i=1

f (zi)
][

1− F(B)
]n−W

, (8)

(W, B) =


(G1, T1), for I,
(r, zr:n), for II and IV,
(G2, T2), for III and V,
(k, zk:n), for VI,

(9)

In this context, W represents the cumulative number of failures observed in the experiment
up to time B (the stopping time point), and G1 and G2 indicate the number of failures that
have occurred before time points T1 and T2, respectively.

Moreover, using Equations (1), (2) and (8), we can express the likelihood function as:

L(z; α, θ, γ) = Kα−WθθWγW
W

∏
i=1

zθ−1
i

W

∏
i=1

[
1 +

( zi
α

)θ]−(γ+1)[
1 +

(B
α

)θ]−γ(n−W)
, (10)

where K = n!
(n−W)! .

The log-likelihood function for Equation (10), can be expressed as follows:

`(α, θ, γ) = ln(k) + W ln θ −Wθ ln α + W ln γ + (θ − 1)
W

∑
i=1

ln(zi)− (γ + 1)
W

∑
i=1

ln
[
1 +

( zi
α

)θ]
− γ(n−W) ln

[
1 +

(B
α

)θ]
.

(11)
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To obtain the parameter estimates, we calculate the first derivatives of Equation (11)
as follows:

−W θ̂

α̂
+ (γ̂ + 1)

W

∑
i=1

θ̂ zi(
zi
α̂ )

θ̂−1

α2
[
1 +

(
zi
α̂

)θ̂] + γ̂(n−W)
θ̂ B( B

α̂ )
θ̂−1

α2
[
1 +

(
B
α̂

)θ̂] = 0, (12)

W
θ̂
−W ln α̂ +

W

∑
i=1

ln zi − (γ̂ + 1)
W

∑
i=1

(
zi
α̂

)θ̂
ln
(

zi
α̂

)
1 +

(
zi
α̂

)θ̂
− γ̂(n−W)

(
B
α̂

)θ̂
ln
(

B
α̂

)
1 +

(
B
α̂

)θ̂
= 0, (13)

and
W
γ̂
−

W

∑
i=1

ln
[
1 +

( zi
α̂

)θ̂]
− (n−W) ln

[
1 +

(B
α̂

)θ̂]
= 0. (14)

From (14), we obtain the MLE γ̂ as

γ̂ = W

[
W

∑
i=1

ln
[
1 +

( zi
α̂

)θ̂]
+ (n−W) ln

[
1 +

(B
α̂

)θ̂]]−1

. (15)

Because Equations (12) and (13) cannot be written in closed-form expressions, we
propose that the parameters have gamma prior distributions as follows:

π1(α) ∝ αa1−1e−b1α, α > 0,

π2(θ) ∝ θa2−1e−b2θ , θ > 0,

π3(γ) ∝ γa3−1e−b3γ, γ > 0,

The expression

π(α, θ, γ) ∝ αa1−1θa2−1γa3−1e−b1α−b2θ−b3γ, (16)

represents the joint prior distribution for the α, θ and γ The joint posterior density function
is obtained from (8) and (16) as follows:

π∗(α, θ, γ|z) ∝ αa1−Wθ−1θa2+W−1γa3+W−1e−θ
{

b2−∑W
i=1 ln(zi)

}
e−γ
{

b3+∑W
i=1 ln

[
1+
( zi

α

)θ]}
× e−b1α−∑W

i=1 ln
[

1+
( zi

α

)θ][
1 +

(B
α

)θ]−γ(n−W)
.

(17)

The posterior density function of α given θ and γ can be derived from (17) and is
expressed as:

π∗1 (α|θ, γ, z) ∝ αa1−Wθ−1e−b1α−∑W
i=1 ln

[
1+
( zi

α

)θ][
1 +

(B
α

)θ]−γ(n−W)
, (18)

π∗2 (θ|α, γ, z) ∝ θa2+W−1αa1−Wθ−1e−θ
{

b2−∑W
i=1 ln(zi)

}
e−∑W

i=1 ln
[

1+
( zi

α

)θ]
, (19)

and

π∗3 (γ|α, θ, z) ∝ γa3+W−1e−γ
{

b3+∑W
i=1 ln

[
1+
( zi

α

)θ]}
. (20)

It can be seen that, generating samples of γ can be achieved easily using any routine
that produces random numbers from a gamma distribution. However, the posterior density
functions of α given θ and γ in (18), and the posterior density function of θ given α and γ
in (19), do not have known distributions that allow for direct sampling using conventional
techniques. Despite this, when observing the plots of both posterior distributions, it
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becomes apparent that they exhibit similarities to normal distributions, as depicted in
Figure 5. Therefore, we recommend employing the Metropolis–Hastings algorithm with
a normal proposal distribution to generate random numbers from these distributions,
as suggested by Metropolis et al. [23]. The subsequent sections of this paper are organized
as follows: Section 2 examines Bayesian prediction intervals utilizing the UHCS for the
TPBXIID. In Section 3, we employ the MCMC technique to derive Bayesian prediction
intervals. Section 4 presents an analysis of a real dataset for illustrative purposes. Finally,
Section 5 offers concluding remarks.

(a)

~

(b)
Figure 5. (a) Posterior density function for α and (b) Posterior density function for θ.

2. Approximate Confidence Interval

The asymptotic variance–covariance of the MLEs for the parameters α, θ, and γ can
be determined by the elements of the negative Fisher information matrix, denoted as Iij.
These elements are defined as follows:

Iij = −E
(

∂2`
∂χi∂χj

)
; where i, j = 1, 2, 3 and (χ1, χ2, χ3) = (α, θ, γ). (21)

Finding exact mathematical formulas for these assumptions is difficult, though. The
variance-covariance matrix is therefore calculated as follows:

I−1(α, θ, γ) =


− ∂2`

∂α2 − ∂2`
∂α∂θ − ∂2`

∂α∂γ

− ∂2`
∂θ∂α − ∂2`

∂θ2 − ∂2`
∂θ∂γ

− ∂2`
∂γ∂α − ∂2`

∂γ∂θ − ∂2`
∂γ2


−1

↓(α,θ,γ)=(α̂,θ̂,γ̂)

=

 v̂ar(α̂) cov(α̂, θ̂) cov(α̂, γ̂)
cov(θ̂, α̂) v̂ar(θ̂) cov(θ̂, γ̂)
cov(γ̂, α̂) cov(γ̂, θ̂) v̂ar(γ̂)

, (22)

where v̂ar(α̂), v̂ar(θ̂), and v̂ar(γ̂) represent the estimated variances of α̂, θ̂, and γ̂, respec-
tively, while cov(α̂, θ̂), cov(α̂, γ̂), and cov(θ̂, γ̂) denote the estimated covariances between
the corresponding parameters. The second derivative is given in Appendix A. Substituting
the estimated values α̂, θ̂, and γ̂ into the matrix expression, we obtain the inverse of the
asymptotic variance–covariance matrix. Finally, the (1− η)100% confidence intervals for
the parameters α, θ, and γ can be calculated as follows:(

α̂± Zη/2

√
v̂ar(α̂)

)
,

(
θ̂ ± Zη/2

√
v̂ar(θ̂)

)
and

(
γ̂± Zγη/2

√
v̂ar(γ̂)

)
, (23)

where Zη/2 is the standard normal value.

3. One-Sample Bayesian Prediction

In this section, we introduce a general approach for computing interval predictions
for the future order statistic Zc:n, which represents the cth observation, within the TPBXIID
framework. These predictions are based on the observed UHCS denoted as Z = (Z1:n <
Z2:n < . . . < ZW:n), where W < c ≤ n. For a more comprehensive discussion on Bayesian
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prediction, please refer to Shafay [20,21]. The conditional density function of Zc:n given the
UHCS z can be expressed as follows:

f (zs|z) =


f1(zc|z) if (W, B) = (G1, T1), for I,
f2(zc|z) if (W, B) = (r, zr:n), for II and IV,
f3(zc|z) if (W, B) = (G2, T2), for III and for V,
f4(zc|z) if (W, B) = (k, zk:n), for VI,

(24)

where

f1(zc|z) =
1

P(r ≤ G1 ≤ c− 1)

c−1

∑
g=r

f (zc|, z, G1 = g)P(G1 = g),

=
c−1

∑
g=r

(n− g)!φg(T1)

(c− g− 1)!(n− c)!

× [F(zc)− F(T1)]
c−g−1[1− F(zc)]n−c f (zc)

[1− F(T1)]n−g ,

(25)

with z = (z1, . . . zG1), zc > T1 and φg(T1) =
P(G1=g)

∑c−1
j=r P(G1=j)

, from (25), we get

f1(zc|z) =
c−1

∑
g=r

c−g−1

∑
ω=0

n−c

∑
q=0

τ1[F(zc)]
c−g−ω+q−1[F(T1)]

ω+g f (zc)νj(T1), (26)

and, for zc > zr, we get

f2(zc|z) = f2(zc|zr) =
(n− r)!

(c− r− 1)!(n− c)!

× [F(zc)− F(zr)]c−r−1[1− F(zc)]n−c f (zc)

[1− F(zr)]n−r ,

with z = (z1, . . . , zr), so, we can get

f2(zc|zr) =
c−r−1

∑
ω=0

n−c

∑
q=0

τ2[F(zc)]c−r−ω+q−1[F(zr)]ω f (zc)

[1− F(zr)]n−r , (27)

also, for zc > T2, we have

f3(zc|z) =
1

P(k ≤ G2 ≤ r∗ − 1)

r∗−1

∑
g=k

f (zc|, z, G2 = g)P(G2 = g),

=
r∗−1

∑
g=k

(n− g)!φg(T2)

(c− g− 1)!(n− c)!

× [F(zc)− F(T2)]
c−g−1[1− F(zc)]n−c f (zc)

[1− F(T2)]n−g ,

with z = (z1, . . . , zG2), φg(T2) =
P(G2=g)

∑r∗−1
j=k P(G2=j)

,

f3(zc|z) =
r∗−1

∑
g=k

c−g−1

∑
ω=0

n−c

∑
q=0

τ3[F(zc)]
c−g−ω+q−1[F(T2)]

ω+g f (zc)νj(T2). (28)
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Finally, for zc > zk, we have

f4(zc|z) = f (zc|zk) =
(n− k)!

(c− k− 1)!(n− c)!

× [F(zc)− F(zk)]
c−k−1[1− F(zc)]n−c f (zc)

[1− F(zk)]n−k ,

with z = (z1, . . . , zr), so, we can get

f4(zc|zk) =
c−k−1

∑
ω=0

n−c

∑
q=0

τ4[F(zc)]c−k−ω+q−1[F(zk)]
ω f (zc)

[1− F(zk)]n−k . (29)

The conditional density functions of Zc:n, considering the UHCS, can be derived by sub-
stituting Equations (1) and (2) into Equations (26)–(29). The resulting expressions are
as follows:

f1(zc|z) =
c−1

∑
g=r

c−g−1

∑
ω=0

n−c

∑
q=0

τ1θ γ α−θ zθ−1
[
1 +

( zc

α

)θ]−(γ+1)
[

1−
[
1 +

( zc

α

)θ]−γ
]c−g−ω+q−1

×
[

1−
[
1 +

(T1
α

)θ]−γ
]ω+g

νj(T1),

(30)

f2(zc|zr) =
c−r−1

∑
ω=0

n−c

∑
q=0

τ2 θ γ α−θ zθ−1
[
1 +

( zc

α

)θ]−(γ+1)
[

1−
[
1 +

( zc

α

)θ]−γ
]c−r−ω+q−1

×
[

1−
[
1 +

( zr

α

)θ]−γ
]ω[

1 +
( zr

α

)θ]γ(n−r)
,

(31)

f3(zc|z) =
r∗−1

∑
g=k

c−g−1

∑
ω=0

n−c

∑
q=0

τ3θ γ α−θ zθ−1
[
1 +

( zc

α

)θ]−(γ+1)
[

1−
[
1 +

( zc

α

)θ]−γ
]c−g−ω+q−1

×
[

1−
[
1 +

(T2
α

)θ]−γ
]ω+g

νj(T2),

(32)

and

f4(zc|zk) =
c−k−1

∑
ω=0

n−c

∑
q=0

τ4 θ γ α−θ zθ−1
[
1 +

( zc

α

)θ]−(γ+1)
[

1−
[
1 +

( zc

α

)θ]−γ
]c−k−ω+q−1

×
[

1−
[
1 +

( zk
α

)θ]−γ
]ω[

1 +
( zk

α

)θ]γ(n−k)
,

(33)

τ1, τ2, τ3 and τ4 are given in Appendix C. The Bayesian predictive density function of Xs:n
can be obtained as follows:

f ∗(zc|z) =


f ∗1 (zc|z) if (W, B) = (G1, T1), for I,
f ∗2 (zc|z) if (W, B) = (r, zr:n), for II and IV,
f ∗3 (zc|z) if (W, B) = (G2, T2), for III and for V,
f ∗4 (zc|z) if (W, B) = (k, zk:n), for VI,

(34)
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where, for zc > T1,

f ∗1 (zc|z) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
f1(zc|z)π∗(α, θ, γ|z)dαdθdγ

=
c−1

∑
g=r

c−g−1

∑
ω=0

n−c

∑
q=0

∫ ∞

0

∫ ∞

0

∫ ∞

0
τ1θ γ α−θ zθ−1

[
1 +

( zc

α

)θ]−(γ+1)

×
[

1−
[
1 +

( zc

α

)θ]−γ
]c−g−ω+q−1[

1−
[
1 +

(T1

α

)θ]−γ
]ω+g

× νj(T1)π
∗(α, θ, γ|z)dαdθdγ,

(35)

with z = (z1, . . . zG1). For zc > zr,

f ∗2 (zc|z) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
f2(zc|z)π∗(α, θ, γ|z)dαdθdγ

=
c−r−1

∑
ω=0

n−c

∑
q=0

∫ ∞

0

∫ ∞

0

∫ ∞

0
τ2 θ γ α−θ zθ−1

[
1 +

( zc

α

)θ]−(γ+1)

×
[

1−
[
1 +

( zc

α

)θ]−γ
]c−r−ω+q−1

×
[
1 +

( zr

α

)θ]γ(n−r)
[

1−
[
1 +

( zr

α

)θ]−γ
]ω

π∗(α, θ, γ|z)dαdθdγ,

(36)

with z = (z1, . . . , zr). For zc > T2,

f ∗3 (zc|z) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
f3(zc|z)π∗(α, θ, γ|z)dαdθdγ

=
r−1

∑
g=k

c−g−1

∑
ω=0

n−c

∑
q=0

∫ ∞

0

∫ ∞

0

∫ ∞

0
τ3θ γ α−θ zθ−1

[
1 +

( zc

α

)θ]−(γ+1)

×
[

1−
[
1 +

( zc

α

)θ]−γ
]c−g−ω+q−1

×
[

1−
[
1 +

(T2

α

)θ]−γ
]ω+g

νj(T2)π
∗(α, θ, γ|z)dαdθdγ,

(37)

with z = (z1, . . . , zG2), and for zc > zk,

f ∗4 (zc|z) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
f4(zc|z)π∗(α, θ, γ|z)dαdθdγ

=
c−k−1

∑
ω=0

n−c

∑
q=0

∫ ∞

0

∫ ∞

0

∫ ∞

0
τ4 θ γ α−θ zθ−1

[
1 +

( zc

α

)θ]−(γ+1)

×
[

1−
[
1 +

( zc

α

)θ]−γ
]c−k−ω+q−1

×
[
1 +

( zk
α

)θ]γ(n−k)
[

1−
[
1 +

( zk
α

)θ]−γ
]ω

π∗(α, θ, γ|z)dαdθdγ,

(38)

with z = (z1, . . . , zk), for zc > zk. νj(T1) and νj(T2) are given in Appendix C.
It is evident that, the integrals in (34) is so hard to evaluate analytically. Then, to approx-

imate the f ∗i (zc|z), we used MCMC samples generated by using Gibbs within Metropolis–
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Hasting samplers. The Bayesian predictive for a two-sided equi-tailed 100(1− ρ)% interval
of zc:n, where W < c ≤ n, can be obtained by solving the following two equations:

F̂i
∗
(Lzc:n |z) = 1− ρ

2
and F̂i

∗
(Uzc:n |z) =

ρ

2
, (39)

where F̂i
∗
(zc|z) is computed using the expression:

F̂i
∗
(zc|z) =

1
N −M

N

∑
j=M+1

fi(zc|αj, θj, γj, z), i = 1, 2, 3, 4. (40)

Here, LZc:n and UZc:n represent the lower and upper of the interval, respectively.

4. Two-Sample Bayesian Prediction

We propose a general procedure for calculating interval predictions for the cth order
statistic Yc:m, where 1 ≤ c ≤ m, for the TPBXIID using the UHCS. The marginal den-
sity function of the cth order statistic from a sample of size m drawn from a continuous
distribution with cdf F(z) and pdf f (z) can be expressed as:

fYc:m(yc|α, θ, γ) =
m!

(c− 1)!(m− c)!
[F(yc)]

c−1[1− F(yc)]
m−c f (yc),

=
m−c

∑
q=0

(−1)q(m−c
q )m!

(c− 1)!(m− c)!
[F(yc)]

c+q−1 f (yc), (41)

where yc > 0, 1 ≤ c ≤ m, and the derivation can be found in Arnold et al. [24].
Substituting the expressions for α and θ from Equations (1) and (2) into the above

expression, the marginal density function of Yc:m becomes:

fYc:m(yc|α, θ, γ) =
m−c

∑
q=0

(−1)q(m−c
q )m!

(c− 1)!(m− c)!
θγα−θyθ−1

c

[
1 +

(yc

α

)θ]−(γ+1)

×
[

1−
[
1 +

(yc

α

)θ]−γ
]c+q−1

.

(42)

We can derive the Bayesian predictive density function of Yc:m, as follows:

f ∗Yc:m
(yc|z) =

∫ ∞

0

∫ ∞

0

∫ ∞

0
f (yc|z)π(α, θ, γ|z)dαdθdγ,

f ∗Yc:m
(yc|z) =

m−c

∑
q=0

(−1)q(m−c
q )m!

(c− 1)!(m− c)!

∫ ∞

0

∫ ∞

0

∫ ∞

0
θγα−θzθ−1

[
1 +

(yc

α

)θ]−(γ+1)

×
[

1−
[
1 +

(yc

α

)θ]−γ
]c+q−1

π∗(α, θ, γ|z)dαdθdγ.

(43)

It is evident that Equation (43) is challenging to solve analytically, making closed-form
solutions impossible to obtain. Thus, we resort to using MCMC samples generated by
applying Gibbs within Metropolis–Hastings samplers to approximate f ∗i Yc:m(yc|z) as:

F̂i
∗
Yc:m(yc|z) =

1
N −M

N

∑
j=M+1

fiYc:m(yc|αj, θj, γj, z), i = 1, 2, 3, 4. (44)
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By solving the following two equations, the Bayesian predictive of a two-sided equi-tailed
100(1− ρ)% interval for yc:n, where 1 ≤ c ≤ m, can be obtained:

F∗Yc:m
(LYc:n |z) = 1− ρ

2
and F∗Yc:m

(UYc:n |z) =
ρ

2
, (45)

where F∗Yc:m
(t|x) is given as in (44), and LYc:n and UYc:n indicate the lower and upper, respectively.

5. MCMC Method

In this section, we investigate the application of the MCMC method to obtain samples
of α, θ, and γ from the posterior density function (17). Specifically, we will concentrate on
the M-H-within-Gibbs sampling technique, which is explained as follows.

5.1. Estimation Based on Squared Error (SE) Loss Function

The SE loss function is defined as:

ξSE(∆) = a∆2 = a[u(θ)− û(θ)]2, (46)

where a is a positive constant, typically set to 1. Here, ∆ = û(θ)− u(θ), u(θ) represents the
function to be estimated with respect to θ, and û(θ) is the SE estimate of u(θ). The Bayes
estimator under the quadratic loss function is the mean of the posterior distribution:

û(θ)SE = E[u(θ)|z] =
∫

θu(θ)π∗(θ|z)dθ, (47)

where π∗(θ|x) denotes the posterior distribution. The SE loss function is widely used in
the literature and is considered the most popular loss function. It possesses symmetry,
treating overestimation and underestimation of parameters equally. However, in life-testing
scenarios, one type of estimation error may be more critical than the other.

5.2. Estimation Based on Linear Exponential (LINEX) Loss Function

The LINEX loss function, denoted by ξLINEX(∆), is defined as follows:

ξLINEX(∆) ∝ ea∆ − a∆− 1, a 6= 0, (48)

where ∆ represents the difference between the true value u(θ) and the LINEX estimate
û(θ), as defined previously. The shape parameter a governs the direction and degree
of symmetry. It was introduced by Varian [25] and further explored for its interesting
properties by Zellner [26]. When a > 0, overestimation leads to more severe consequences
than underestimation, and vice versa. In contrast, when a is near zero, the LINEX performs
similarly to the symmetric SE loss function. For a = 1, the function becomes highly
asymmetric, with overestimation incurring greater loss than underestimation. Conversely,
for a < 0, the loss increases exponentially when ∆ = û(θ) − u(θ) < 0, and decreases
approximately linearly when ∆ = û(θ)− u(θ) > 0.

The posterior expectation of the LINEX (48) is expressed as follows:

E[ξLINEX [û(θ)− u(θ)]|z] ∝ eaû(θ)E
[
e−au(θ)|z

]
− a(û(θ)− E[u(θ)|z])− 1. (49)

Using the LINEX loss function, the Bayes estimate of u(θ) is obtained as follows:

û(θ)LINEX =
−1
a

ln
[

E(e−au(θ)|z)
]
, (50)

provided that E(e−au(θ)|z) exists and is finite.
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5.3. Estimation Based on General Entropy (GE) Loss Function

Basu et al. [27] introduced a modified LINEX loss function. An alternative loss function
that can be considered as a viable substitute for the modified LINEX loss is the GE loss,
which is defined as

ξGE(û(θ), u(θ)) ∝
(

û(θ)
u(θ)

)a
− a ln

(
û(θ)
u(θ)

)
− 1, (51)

where the symbol û(θ) denotes an estimation of the parameter u(θ). It is crucial to note that
for a > 0, a positive error carries greater consequences than a negative error. Conversely,
when a < 0, a negative error results in more serious implications than a positive error.

The Bayes estimator û(θ)GE under the GE loss function is expressed as follows:

û(θ)GE =
[
E(u(θ)−a|z)

]− 1
a , (52)

provided that E(u(θ)−a|x) exists and is finite. It can be shown that when a = −1, the Bayes
estimate (52) coincides with the Bayes estimate under the SE loss function. We use the
Metropolis–Hasting method with a normal proposal distribution to generate random
numbers from these distributions (see Metropolis et al. [23]). Now, we illustrate the steps
of the process for the Metropolis–Hasting within Gibbs sampling (Algorithm 1):

Algorithm 1: Metropolis–Hasting within Gibbs sampling

1. Start with initial guesses of α, θ, and γ, denoted as α(0), θ(0), and γ(0) respectively. Set M as
the burn-in period.

2. Initialize j as 1.
3. Generate a sample for γ(j) from a Gamma distribution with shape parameter a3 + W and

scale parameter b3 + ∑W
i=1 ln

[
1 +

( zi
α

)θ].
4. Use the Metropolis–Hastings algorithm to generate samples for α(j) and θ(j) from their

respective conditional posterior density functions π∗1 (α|θ, γ, z) and π∗2 (θ|α, γ, z). The
proposal distributions for α(j) and θ(j) are normal distributions with means α(j−1) and
θ(j−1), and variances var(α) and var(θ) respectively, which are obtained from the
variance–covariance matrix.
(i) Compute the acceptance probability as:

r1 = min

[
1,

π∗1 (α
∗|θ j−1, γj, z)

π∗1 (α
j−1|θ j−1, γj, z)

]
,

r2 = min

[
1,

π∗2 (θ
∗|αj, γj, z)

π∗2 (θ
j−1|αj, γj, z)

]
.

(ii) Generate random numbers u1 and u2 from a Uniform distribution between 0 and 1.
(iii) If u1 ≤ r1, accept the proposal and set α(j) = α∗; otherwise, keep α(j) = α(j−1).
(iv) If u2 ≤ r2, accept the proposal and set θ(j) = θ∗; otherwise, keep θ(j) = θ(j−1).

5. Increment j by 1.
6. Repeat Steps 3 to 6 for a total of N iterations, starting from j = M + 1, to obtain samples for

α(j), θ(j), γ(j), S(j)(t), and h(j)(t) j = M + 1, ..., N.
7. f ∗i (zc|z) is obtained as

F̂i
∗
(zc|z) =

1
N −M

N

∑
j=M+1

fi(zc|αj, θj, γj, z), i = 1, 2, 3, 4.

8. f ∗i Yc:m (yc|z) is obtained as

F̂i
∗
Yc:m

(yc|z) =
1

N −M

N

∑
j=M+1

fiYc:m (yc|αj, θj, γj, z), i = 1, 2, 3, 4.
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6. Applications

In this section, we examine actual datasets to demonstrate the practical implementation
of the prediction methods discussed earlier. These datasets were obtained from the National
Climatic Data Center (NCDC) in Asheville, USA and contain measurements of wind speeds
in knots over a 30-day period. Our analysis specifically concentrates on the daily average
wind speeds recorded in Cairo city from 1 December 2015 to 30 December 2015. Within this
timeframe, we collected a total of 24 observations as follows:

2.3 2.7 3.2 3.7 3.9 4.3 4.5 4.8 4.8 4.9 5.1 5.2 5.5 5.5 5.8
6.4 6.5 6.8 6.9 7 7.3 7.4 7.7 7.9.

The K-S test was employed to assess the goodness-of-fit of the data distribution to TPBXIID.
The K-S distance was calculated to be 0.0785975, which is smaller than the critical value of
0.24170 at a significance level of 5% for a sample size of 24. The corresponding p-value was
determined to be 0.985348. Based on these results, we accept the null hypothesis that the
data conform to the TPBXIID distribution, as the high p-value suggests a good fit. Figure 6
displays the empirical and fitted survival functions (denoted as S(t)) for visual comparison.
It is important to note that TPBXIID serves as an appropriate model for this dataset.

Figure 6. Empirical and Fitted Survival Functions.

Now, we consider the six cases, as follows:

I: T1 = 6.6, T2 = 7.2, k = 16, r = 17. W = 18, B = T1 = 6.8.
II: T1 = 6.6, T2 = 7.2, k = 17, r = 19. W = 19, B = zr:n = 6.9.
III: T1 = 7, T2 = 7.2, k = 19, r = 22. W = 21, B = T2 = 7.3.
IV: T1 = 7, T2 = 7.75, k = 21, r = 22. W = 22, B = zr:n = 7.4.
V: T1 = 7, T2 = 7.6, k = 22, r = 24. W = 23, B = T2 = 7.7.
VI: T1 = 7, T2 = 7.6, k = 24, r = 25. W = 24, B = zk:n = 7.9.

The results obtained in Section 2 were utilized to create 95% one-sample Bayesian
prediction intervals for future order statistics Zc:n, where c = 25, 26, 27, 28, 29, 30, using the
same sample. Additionally, 95% two-sample Bayesian prediction intervals were constructed
for future order statistics Yc:m, where c = 1, 2, . . . , 10, based on a future unobserved sample
with a size of m = 10. To assess the sensitivity of the Bayesian prediction intervals to the hy-
perparameters (ai, bi), where i = 1, 2, 3, 4, 5, 6, two different priors were considered. Firstly,
non-informative priors were employed with ai = 0 and bi = 0. Secondly, informative
priors were used with ai = 1.5 and bi = 2.0. The results of the one-sample predictions are
displayed in Tables 1–6, while the results of the two-sample predictions can be found in
Tables 7–12.
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Table 1. The 95% one-sample Bayesian prediction intervals for Zc:30, where c = 25, . . . , 30, are given
for Case I.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

25 3.8736 8.5333 4.6596 4.8556 10.5962 5.7405
26 3.2825 8.7000 5.4174 3.2000 11.4014 8.2014
27 3.21953 11.9083 8.6888 3.26769 11.8520 8.5843
28 4.5602 13.1513 8.5910 7.1997 15.905 8.70527
29 5.2025 16.5493 11.3467 4.90806 14.7077 9.79967
30 6.9177 18.9000 11.9823 6.95388 18.9000 11.9461

Table 2. The 95% one-sample Bayesian prediction intervals for Zc:30, where c = 25, . . . , 30, are given
for Case II.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

25 7.7869 9.0600 1.2731 4.8009 9.5451 4.7441
26 4.1457 8.6956 4.5498 4.2223 9.7665 5.5442
27 4.8663 10.2715 5.4052 4.2000 11.1129 6.9129
28 4.2000 10.5000 6.3000 4.3893 11.5000 7.1107
29 5.2220 12.5220 7.3000 10.2321 20.7879 10.5558
30 9.2123 19.7756 10.5633 11.2011 23.4833 12.2822

Table 3. The 95% one-sample Bayesian prediction intervals for Zc:30, where c = 25, . . . , 30, are given
for Case III.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

25 5.70308 11.1037 5.40059 6.1153 7.7294 1.6140
26 3.3830 12.2610 8.8780 4.0868 9.4781 5.3912
27 4.2000 14.4222 10.2222 4.9743 10.7000 5.7257
28 5.19673 17.8434 12.6467 8.9686 22.563 13.5944
29 5.9047 19.9451 14.0403 7.9907 24.3793 16.3885
30 6.0000 23.2599 17.2599 6.1427 25.8677 19.7250

Table 4. The 95% one-sample Bayesian prediction intervals for Zc:30, where c = 25, . . . , 30, are given
for Case IV.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

25 3.7396 8.7000 4.9604 3.4876 8.7000 5.2124
26 5.5984 12.6137 7.0152 4.9300 9.0091 4.0791
27 6.2781 13.5789 7.3007 6.6121 13.9462 7.3341
28 6.6000 13.9513 7.3512 6.7000 17.4056 9.8056
29 7.6600 15.9700 8.3100 8.6611 18.9733 10.3122
30 9.2331 20.2556 11.0225 10.2121 23.2241 13.0120
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Table 5. The 95% one-sample Bayesian prediction intervals for Zc:30, where c = 25, . . . , 30, are given
for Case V.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

25 5.53617 7.78096 2.24479 5.3643 8.1147 2.7504
26 5.6003 10.7000 5.0997 5.6000 11.7492 6.1491
27 5.2000 12.2046 7.0045 5.5276 13.4346 7.9069
28 5.4400 15.5000 10.0600 5.4403 15.3444 9.9041
29 9.1223 22.2556 13.1333 10.1000 22.9920 12.8920
30 10.0022 23.8766 13.8744 10.9548 24.5470 13.5922

Table 6. The 95% one-sample Bayesian prediction intervals for Zc:30, where c = 25, . . . , 30, are given
for Case VI.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

25 4.32166 8.7000 4.37834 4.4000 13.1678 8.7677
26 5.1000 10.5178 5.4177 6.1522 11.4733 5.3211
27 5.9582 11.5029 5.5447 5.6235 12.9546 7.3311
28 6.60333 13.8686 7.2652 6.6045 13.9588 7.3543
29 7.6600 16.3534 8.6933 7.6611 15.9733 8.3122
30 10.2000 33.5934 23.3934 10.5364 25.7896 15.2532

Table 7. The 95% two-sample for Yc:10, where c = 1, . . . , 10, are provided for Case I.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

1 0.2486 3.3945 3.1459 0.3254 3.5413 3.2159
2 0.3550 4.8725 4.5175 0.5801 4.0241 3.4440
3 0.4570 5.1510 4.6937 0.5845 4.2241 3.6396
4 0.4573 5.4513 4.9940 1.6295 5.3540 3.7245
5 4.0220 11.8667 7.8446 1.9025 11.8667 9.9642
6 5.4547 13.9687 8.5139 2.3426 13.9687 11.6261
7 5.4809 14.9673 9.4864 2.3742 14.9673 12.5931
8 5.5550 15.2786 9.7235 2.4035 15.2786 12.8751
9 5.6388 15.7427 10.1039 2.49025 15.7427 13.2524

10 6.6691 19.8596 13.1904 4.56972 19.8596 15.2899

Table 8. The 95% two-sample for Yc:10, where c = 1, . . . , 10, are provided for Case II.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

1 0.1031 1.6322 1.5291 0.1864 2.0145 1.8281
2 0.2548 4.6584 4.4036 0.3015 5.1236 4.8221
3 0.3647 5.6643 5.2996 0.3647 5.48984 5.1251
4 0.6959 7.4227 6.7268 0.9823 6.2548 5.2725
5 1.2144 12.8667 11.6523 1.1458 11.2659 10.1201
6 1.3675 13.9687 12.6012 1.3675 13.9687 12.6012
7 1.3789 14.9673 13.5884 1.3789 14.9673 13.5884
8 1.4563 15.2786 13.8223 1.4563 15.2786 13.8223
9 1.5134 15.7427 14.2293 1.4435 16.5780 15.1345

10 4.69475 19.8596 15.1649 4.5390 19.8596 15.3206
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Table 9. The 95% two-sample for Yc:10, where c = 1, . . . , 10, are provided for Case III.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

1 0.2031 3.3215 3.1184 0.1845 3.1853 3.0008
2 0.2544 5.1221 4.8677 0.2345 5.1203 4.8858
3 0.2739 5.5670 5.2931 0.2739 5.40102 5.1271
4 0.2942 8.6548 8.3606 0.3542 7.9549 7.6007
5 1.1309 12.4892 11.3583 0.9984 11.9856 10.9872
6 1.1987 13.3486 12.1499 1.1236 14.6985 13.5749
7 1.2056 14.3345 13.1289 1.2015 15.0114 13.8099
8 1.2544 15.4453 14.1909 1.2544 15.4453 14.1909
9 1.3567 15.5483 14.1916 2.1436 16.0153 13.8717

10 2.0577 20.1125 18.0548 4.4570 20.1125 15.6555

Table 10. The 95% two-sample for Yc:10, where c = 1, . . . , 10, are provided for Case IV.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

1 0.1175 1.6437 1.5262 0.1824 2.0843 1.9019
2 0.1548 5.4539 5.2991 0.3546 4.9875 4.6329
3 0.2212 5.5994 5.3782 0.4256 6.1235 5.6979
4 0.2712 8.5504 8.2792 0.6943 7.3942 6.6999
5 1.2947 12.3378 11.0431 1.2200 11.1996 10.0896
6 1.3568 13.2232 11.8664 1.3568 13.2232 11.8664
7 1.5789 14.1177 12.5388 1.6548 15.3214 13.6666
8 1.7896 14.4596 12.6700 1.7896 15.8997 14.1101
9 1.8087 16.1478 14.3391 2.4695 17.3258 14.8563

10 3.3842 20.0125 16.6282 4.24655 20.0125 15.7659

Table 11. The 95% two-sample for Yc:10, where c = 1, . . . , 10, are provided for Case V.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

1 0.1234 3.6400 3.5166 0.1234 1.8654 1.7420
2 0.2111 5.2222 5.0111 0.2103 4.8756 4.6653
3 0.2548 5.2870 5.0322 0.2548 5.0833 4.8285
4 0.2684 6.8894 6.6210 0.3124 5.9874 5.6750
5 1.0325 12.3654 11.3329 0.9988 11.9879 109891
6 1.1943 13.3564 12.1621 1.1045 13.9876 12.8831
7 1.2534 14.6231 13.3697 1.2534 14.6231 13.3697
8 1.3230 15.6231 14.3001 1.2765 14.9849 13.7089
9 1.5423 16.6844 15.1421 1.2948 15.6813 14.3865

10 3.11574 20.3698 17.2541 2.8992 18.3698 15.4705
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Table 12. The 95% two-sample for Yc:10, where c = 1, . . . , 10, are provided for Case VI.

Non-Informative Prior Informative Prior

s Lower Upper Length Lower Upper Length

1 0.2111 1.2896 1.0785 0.2245 2.0111 1.7866
2 0.2214 4.4564 4.2350 0.2456 3.2354 2.9898
3 0.2636 5.2140 4.9504 0.2712 3.3147 3.0435
4 0.3214 7.4564 7.1352 0.2745 3.3257 3.0512
5 0.4686 11.8986 11.4300 0.9987 12.8493 11.8506
6 1.2109 13.6879 12.4770 1.3568 13.2232 11.8664
7 1.2653 14.2364 12.9711 1.5789 14.1177 12.5388
8 1.3345 14.4486 13.1141 1.7896 15.8997 14.1101
9 1.4644 16.4587 14.9943 1.8087 16.1478 14.3391

10 3.0390 20.7695 17.7305 3.8582 20.0125 16.1542

7. Simulation

To compare the effectiveness of each approach put forward in this study, simulation
results are offered in this study. Comparing the effectiveness of ML estimates with Bayesian
estimates for the TPBXIID’s unknown parameters is the main objective. Additionally, three
distinct loss functions are used to evaluate the performance of the survival and hazard
functions, with a focus on MSEs, CP, and length. The steps taken for the simulation analysis
are described in the following way:

1. Random values of α, θ, and γ are generated from the respective distributions defined
in Equations (18)–(20), using given hyperparameters a1, b1, a2, b2, a3, and b3.

2. Based on the derived parameter values from Step 1, random samples are produced
using the TPBXIID’s inverse cumulative distribution function. After that, these
samples have been organised in ascending order.

3. The ML estimates of α, θ, and γ are obtained by numerically solving the three nonlinear
Equations (12)–(14). Additionally, using the observed Fisher information matrix, 95%
CIs are calculated.

4. The Bayesian estimates of α, θ, and γ are computed, along with their 95% CRIs, using
the MCMC method with 10,000 observations. The estimations are performed under
three different loss functions: SE loss function (47), LINEX loss function (50), and GE
loss function (52).

5. The values (φ − φ̂) are calculated, where φ̂ denotes a φ estimate (ML estimate or
Bayesian estimate).

6. A sample is generated using TPBXIID with the following parameter values: α = 6.5780,
θ = 8.4568, γ = 0.5849, and n = 100. Steps 1–6 are performed at least 1000 times.
The simulation is run with various values for k, r, T1, and T2. α, θ, γ, S(t), and h(t), are
estimated using ML estimations, and the MSEs, CP, and length of CIs are calculated
for T2 = 12 and T1 = 9.5. Tables 13–15, show the results.

7. Bayesian estimates are used to estimate α, θ, γ, S(t), and h(t) under the SE, LINEX,
and GE loss functions. Informative gamma priors are used for the shape and scale
parameters, with specific hyperparameters (a1 = 0.55, b1 = 0.34, a2 = 0.44, b2 = 1.550,
a3 = 0.38, and b3 = 0.22) when T2 = 12 and T1 = 9.5. The results, including 95% CRIs,
MSEs, CP, and length, are displayed in Tables 13–15.

8. Furthermore, the MSE of the estimates is calculated using the following formula:

MSE(φ̂) =
1000

∑
i=1

(φ̂i − φ)2

1000
. (53)
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Table 13. Evaluation of MSE, CP, and Length of Estimates for parameter α at T2 = 12 and T1 = 9.5.

Cases r k T1 T2 = 12

MLE MCMC

MSE Length CP SE LINEX GE Length CP

a = −4 a = 4 a = −4 a = 4

I 77 75 10.00 0.4031 0.7854 0.8230 0.4321 0.4328 0.4318 0.4317 0.4315 0.0055 0.933
79 75 10.50 0.2154 0.5524 0.850 0.3877 0.3879 0.3875 0.3870 0.3866 0.0035 0.922

II 84 75 10.60 0.5278 0.7887 0.863 0.5278 0.5279 0.5275 0.5265 0.5214 0.0034 0.935
88 75 10.70 0.5030 0.7542 0.869 0.3637 0.3635 0.3634 0.3638 0.3632 0.0020 0.970

III 90 75 11.00 0.3988 0.7190 0.864 0.3980 0.3977 0.3970 0.3966 0.3711 0.0022 0.928
95 75 11.50 0.2248 0.2249 0.895 0.2254 0.2211 0.2233 0.2214 0.2200 0.0012 0.955

Cases r k T2 T1 = 9.5

MLE MCMC

MSE Length CP SE LINEX GE Length CP

a = −4 a = 4 a = −4 a = 4

IV 96 80 13.00 0.3221 0.5321 0.871 0.3740 0.3744 0.3630 0.3622 0.3621 0.0029 0.923
96 85 13.50 0.2678 0.7854 0.823 0.2622 0.2534 0.2532 0.2531 0.2432 0.0025 0.933

V 96 90 12.10 0.4532 0.5686 0.866 0.4442 0.4432 0.4321 0.4312 0.4254 0.0044 0.911
96 92 12.20 0.2654 0.6547 0.857 0.2621 0.2547 0.2544 0.2533 0.2522 0.0022 0.933

VI 96 93 11.00 0.5554 0.7580 0.844 0.5523 0.5522 0.5512 0.5421 0.5345 0.0020 0.970
96 93 11.50 0.2897 0.5229 0.888 0.2977 0.2976 0.2970 0.2944 0.2854 0.0030 0.961

Table 14. Evaluation of MSE, CP, and Length of Estimates for parameter θ at T2 = 12 and T1 = 9.5.

Cases r k T1 T2 = 12

MLE MCMC

MSE Length CP SE LINEX GE Length CP

a = −4 a = 4 a = −4 a = 4

I 77 75 10.00 0.7435 0.8577 0.877 0.7044 0.6622 0.6255 0.6240 0.6001 0.0970 0.900
79 75 10.50 0.7177 0.5654 0.853 0.5554 0.5447 0.5432 0.5324 0.5100 0.083 0.978

II 84 75 10.60 0.7577 0.5856 0.850 0.5477 0.5423 0.5322 0.4550 0.5420 0.0541 0.945
88 75 10.70 0.6522 0.5541 0.865 0.4860 0.4650 0.4568 0.4321 0.4258 0.0452 0.972

III 90 75 11 0.6245 0.9200 0.852 0.5582 0.5644 0.5333 0.5422 0.5120 0.0359 0.923
95 75 11.50 0.5444 0.8840 0.843 0.5555 0.5445 0.4555 0.4452 0.4542 0.0230 0.976

Cases r k T2 T1 = 9.5

MLE MCMC

MSE Length CP SE LINEX GE Length CP

a = −4 a = 4 a = −4 a = 4

IV 96 80 13.00 0.9877 0.8888 0.821 0.9695 0.9260 0.9160 0.9157 0.9135 0.0757 0.929
96 85 13.50 0.8398 0.8228 0.865 0.8277 0.8129 0.8020 0.8002 0.7039 0.0488 0.948

V 96 90 12.10 0.76400 0.8849 0.846 0.7548 0.7544 0.7441 0.7423 0.7390 0.0445 0.989
96 92 12.20 0.6470 0.5179 0.869 0.6687 0.6647 0.6547 0.6467 0.6321 0.0427 0.992

VI 96 93 11.00 0.5647 0.4512 0.833 0.5620 0.5230 0.5220 0.5212 0.5048 0.0780 0.915
96 95 11.50 0.4587 0.8400 0.878 0.4487 0.4321 0.4213 0.4125 0.4114 0.0658 0.949
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Table 15. Evaluation of MSE, CP, and Length of Estimates for parameter γ at T2 = 12 and T1 = 9.5.

Cases r k T1 T2 = 12

MLE MCMC

MSE Length CP SE LINEX GE Length CP

a = −4 a = 4 a = −4 a = 4

I 77 75 10.00 0.7771 0.6600 0.859 0.5260 0.5310 0.5240 0.4920 0.3828 0.0750 0.931
79 75 10.50 0.7360 0.4276 0.865 0.4924 0.5251 0.4484 0.4430 0.3991 0.0612 0.988

II 84 75 10.60 0.5333 0.8411 0.841 0.5312 0.4555 0.4388 0.4256 0.4123 0.0880 0.942
88 75 10.70 0.4674 0.6978 0.858 0.4860 0.4235 0.4912 0.3800 0.3788 0.0770 0.989

III 90 75 11.00 0.2344 0.4320 0.800 0.3210 0.2301 0.2300 0.2287 0.2254 0.0740 0.954
95 75 11.50 0.2154 0.4215 0.822 0.2236 0.2221 0.2214 0.2201 0.2198 0.2112 0.987

Cases r k T2 T1 = 9.5

MLE MCMC

MSE Length CP SE LINEX GE Length CP

a = −4 a = 4 a = −4 a = 4

IV 96 80 13.00 0.3245 0.3580 0.887 0.3214 0.3212 0.3211 0.3210 0.3199 0.0231 0.919
96 85 12.50 03210 0.3459 0.888 0.3154 0.3124 0.3122 0.3112 0.3111 0.0211 0.942

V 96 90 12.10 0.4489 0.4888 0.863 0.4465 0.4456 0.4423 0.4359 0.4354 0.0200 0.939
96 92 12.20 0.4299 0.4211 0.802 0.4125 0.4112 0.4109 0.4105 0.4102 0.4100 0.962

VI 96 93 11.00 0.3599 0.4599 0.828 0.3354 0.3269 0.3215 0.3211 0.3210 0.0265 0.978
96 95 11.50 0.3698 0.5480 0.844 0.3548 0.3544 0.3522 0.3469 0.3354 0.0235 0.987

8. Conclusions

By employing UHCS from TPBXIID, we derive Bayesian prediction intervals for future
observations using both one-sample and two-sample prediction techniques. The model
incorporates prior beliefs through independent gamma priors for the scale and shape
parameters. The computation of Bayesian prediction intervals involves utilizing the Gibbs
sampling technique to generate MCMC samples, considering both non-informative and
informative priors. The results are demonstrated using a real dataset. In addition, we per-
formed a simulation research to evaluate and contrast how well the suggested approaches
performed for various sample sizes (r, k) and various scenarios (I, II, III, IV, V, and VI). We
can learn more about the methods’ efficacy based on the earlier results.

• The results presented in Tables 1–12 reveal that the length of the prediction intervals
increases with higher values of c. Specifically, Tables 1–6 indicate that the lower bounds
are relatively insensitive to hyper-parameter specifications, while the upper bounds
exhibit some sensitivity. Conversely, Tables 7–12 demonstrate that both the lower and
upper bounds are relatively insensitive to the specification of the hyper-parameters.

• Tables 13–15, clearly demonstrate that the Bayes estimates for α, θ, and γ outperform
the MLEs in terms of MSEs.

• For cases (I, II, III), it is observed from Tables 13–15 that the MSEs and lengths decrease
while the CP increases as T1 and r increase, keeping T2 and k fixed, for α, θ, and γ.

• For cases (IV, V, VI), it is evident from Tables 13–15 that the MSEs and lengths decrease
while the CP increases as T2 and k increase, keeping T1 and r fixed, for α, θ, and γ.

• Tables 13–15 reveal that the length of the CRIs for the Bayes estimates of α, θ, and γ are
smaller than the corresponding lengths of the CIs of the MLEs. Additionally, the CP of
the Bayes estimates are greater than the corresponding CP of the MLEs.

• Tables 13–15 reveal that the length of the credible intervals (CRIs) for the Bayes
estimates of α, θ, and γ are smaller than the corresponding lengths of the confidence
intervals (CIs) of the MLEs. Additionally, the coverage probabilities (CP) of the Bayes
estimates are greater than the corresponding CP of the MLEs.



Symmetry 2023, 15, 1552 21 of 24

Author Contributions: Methodology, M.M.H. (Mustafa M. Hasaballah); Software, M.M.H. (Mustafa
M. Hasaballah); Validation, M.E.B.; Formal analysis, A.A.A.-B.; Resources, A.A.A.-B. and M.M.H.
(Md. Moyazzem Hossain); Data curation, A.A.A.-B., M.M.H. (Md. Moyazzem Hossain) and M.E.B.;
Writing—original draft, M.M.H. (Mustafa M. Hasaballah); Writing—review & editing, M.E.B. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research and Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFK-
SUOR3–058–1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets are reported within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Mathematical notations used in this paper.

Notation Meaning

α, θ, γ Parameters of three-parameter Burr-XII distribution
µ̀r Moment
θ2 Variance of three-parameter Burr-XII distribution
zq Inverse of cumulative distribution function

W = (G1, G2, r, k) Refers to the total number of failures in the test up to period B
B = (T1, T2, zr:n, zk:n) The stopping time point

Iij Fisher information matrix
a1, a2, a3, b1, b2, b3 Hyper-parameters

Table A2. Abbreviations used in this paper.

Abbreviation Meaning

UHCS Unified Hybrid Censoring Scheme
TPBXIID Three-Parameter Burr-XII Distribution
MCMC Markov Chain Monte Carlo

pdf Probability Density Function
cdf Cumulative Distribution Function

MLEs Maximum Likelihood Estimators
ML Maximum Likelihood
CIs Confidence Intervals
SE Squared Error Loss Function

LINEX Linear Exponential Loss Function
GE General Entrop Loss Function

MSE Mean Squared Error
MAE Mean Absolute Error

CP Coverage Probability
K-S Kolmogorov-Smirnov
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Appendix B
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Appendix C
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