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Abstract: We construct one-frequency trigonometric spline curves with a de Boor-like algorithm for
evaluation and analyze their shape-preserving properties. The convergence to quadratic B-spline
curves is also analyzed. A fundamental tool is the concept of the normalized B-basis, which has
optimal shape-preserving properties and good symmetric properties.
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1. Introduction

The importance of trigonometric curves and surfaces is well known in many different
areas, such as robotics, mechanics, electricity or medicine. Generalized hybrid trigonometric
Bézier curves have been considered for the construction of some engineering symmetric
revolutionary curves and symmetric rotation surfaces (see [1]). In order to approximate
trigonometric curves, we could use the weights of nonuniform rational B-spline curves
to modify the shapes of the obtained parametric curves. However, rational curves may
be unstable and their derivatives are difficult to calculate (see also [2]). Shape parameters
have also been used for the design of parametric trigonometric curves (see [3–10]).

Trigonometric splines have been suggested for CAM design [11] and trajectory
generation [12]. Problems such as data fitting on the sphere can be better solved by
using trigonometric splines rather than the conventional polynomial counterpart (see
Chapter 12 of [13]). Moreover, they also play a useful role with circular Bernstein Bézier
polynomials [14] and with piecewise rational curves with rational offsets [15].

Polynomial Pythagorean-Hodograph (PH) curves have been widely analyzed
(see [16–26]). They have the good property of possessing a closed-form polynomial rep-
resentation of their arc lengths and exact rational parameterizations of their offset curves.
In [27], the C1 Hermite interpolation problem considering spatial PH quintics is analyzed.
A family of interpolants is studied and the solution that has the best approximation order
and preserves the planarity and symmetry with respect to the reversion of the parameter
domain is identified.

Polynomial PH curves are defined using Bernstein bases, thus yielding a control
polygon or so-called Bézier representation for them. Different counterparts of polynomial
PH curves have been proposed. In [26], algebraic-trigonometric Pythagorean-Hodograph
(ATPH) curves were introduced. Most recently, in [16,17], the new classes of planar and
spatial Pythagorean-Hodograph (PH) B-spline curves were proposed. Let us observe that
for the construction of algebraic–trigonometric Pythagorean-Hodograph (ATPH) B-spline
curves, Bernstein-like bases of spaces of piecewise trigonometric functions are required.

Let us recall that, for a suitable basis (u0, . . . , un) of a given space U, γ(t) = ∑n
i=0 Piui(t)

provides a parametric representation of the curves, where the vector coefficients are points
(control points) in Rs determining a polygon P0 · · · Pn, called the control polygon of γ [28].
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We say that a basis provides a shape-preserving representation if the shape of the curve
imitates the shape of its control polygon. This interesting property requires that the basis is
normalized totally positive (NTP).

The collocation matrix of a system of functions (u0, . . . , un) defined on I ⊆ R at
t0 < · · · < tm in I is given by

M
(

u0, . . . , un

t0, . . . , tm

)
:= (uj(ti))i=0,...,m;j=0,...,n. (1)

A matrix is totally positive if all its minors are nonnegative and a system of functions is
totally positive when all its collocation matrices (1) are totally positive. A usual requirement
for design purposes is that the basis functions u0, . . . , un are nonnegative and form a
partition of the unity, i.e., ∑n

i=0 ui(t) = 1, ∀t. Then, we say that (u0, . . . , un) is a normalized
basis of nonnegative functions or, equivalently, a blending basis. Blending bases satisfy the
convex hull property: the generated curves will be within the convex hull of their control
polygon. Finally, an NTP basis is a normalized basis with the total positivity property. NTP
bases provide shape-preserving representations (cf. [13,29]).

The normalized B-basis is an NTP basis with optimal shape-preserving properties
because the matrix of the change in the basis of any NTP basis with respect to the normalized
B-basis is totally positive and stochastic. As a consequence, the control polygon of a curve
with respect to the normalized B-basis can be obtained from its control polygon with
respect to any other NTP basis by performing a corner cutting algorithm (cf. [30]). Then,
the control polygon with respect to the normalized B-basis is closer in shape to the curve
than the control polygon with respect to the other NTP bases. In particular, the length of
the control polygon with respect to the normalized B-basis lies between the length of the
curve and the length of any other control polygon of the curve. Similar properties hold for
several features of the curve, such as the angular variation or the number of inflections
(cf. [13,29]). The importance of the length of the parameter domain for the derivation of
shape-preserving representations for trigonometric polynomial curves was shown in [31].
On the other hand, let us recall that the concepts of the B-basis and normalized B-basis
(see Definition 3.7 of [29] for B-basis) are deeply related to the notion of symmetry, with
respect to the initial and final basis functions, as well as with respect to the left and the
right end-points of the interval, where the basis functions have the same properties as the
Bernstein bases of polynomials (see Proposition 4.5 of [29]).

Control points and control polygons of polynomial splines play an important role in
CAGD (cf. [28,32]), and it is natural to ask whether these concepts can also be defined for
trigonometric splines. Trigonometric spline functions were introduced in [33] (see also [34])
and the recurrence relation for the trigonometric B-splines of arbitrary order was obtained
in [35]. Since the standard trigonometric B-splines do not form a partition of unity (cf. [35]),
the corresponding splines will not satisfy the convex hull property. This fact motivated the
study in [36], where a trigonometric version of the convex hull property was established
by introducing control curves that have properties similar to those of classical polynomial
splines. In contrast, this paper proposes new trigonometric spline bases, which form a
partition of the unity and have other shape-preserving properties. These bases generate
trigonometric spline curves that can be evaluated by different corner cutting algorithms
from their control polygons. In the literature, several works can be found studying the prop-
erties of trigonometric B-spline functions with shape parameters (see [6–9]); nevertheless,
generally, no corner cutting algorithm is provided for the evaluation of the corresponding
trigonometric B-spline curves. Furthermore, the proposed approach is worthy of considera-
tion for future work; among others, it can be considered to define new ATPH B-splines and
facilitate further advances in this interesting field.

The paper is organized as follows. In Section 2, we construct one-frequency trigono-
metric spline curves, which we call T2-B-spline curves (open or closed) and clamped
T2-B-spline curves. Among other properties, these curves satisfy the convex hull property.
There is an invariant affine relation between T2-B-spline curves and their control points.
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Furthermore, T2-B-spline curves are locally controlled and there are end-point and end-
tangent interpolation properties for clamped curves. It is also shown that the corresponding
normalized T2-B-spline functions can conveniently be generated by a de Boor–Cox-like
recurrence relation, which in turn gives a de Boor-like or corner cutting algorithm for the
evaluation of the T2-B-spline curves. Section 3 analyzes the convergence of T2-B-spline
curves to quadratic B-spline curves. T2-B-spline bases and curves corresponding to non-
uniform knots are introduced in Section 4. Finally, Section 5 summarizes the conclusions
and future work.

2. One-Frequency Trigonometric Spline Curves

For a given 0 < α < π, we consider compact intervals Iα := [0, α] and the spaces

U1(Iα) := 〈cos t, sin t〉, U2(Iα) := 〈1, cos t, sin t〉, t ∈ Iα.

In [37], it was shown that the system (B1
0, B1

1) defined by

B1
0(t) :=

sin(α− t)
sin α

, B1
1(t) :=

sin t
sin α

, t ∈ Iα, (2)

is a B-basis of U1(Iα), and the system (B2
0, B2

1, B2
2) with

B2
0(t) :=

1− cos(α− t)
1− cos α

, B2
1(t) :=

cos t + cos(α− t)− cos α− 1
1− cos α

, B2
2(t) :=

1− cos t
1− cos α

, t ∈ Iα, (3)

is the normalized B-basis of U2(Iα). Let us observe that (B1
0, B1

1) clearly satisfies
B1

1(t) = B1
0(α− t), t ∈ Iα. A similar symmetry holds for (B2

0, B2
1, B2

2) since

B2
0(α− t) = B2

2(t), B2
1(α− t) = B2

1(t), t ∈ Iα. (4)

According to [37], we have the following decomposition

(B2
0(t), B2

1(t), B2
2(t)) = Λ1(t)Λ2(t), t ∈ Iα, (5)

where

Λ1(t) = (1− λ1
0(t), λ1

0(t)), Λ2(t) =
(

1− λ0
0(t) λ0

0(t) 0
0 1− λ0

1(t) λ0
1(t)

)
, (6)

and

λ1
0(t) =

(1−cos t) sin(α−t)
sin t+sin(α−t)−sin α

, t ∈ Iα,

λ0
0(t) =

sin α(1−cos t)
sin t(1−cos α)

, λ0
1(t) =

sin t+sin(α−t)−sin α
(1−cos α) sin(α−t) , t ∈ Iα. (7)

It can be easily checked that the bases (2) and (3) can be also described as follows:

B1
0(t) =

cos
(

α−t
2
)

sin
(

α−t
2
)

cos
(

α
2
)

sin
(

α
2
) , B1

1(t) =
cos
( t

2
)

sin
( t

2
)

cos
(

α
2
)

sin
(

α
2
) , t ∈ Iα,

and

B2
0(t) =

sin2( α−t
2
)

sin2( α
2
) , B2

1(t) =
2 cos

(
α
2
)

sin
(

α−t
2
)

sin
( t

2
)

sin2( α
2
) , B2

2(t) =
sin2( t

2
)

sin2( α
2
) , t ∈ Iα.
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Furthermore, the functions in the factorization (5) satisfy

λ1
0(t) =

sin( t
2 ) cos( α−t

2 )
sin( α

2 )
, t ∈ Iα,

λ0
0(t) =

cos( α
2 ) sin( t

2 )
cos( t

2 ) sin( α
2 )

, λ0
1(t) =

sin( t
2 )

sin( α
2 ) cos( α−t

2 )
, t ∈ Iα.

(8)

Definition 1. Let 0 < α < π and d ∈ N. Given pi ∈ Rd, i = 0, 1, 2, we say that the parametric
trigonometric curve

p2(t) :=
2

∑
i=0

piB2
i (t), t ∈ Iα. (9)

is a T2-curve.

Let us observe that, using (4), we can write

p2(α− t) =
2

∑
i=0

p2−iB2
i (t), t ∈ Iα,

and derive that T2-curves possess a symmetry similar to that of Bézier curves.
The factorization (5) of the basis (3) defines a corner cutting algorithm for the evalua-

tion of any parametric T2-curve given by (9). In matrix form, this de Casteljau-like corner
cutting algorithm can be described as follows, where the curve point for the parameter
value t is p2(t) = p2

0, p0
0

p1
0

p2
0

 = L

p0
0

p0
1

p0
2

,

p2
0

p1
1

p0
2

 = U

p0
0

p0
1

p0
2

, (10)

where L = L1L0, U = U1U0, with

L0 =

 1 0 0
1− λ0

0 λ0
0 0

0 1− λ0
1 λ0

1

, L1 =

1 0 0
0 1 0
0 1− λ1

0 λ1
0

,

and

U0 =

1− λ0
0 λ0

0 0
0 1− λ0

1 λ0
1

0 0 1

, U1 =

1− λ1
0 λ1

0 0
0 1 0
0 0 1

,

for the functions λ
j
i(t) defined in (7), or equivalently in (8).

Given a space U ⊂ C[a, b], we shall use the following notation:

DU := {u′|u ∈ U}, D−1U := {u ∈ C1[a, b]|u′ ∈ U}.

Theorem 1. For 0 < α < π, let

(N1
0 , N1

1 ) := (1− λ1
0, λ1

0), (11)

where λ1
0 is defined in (7), or equivalently in (8). Then, (N1

0 , N1
1 ) is the normalized B-basis of the

space D−1U(Iα), where
U(Iα) :=

〈
cos
(

t− α

2

)〉
, t ∈ Iα.
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Proof. Differentiating in (8), we can write

(N1
1 )
′(t) = (λ1

0)
′(t) =

1
2 sin

(
α
2
) cos

(
t− α

2

)
, t ∈ Iα,

and so we deduce that (N1
1 )
′(t) > 0, for all t ∈ Iα. Since N1

1 is an increasing function on
Iα and satisfies N1

1 (0) = 0, N1
1 (α) = 1, it can be easily checked that (N1

0 , N1
1 ) is formed by

nonnegative functions on Iα and it is an NTP basis of D−1U(Iα). Finally, using Proposition 2.4
of [2], we conclude that (N1

0 , N1
1 ) is a B-basis.

It can be easily checked that the functions in (11) satisfy N1
0 (α− t) = N1

1 (t), t ∈ Iα (see
Figure 1 for an illustration of these functions). Moreover,

Λ1(t) = (B1
0(t), B1

1(t))A1(t), t ∈ Iα, (12)

where A1(t) is defined by

A1(t) :=
(

a0 b0
a1 b1

)
with

a0 :=
sin α + sin(α− t)− 3 sin t

2(sin(α− t)− sin t)
, b0 := a0 − 1, a1 := 1− a0, b1 := 2− a0.

(a) (b)

(c)

Figure 1. The functions N1
0 , N1

1 (displayed in red and blue, respectively) for α = π
4 (a), α = π

2 (b) and
α = 3π

4 (c).
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Now, let us introduce the following functions defined on Iα,

(N2
0 , N2

1 , N2
2 ) := (B2

0, B2
1, B2

2)A2, A2 :=

 1
2

1
2 0

0 1 0
0 1

2
1
2

,

(N̄2
0 , N̄2

1 , N̄2
2 ) := (B2

0, B2
1, B2

2)Ā2, Ā2 :=

 1 0 0
0 1 0
0 1

2
1
2

,

(N̂2
0 , N̂2

1 , N̂2
2 ) := (B2

0, B2
1, B2

2)Â2, Â2 :=

 1
2

1
2 0

0 1 0
0 0 1

.

Clearly, the matrices A2, Ā2, Â2 are nonsingular, stochastic and TP. Then, by
Corollary 3.9 (iv) of [29], we can immediately deduce that the systems introduced in (13)
are NTP bases of U2(Iα). Figures 2–4 illustrate the functions N2

i (t), N̄2
i (t) and N̂2

i (t),
respectively. On the other hand, by (13) and (5), we can obtain the following relations:

(N2
0 (t), N2

1 (t), N2
2 (t)) = (N1

0 (t), N1
1 (t))Λ2(t)A2, t ∈ Iα,

(N̄2
0 (t), N̄2

1 (t), N̄2
2 (t)) = (N1

0 (t), N1
1 (t))Λ2(t)Ā2, t ∈ Iα,

(N̂2
0 (t), N̂2

1 (t), N̂2
2 (t)) = (N1

0 (t), N1
1 (t))Λ2(t)Â2, t ∈ Iα. (13)

(a) (b)

(c)

Figure 2. The functions N2
0 , N2

1 , N2
2 (displayed in red, green and blue, respectively) for α = π

4 (a),
α = π

2 (b) and α = 3π
4 (c).
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The following result collects important properties of the functions in (13).

Theorem 2. The following properties hold for the functions defined in (13).

1. N2
0 (α− t) = N2

2 (t), N2
1 (α− t) = N2

1 (t), t ∈ Iα.
2. N2

0 (0) =
1
2 , N2

1 (0) =
1
2 , N2

2 (0) = 0,
N2

0 (α) = 0, N2
1 (α) =

1
2 , N2

2 (α) =
1
2 .

3. (N2
0 )
′(0) = − 1

2 cot( α
2 ), (N2

1 )
′(0) = 1

2 cot( α
2 ), (N2

2 )
′(0) = 0.

(N2
0 )
′(α) = 0, (N2

1 )
′(α) = − 1

2 cot( α
2 ), (N2

2 )
′(α) = 1

2 cot( α
2 ).

4. N̄2
0 (0) = 1, N̄2

1 (0) = 0, N̄2
2 (0) = 0.

N̄2
0 (α) = 0, N̄2

1 (α) =
1
2 , N̄2

2 (α) =
1
2 .

5. (N̄2
0 )
′(0) = − cot( α

2 ), (N̄2
1 )
′(0) = cot( α

2 ), (N̄2
2 )
′(0) = 0.

(N̄2
0 )
′(α) = 0, (N̄2

1 )
′(α) = − 1

2 cot( α
2 ), (N̄2

2 )
′(α) = 1

2 cot( α
2 ).

6. N̂2
0 (0) =

1
2 , N̂2

1 (0) =
1
2 , N̂2

2 (0) = 0.
N̂2

0 (α) = 0, N̂2
1 (α) = 0, N̂2

2 (α) = 1.
7. (N̂2

0 )
′(0) = − 1

2 cot( α
2 ), (N̂2

1 )
′(0) = 1

2 cot( α
2 ), (N̂2

2 )
′(0) = 0.

(N̂2
0 )
′(α) = 0, (N̂2

1 )
′(α) = − cot( α

2 ), (N̂2
2 )
′(α) = cot( α

2 ).
8. ∑2

i=0 N2
i (t) = 1, ∑2

i=0 N̄2
i (t) = 1, ∑2

i=0 N̂2
i (t) = 1, t ∈ Iα.

(a) (b)

(c)

Figure 3. The functions N̄2
0 , N̄2

1 , N̄2
2 (displayed in red, green and blue, respectively) for α = π

4 (a),
α = π

2 (b) and α = 3π
4 (c).
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(a) (b)

(c)

Figure 4. The functions N̂2
0 , N̂2

1 , N̂2
2 (displayed in red, green and blue, respectively) for α = π

4 (a),
α = π

2 (b) and α = 3π
4 (c).

For p ∈ N, p ≥ 2, we consider the equally spaced partitions

π = {ui}
p+3
i=0 = {i α}p+3

i=0 , (14)

and

µ = {ui}
p+3
i=0 , (15)

with u0 = u1 = u2 = 0, ui = (i − 2) α, for i = 3, . . . , p + 1, and up+1 = up+2 = up+3 =
(p− 1)α for the partition µ in (15). We thus define the piecewise functions on either parti-
tion π or µ.
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Ni,0(u) :=

{
1, u ∈ [ui, ui+1),
0, else,

(16)

Ni,1(u) :=


N1

1 (u− ui), u ∈ [ui, ui+1),
N1

0 (u− ui+1), u ∈ [ui+1, ui+2),
0, else,

(17)

Ni,2(u) :=


N2

2 (u− ui), u ∈ [ui, ui+1),
N2

1 (u− ui+1), u ∈ [ui+1, ui+2),
N2

0 (u− ui+2), u ∈ [ui+2, ui+3),
0, else,

(18)

for i = 0, . . . , p. On the partition µ, we also define

Ñ0,2(u) :=

{
N̄2

0 (u− u2), u ∈ [u2, u3),
0, else,

Ñ1,2(u) :=


N̄2

1 (u− u2), u ∈ [u2, u3),
N2

0 (u− u3), u ∈ [u3, u4),
0, else,

Ñp−1,2(u) :=


N2

2 (u− up−1), u ∈ [up−1, up),
N̂2

1 (u− up), u ∈ [up, up+1),
0, else,

(19)

Ñp,2(u) :=

{
N̂2

2 (u− up), u ∈ [up, up+1),
0, else.

(20)

Figure 5 illustrates the functions Ni,2, Ñ1,2 and Ñp−1,2.
By construction, the following properties hold for the above functions.

Proposition 1. The functions defined by (16)–(20) have the following properties:

(N1) For j ∈ {1, 2}, Ni,j(u) is a piecewise trigonometric function of the space Uj(Iα) and, for
i = 0, 1, p− 1, p, Ñi,2(u) is a piecewise trigonometric function of the space U2(Iα).

(N2) For all applicable indices,

Ni,j(u)

{
> 0, u ∈ (ui, ui+j+1),
= 0, else.

For i = 0, 1, p− 1, p,

Ñi,2(u)

{
> 0, u ∈ (ui, ui+3),
= 0, else.

In fact, Ni,j(u) has the minimal support [ui, ui+j+1] and Ñi,2(u) has the minimal support [ui, ui+3].
(N3) Ni,j(u)|[ul ,ul+1]

6= 0 for i = l − j, . . . , l.
(N4) For j ∈ {1, 2}, Ni,j(u) are symmetrical with respect to the middle of their supports and they

can be obtained by translation, i.e., Ni,j(u) = N0,j(u− ui).
(N5) Over the partition π,

p+2−j

∑
i=0

Ni,j(u) = 1, u ∈ [u2, up+1].

(N6) Over the partition µ,
p+2−j

∑
i=0

Ni,j(u) = 1, u ∈ [u2, up+1],
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where Ni,2 = Ñi,2 for i = 0, 1, p− 1, p.
(N7) On the partitions π and µ, the functions Ni,j(u) for i = 0, . . . , p + 2− j and j = 0, 1, 2, and

Ñi,2(u) for i = 0, 1, p− 1, p are Cj−mult(uk)-continuous, where mult(uk) is the multiplicity
of the knot uk in the support of the corresponding function.

(a) (b)

(c)

Figure 5. The functions Ni,2 (a), Ñ1,2 (b), Ñp−1,2 (c) for α = π
4 .

Let us note that the restriction of the functions Ni,2,µ, i = 0, . . . , p, to each interval
[uk, uk+1], k = 0, . . . , p, generates U2(Iα), which is a Chebyshev space (see [2]). Therefore,
(N0,2,µ, . . . , Np,2,µ) generates a space S of Chebyshevian splines with a totally positive
basis (see Chapter 9 of [34]). In addition, the system also satisfies

lim
u→u+

j

Nk,2,µ(u)/Nj,2,µ(u) = 0, lim
u→u−k+3

Nj,2,µ(u)/Nk,2,µ(u) = 0,

whenever j < k. Then, by Theorem 3.2 of Chapter 4 of [13], (N0,2,µ, . . . , Np,2,µ) is the
normalized B-basis of S . This fact implies optimal shape-preserving properties (see [29]
and Chapter 4 of [13]). Due to the analogy to the well-known polynomial B-splines, we
will say that the functions Ni,2,µ, i = 0, . . . , p, are T2-B-splines.

Now, we can define trigonometric piecewise curves (see Figure 6 for an illustration).

Definition 2. For given p, d ∈ N, p ≥ 2, let si ∈ Rd, i = 0, . . . , p, and the knot partitions π, µ
defined in (14) and (15), respectively, are defined as follows.
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(a) (b)

(c) (d)

Figure 6. Open (red), clamped (green) and closed (red and blue) T2-B-spline curves with control
points s0 = (0, 0), s1 = (0, 1), s2 = (3, 4), s3 = (6, 0), s4 = (7, 4) (first column), respectively,
s0 = (0, 0), s1 = (0, 1), s2 = (3, 4), s3 = (5, 3), s4 = (7, 0) (second column). Figures (a,b) show the
open and clamped curves, figures (c,d) show the open and closed curves; the closed control polygon
and convex hull of the control points are also displayed in yellow.

(a) The functions Ni,j,π(u) = Ni,j(u) for i = 0, . . . , p + 2 − j and j = 0, 1, 2 are called
normalized T2-B-splines over the partition π and the functions Ni,j,µ(u) = Ni,j(u) for
i = 0, . . . , p + 2− j and j = 0, 1, Ni,2,µ(u) = Ni,2(u) for i = 2, . . . , p− 2 and Ni,2,µ(u) =
Ñi,2(u) for i = 0, 1, p− 1, p are called normalized T2-B-splines over the partition µ.

(b) The parametric curve

s(u) :=
p

∑
i=0

si Ni,2,π(u), u ∈ [u2, up+1), (21)

is called a T2-B-spline curve (with respect to the partition π) with the control points s0, . . . , sp.
In particular, for p = m, with m ∈ N, m ≥ 2, we refer to this curve as an open T2-B-spline
curve, and for p = m + 2 and sm+1 = s0, sm+2 = s1, we have a closed T2-B-spline curve.

(c) For p = m, with m ∈ N, m ≥ 2, the curve

s(u) :=
m

∑
i=0

si Ni,2,µ(u), u ∈ [u2, um+1) (22)

is called a clamped T2-B-spline curve (with respect to the partition µ) with the control points
s0, . . . , sm.

From the properties of their blending functions given in Proposition 1, the following
properties of T2-B-spline curves can easily be derived.

Proposition 2.

(C1) The relation between the curve s(u) and its control points s0, . . . , sp is affinely invariant, i.e.,
the T2-B-spline curve constructed from images of the control points s0, . . . , sp under an affine
transformation is identical to the image of the curve s(u) under the same affine transformation.
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(C2) The curve s(u) is locally controlled, i.e., moving a control point sl only modifies the curve for
u ∈ [ul , ul+3). Moreover, for τ = π or τ = µ, we have

s(u)|u∈[ul ,ul+1)
=

l

∑
i=l−2

si Ni,2,τ(u), (23)

and the curve s(u) lies in the convex hull of its control points. More precisely,

s(u)|u∈[ul ,ul+1)
⊂ ∆(sl−2, sl−1, sl), (24)

where ∆(sl−2, sl−1, sl) is the triangle generated by the points sl−2, sl−1, sl .
(C3) For a clamped T2-B-spline curve, we have end-point and end-tangent interpolation, namely

s(u1) = s(0) = s0, s(um+1) = sm,

s′(0) = cot
(α

2

)
(s1 − s0), s′(um+1) = cot

(α

2

)
(sm − sm−1).

(C4) If three control points sl−2, sl−1, sl are collinear, the T2-B-spline curve s(u) contains part of
the straight line through sl−2, sl−1, sl .

(C5) The straight line through sl−2, sl−1 is tangent to the T2-B-spline curve s(u) in the point s(ul),
i.e., every leg of the control polygon is tangent to the curve.

The normalized T2-B-spline functions from Definition 2a can be conveniently gener-
ated by a Cox–de Boor-like recurrence relation as follows.

Theorem 3. By introducing the following abbreviations

γi,1(u) :=
sin
(

u−ui
2

)
cos
(

α−u+ui
2

)
sin
(

α
2
) ,

γi,2(u) :=
sin(u− ui+1 + α)− sin(u− ui+1)− sin(α)

2 sin(u− ui+1)(cos(α)− 1)
, (25)

and considering the piecewise functions Ni,0(u) from (16), we obtain

Ni,j,τ(u) = γi,j(u) Ni,j−1,τ(u) + ρi,j(u) Ni+1,j−1,τ(u) . (26)

Herein, the partition, the coefficients and the index range vary according to the type of T2-B-
spline curve (open, closed, clamped) in the following way:

(a) For τ = π, i = 0, . . . , p + 2− j, j = 1, 2 and

ρi,j(u) = 1− γi+1,j(u), (27)

and the recurrence relation (26) generates the blending functions of an open (respectively,
closed) T2-B-spline curve for p = m (respectively, for p = m + 2).

(b) For τ = µ, the coefficients γi,1(u) (respectively, γi,2(u)) are defined as in (25) for
i = 0, . . . , m + 2 (respectively, i = 2, . . . , m − 2). The remaining coefficients are defined
as follows:
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ρi,1(u) = 1− γi+1,1(u), for i = 0, . . . , m + 1,

ρi,2(u) = 1− γi+1,2(u), for i = 2, . . . , m− 3,

ρm−2,2(u) = 1− sin(u− um + α)− sin(u− um)− sin(α)
2 sin(u− um)(cos(α)− 1)

,

γ0,2(u) = 0,

ρ0,2(u) =
N̄2

0 (u− u2)

N1
0 (u− u2)

,

ρ1,2(u) =
N̂2

0 (u− u3)

N1
0 (u− u3)

,

γ1,2(u) =
N̄2

1 (u− u2)− ρ1,2(u)N1
1 (u− u2)

N1
0 (u− u2)

,

γm−1,2(u) =
N̄2

2 (u− um−1)

N1
1 (u− um−1)

,

ρm−1,2(u) =
N̂2

1 (u− um)− γm−1,2(u)N1
0 (u− um)

N1
1 (u− um)

,

γm,2(u) =
N̂2

2 (u− um)

N1
1 (u− um)

,

ρm,2(u) = 0.

Thus, the recurrence relation (26) generates the blending functions of a clamped T2-B-spline curve.

Proof. According to (13), we have

N2
0 (u− ui+2) =

1
2
(1− λ0

0(u− ui+2))N1
0 (u− ui+2),

N2
1 (u− ui+1) =

1
2
(1 + λ0

0(u− ui+1))N1
0 (u− ui+1) + (1− 1

2
λ0

1(u− ui+1)) N1
1 (u− ui+1),

N2
2 (u− ui) =

1
2

λ0
1(u− ui)N1

1 (u− ui).

The following identities can be easily checked
1
2
(1− λ0

0(u− ui+2)) = 1− 1
2

λ0
1(u− ui+1),

1
2
(1 + λ0

0(u− ui+1)) =
1
2

λ0
1(u− ui), (28)

and then, for j = 2, we obtain the recurrence relation (26) for all i, in the open and closed
cases, and for i = 2, . . . , m− 2, in the clamped case. For j = 1, Equation (26) is obtained in
a straightforward manner by (11), (16) and (17). The remaining equations from (26) in the
clamped case for j = 2 are readily obtained by (17) and (20).

Thanks to this recurrence relation, we immediately obtain a de Boor-like or corner
cutting algorithm for the evaluation of the T2-B-spline curves.

Theorem 4. Given an open, closed or clamped T2-B-spline curve over the partition τ = π or
τ = µ, according to Definition 2,

s(u) =
p

∑
i=0

si Ni,2,τ(u), u ∈ [u2, up+1), (29)
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the curve point s(u) for a parameter u ∈ [ul , ul+1) is obtained as

s(u) = s2
l ,

where
sk

i = sk−1
i γi,3−k(u) + sk−1

i−1 ρi−1,3−k(u)

for k = 1, 2 and i = l − 2 + k, . . . , l.

Remark 1. The de Boor-like algorithm from Theorem 4 may be written in matrix form as followss0
l−2

s1
l−1
s2

l

 = L̄

s0
l−2

s0
l−1
s0

l

,

s2
l

s1
l

s0
l

 = Ū

s0
l−2

s0
l−1
s0

l

, (30)

where L̄ = L̄1 L̄0 and Ū = Ū1Ū0 with

L̄0 =

 1 0 0
ρl−2,2 γl−1,2 0

0 ρl−1,2 γl,2

, L̄1 =

1 0 0
0 1 0
0 ρl−1,1 γl,1

,

and

Ū0 =

ρl−2,2 γl−1,2 0
0 ρl−1,2 γl,2
0 0 1

, Ū1 =

ρl−1,1 γl,1 0
0 1 0
0 0 1

.

For an illustration, see Figures 7 and 8, first row.

Remark 2. Additionally to the above de Boor-like corner cutting algorithm, the T2-B-spline curves
also admit the following corner cutting algorithm. Considering a segment of an open or closed
T2-B-spline curve (see Definition 2b) for the curve parameter u ∈ [ul , ul+1), l ∈ {2, . . . , p},
or an inner segment of a clamped T2-B-spline curve (see Definition 2c) for the curve parameter
u ∈ [ul , ul+1), l ∈ {3, . . . , m− 1}, we have

s(u)|u∈[ul ,ul+1)
= (N2

0 (u− ul), N2
1 (u− ul), N2

2 (u− ul))

s0
l−2

s0
l−1
s0

l

.

According to (13) and Definition 1, the pointsp0
l,0

p0
l,1

p0
l,2

 = A2

s0
l−2

s0
l−1
s0

l


are thus the control points of a T2-curve. Considering the factorization A2 = Ā2 Â2 = Â2 Ā2 of the
matrix A2 and applying the de Casteljau-like algorithm from (10), the corner cutting algorithm may
be written in matrix form as follows (analogously, the factorization A2 = Â2 Ā2 can be used):p0

l,0
p1

l,0
p2

l,0

 = L1L0 Ā2 Â2

s0
l−2

s0
l−1
s0

l

,

p2
l,0

p1
l,1

p0
l,2

 = U1U0 Ā2 Â2

s0
l−2

s0
l−1
s0

l

, (31)

with the matrices Li, Ui from (10) and t = u− ul . For the initial and final segments of a clamped
T2-B-spline curve, i.e., for the curve parameter u ∈ [ul , ul+1), for l ∈ {2, m}, we obtain

s(u)|u∈[u2,u3)
= (N̄2

0 (u− u2), N̄2
1 (u− u2), N̄2

2 (u− u2))

s0
0

s0
1

s0
2

,
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for l = 2, and

s(u)|u∈[um ,um+1)
= (N̂2

0 (u− um), N̂2
1 (u− um), N̂2

2 (u− um))

s0
m−2

s0
m−1
s0

m

,

for l = m, and thusp0
l,0

p1
l,0

p2
l,0

 = L1L0 Al
2

s0
l−2

s0
l−1
s0

l

,

p2
l,0

p1
l,1

p0
l,2

 = U1U0 Al
2

s0
l−2

s0
l−1
s0

l

, (32)

for l ∈ {2, m}, and A2
2 = Ā2, Am

2 = Â2. For an illustration, see Figures 7 and 8, second row.
Comparing this corner cutting algorithm with the de Boor-like algorithm from Theorem 4 and
Remark 1, we observe that s2

l = p2
l,0, s1

l−1 = p1
l,0, s1

l = p1
l,1, but s0

l−2 6= p0
l,0, and s0

l 6= p0
l,2 in

the case of a segment of an open or closed T2-B-spline curve or of an inner segment of a clamped
T2-B-spline curve. In the case of the initial or final segment of a clamped T2-B-spline curve, we have
s2

2 = p2
2,0, s1

1 = p1
2,0, s1

2 = p1
2,1, s0

0 = p0
2,0, but s0

2 6= p0
2,2, respectively, s2

m = p2
m,0, s1

m−1 = p1
m,0,

s1
m = p1

m,1, s0
m = p0

m,2, but s0
m−2 6= p0

m,0.

Figure 7. Successive intermediate control polygons (in the color order black-green-brown (first row)
respectively, black-green-brown-blue-pink (second row)) generated by the de Boor-like algorithm
from Theorem 4 (first row) and by the alternative corner cutting algorithm from Remark 2 (second row)
for a segment of an open or closed T2-B-spline curve or an inner segment of a clamped T2-B-spline
curve. The first (respectively, second) column illustrates the left (respectively, right) factorization
from Equations (30) and (31).
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Figure 8. Successive intermediate control polygons (in the color order black-green-brown (first row)
respectively black-green-brown-blue (second row)) generated by the de Boor-like algorithm from
Theorem 4 (first row) and by the alternative corner cutting algorithm from Remark 2 (second row) for
the initial segment of a clamped T2-B-spline curve for α = π

2 . The first and second columns illustrate
the left and right factorizations, respectively, from Equations (30) and (32).

Remark 3. Let us also remark that the T2-B-spline curves from Definition 2 over the knot partitions
π and µ, respectively, can be expressed in the following way over the multiple knot partitions

π2 = {< ui >
2}p+3

i=0 , µ2 = {< u2 >3, {< ui >
2}p

i=3,< up+1 >3},

respectively, where < ui >
k stands for a knot of multiplicity k. In the open or closed case, we have

s(u) =
p

∑
i=0

si Ni,2,π(u) =
2(p−1)

∑
i=0

s1
i Ni,2,π2(u), u ∈ [u2, up+1),

with

s1
2i =

1
2
(si + si+1), i = 0, . . . , p− 1,

s1
2i+1 = si+1, i = 0, . . . , p− 2,

N2i,2,π2(u) =


B2

2(u− ui+1), u ∈ [ui+1, ui+2),
B2

0(u− ui+2), u ∈ [ui+2, ui+3)

0, else,

, i = 0, . . . , p− 1,

N2i+1,2,π2(u) =

{
B2

1(u− ui+2), u ∈ [ui+2, ui+3),
0, else,

, i = 0, . . . , p− 2.
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In the clamped case, we have

s(u) =
p

∑
i=0

si Ni,2,µ(u) =
2(p−1)

∑
i=0

s1
i Ni,2,µ2(u), u ∈ [u2, up+1),

with Ni,2,µ2(u) = Ni,2,π2(u) for i = 0, . . . , 2(p− 1), s1
2i+1 as above for i = 0, . . . , p− 2, s1

2i as

above for i = 1, . . . , p− 2, and s1
0 = s0, s1

2(p−1) = sp.

3. Convergence of T2-B-Spline Curves to Quadratic B-Spline Curves

In this section, we shall prove that when α → 0, T2-B-spline curves converge to
quadratic polynomial B-spline curves. For this purpose, we first need to verify the con-
vergence of the functions of the normalized B-basis (B2

0, B2
1, B2

2) of U2(Iα) to the Bernstein
polynomials of degree 2. In this analysis, we shall reparametrize the interval domain [0, α]
so that the considered bases are defined on a fixed interval [0, 1] and we could have the
parameter α→ 0 without losing their domain intervals.

Lemma 1. Let (B2
0, B2

1, B2
2) be the normalized B-basis of the space U2(Iα) and let (b2

0, b2
1, b2

2) be
the Bernstein basis of polynomials of degree less than or equal to 2 on the interval [0, 1]. Then, when
α → 0, the functions B̃2

i (τ) := B2
i (ατ), 0 ≤ τ ≤ 1, uniformly converge to b2

i (τ), 0 ≤ τ ≤ 1,
i = 0, 1, 2.

Proof. Taking into account that the Bernstein basis on [0, 1] is defined as

b2
i (τ) :=

(
2
i

)
τi(1− τ)2−i, i = 0, 1, 2,

developing by the Taylor expansion at τ = 0, we can write

b2
2(τ)− B̃2

2(τ) =
2− 2 cos α− α2

2(1− cos α)
τ2 +

α4 cos(αξ)

24(1− cos α)
τ4,

where ξ ∈ [0, τ]. Then, we have∣∣∣b2
2(τ)− B̃2

2(τ)
∣∣∣ ≤ ∣∣∣∣2− 2 cos α− α2

2(1− cos α)

∣∣∣∣+ α4

1− cos α
, τ ∈ [0, 1],

and

lim
α→0

2− 2 cos α− α2

2(1− cos α)
= 0, lim

α→0

α4

24(1− cos α)
= 0.

Thus, we derive
lim
α→0

max
0≤τ≤1

|b2
2(τ)− B̃2

2(τ)| = 0. (33)

By definition, b2
0(τ) = b2

2(1− τ), B̃2
0(τ) = B̃2

2(1− τ) and, therefore, by (33), we de-
duce that

lim
α→0

max
0≤τ≤1

|b2
0(τ)− B̃2

0(τ)| = 0. (34)

Finally, taking into account that 1 = ∑2
i=0 b2

i (τ) = ∑2
i=0 B̃2

i (τ), τ ∈ [0, 1], from
Formulas (33) and (34), we conclude

lim
α→0

max
0≤τ≤1

|b2
1(τ)− B̃2

1(τ)| = 0. (35)

Theorem 5. Let the π and µ partitions be as described in (14) and (15), respectively. When
α→ 0, the T2-B-spline curve (21) and the clamped T2-B-spline curve (22), with respect to π and µ,



Symmetry 2023, 15, 1551 18 of 22

respectively, and control points s0, . . . , sp approaches uniformly the quadratic polynomial B-spline
curve with knot vector π and µ, respectively, and control points s0, . . . , sp.

Proof. Let us observe that, by (23), for τ = π or τ = µ, we can write

s(u)|u∈[ul ,ul+1)
=

l

∑
i=l−2

si Ni,2,τ(u) =
2

∑
j=0

sl+j−2N2
j (u− ul).

Let τ := (u− ul)/α for the reparameterization of each segment curve on the interval
0 ≤ τ ≤ 1. By Lemma 1, as α→ 0, the function B2

i (ατ) approaches uniformly the Bernstein
polynomial b2

i (τ), 0 ≤ τ ≤ 1, for all i = 0, 1, 2. Therefore, for τ = π, using the matrix A2
defined in (13), we can deduce

lim
α→0

s(u)|u∈[ul ,ul+1)
= lim

α→0

(
B2

0(ατ), B2
1(ατ), B2

2(ατ)(ατ)
)

A2

 sl−2
sl−1

sl


=

(
b2

0(τ), b2
1(τ), b2

2(τ)
)

A2

 sl−2
sl−1

sl

,

which is the matrix form of a uniform B-spline curve of degree 2.
For τ = µ, we can follow similar reasoning by considering the matrices A2, Â2 and Ā2

defined in (13).

4. Start Point for T2-B-Spline Bases on Non-Uniform Partitions

Given a partition {ui}n
i=0, we shall denote hi := ui+1 − ui, i = 0, . . . , n− 1. In this

section, we shall consider non-uniform partitions

π = {ui}
p+3
i=0 , µ = {ui}

p+3
i=0 , (36)

p ∈ N, p ≥ 2, such that π satisfies hi + hi+1 > 0, i = 0, . . . , p + 1, and for the partition µ,
we have that u0 = u1 = u2, up+1 = up+2 = up+3 and hi + hi+1 > 0, i = 1, . . . , p.

For the partition π, we can define the matrices

Ai,2 :=


hi

hi−1+hi

hi−1
hi−1+hi

0
0 1 0
0 hi+1

hi+hi+1

hi
hi+hi+1

, i = 0, . . . , p + 2, (37)

with the convention h−1 := 0 and hp+3 := 0, and the following systems of functions de-
fined in Iα,

(N2
0,i, N2

1,i, N2
1,i) := (B2

0, B2
1, B2

2)Ai,2. (38)

For the partition µ, we further define the matrices

Ā2 :=

 1 0 0
0 1 0
0 h3

h2+h3

h2
h2+h3

, Â2 :=


hp

hp−1+hp

hp−1
hp−1+hp

0

0 1 0
0 0 1

, (39)

as well as the following systems of functions defined in Iα

(N̄2
0 , N̄2

1 , N̄2
2 ) := (B2

0, B2
1, B2

2)Ā2, (N̂2
0 , N̂2

1 , N̂2
2 ) := (B2

0, B2
1, B2

2)Â2. (40)

Clearly, the matrices Ai,2, Ā2, Â2 are nonsingular, TP and stochastic. Then, by
Corollary 3.9 (iv) of [29], the systems introduced in (38) and (40) are NTP bases of U2(Iα).
Let us also observe that these matrices are generalizations of the matrices defined in (13)
for the equally spaced partitions considered in Section 2.



Symmetry 2023, 15, 1551 19 of 22

The functions in (38) satisfy the following properties at the ends of the interval domain:

N2
0,i(0) =

hi
hi−1 + hi

, N2
1,i(0) =

hi−1

hi−1 + hi
, N2

2,i(0) = 0,

N2
0,i(α) = 0, N2

1,i(α) =
hi+1

hi + hi+1
, N2

2,i(α) =
hi

hi + hi+1
.

Then, we have that
N2

j+1,i(α) = N2
j,i+1(0), j = 0, 1.

Furthermore,

(N2
0,i)
′(0) = − hi

hi−1+hi
cot( α

2 ), (N2
1,i)
′(0) = hi

hi−1+hi
cot( α

2 ), (N2
2,i)
′(0) = 0,

(N2
0,i)
′(α) = 0, (N2

1,i)
′(α) = − hi

hi+hi+1
cot( α

2 ), (N2
2,i)
′(α) = hi

hi+hi+1
cot( α

2 ),

i.e.,
hi+1(N2

j+1,i)
′(α) = hi(N2

j,i+1)
′(0), j = 0, 1.

Moreover, the functions in (40) satisfy the following properties at the ends of the
interval domain:

N̄2
0 (0) = 1, N̄2

1 (0) = 0, N̄2
2 (0) = 0,

N̄2
0 (α) = 0, N̄2

1 (α) =
h3

h2 + h3
, N̄2

2 (α) =
h2

h2 + h3
,

N̂2
0 (0) =

hp

hp−1 + hp
, N̂2

1 (0) =
hp−1

hp−1 + hp
, N̂2

2 (0) = 0,

N̂2
0 (α) = 0, N̂2

1 (α) = 0, N̂2
2 (α) = 1.

It can also be checked that

(N̄2
0 )
′(0) = − cot( α

2 ), (N̄2
1 )
′(0) = cot( α

2 ), (N̄2
2 )
′(0) = 0,

(N̄2
0 )
′(α) = 0, (N̄2

1 )
′(α) = − h2

h2+h3
cot( α

2 ), (N̄2
2 )
′(α) = h2

h2+h3
cot( α

2 ),

(N̂2
0 )
′(0) = − hp

hp−1+hp
cot( α

2 ), (N̂2
1 )
′(0) = hp

hp−1+hp
cot( α

2 ), (N̂2
2 )
′(0) = 0,

(N̂2
0 )
′(α) = 0, N̂2

1 (α) = − cot( α
2 ), (N̂2

2 )
′(α) = cot( α

2 ).

Now, we can define the following piecewise functions on the non-uniform partition µ

Ni,2(u) :=

N2
j,i+2−j

(
α

u−ui+2−j
hi+2−j

)
, u ∈ [ui+2−j, ui+3−j), j = 0, 1, 2,

0, else,
(41)

for i = 0, . . . , p. For the consideration of the partition µ, we also define the following
piecewise functions

Ñ0,2(u) :=

{
N̄2

0 (u− u2), u ∈ [u2, u3),
0, else,

Ñ1,2(u) :=


N̄2

1 (u− u2), u ∈ [u2, u3),
N2

0,3(u− u3), u ∈ [u3, u4),
0, else,
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Ñp−1,2(u) :=


N2

2,p−1(u− up−1), u ∈ [up−1, up),

N̂2
1 (u− up), u ∈ [up, up+1),

0, else,

Ñp,2(u) :=

{
N̂2

2 (u− up), u ∈ [up, up+1),
0, else.

(42)

We have the following result.

Proposition 3. The functions defined by (20) and (41) have the following properties.

(N1) For all applicable indices,

Ni,2(u)

{
> 0, u ∈ (ui, ui+3),
= 0, else.

Moreover,

Ñi,2(u)

{
> 0, u ∈ (ui, ui+3),
= 0, else,

, i = 0, 1, p− 1, p.

In fact, Ni,2(u) and Ñi,2(u) have the minimal support [ui, ui+3].
(N2) Ni,2(u)|[ul ,ul+1]

6= 0 for i = l − 2, . . . , l.
(N3) Over the partition π,

p

∑
i=0

Ni,2(u) = 1, u ∈ [u2, up+1].

(N4) Over the partition µ,
p

∑
i=0

Ni,2(u) = 1, u ∈ [u2, up+1],

where Ni,2 = Ñi,2, for i = 0, 1, p− 1, p.
(N5) The functions Ni,2(u) for i = 0, . . . , p and Ñi,2(u) for i = 0, 1, p − 1, p are Cj−mult(uk)-

continuous, where mult(uk) is the multiplicity of the knot uk in the support of the respec-
tive function.

Finally, using the Functions (41) and (20), we can generalize, for non-uniform knot
partitions, the normalized T2-B-splines and T2-B-spline curve introduced in Definition 2.

Definition 3. For given p, d ∈ N, p ≥ 2, let si ∈ Rd, i = 0, . . . , p, and the non-uniform knot
partitions π, µ in (36). Now, we define as follows.

(a) The functions Ni,π(u) = Ni,2(u), i = 0, . . . , p, are called normalized T2-B-splines over the
partition π and the functions Ni,µ(u) = Ni,2(u) for i = 2, . . . , p− 2 and Ni,µ(u) = Ñi,2(u)
for i = 0, 1, p− 1, p are called normalized T2-B-splines over the partition µ.

(b) The parametric curve

s(u) :=
p

∑
i=0

si Ni,2,π(u), u ∈ [u2, up+1), (43)

is called T2-B-spline curve (with respect to the partition π) with the control points s0, . . . , sp.
In particular, for p = m, with m ∈ N, m ≥ 2, we refer to this curve as an open T2-B-spline
curve, and for p = m + 2 and sm+1 = s0, sm+2 = s1, we have a closed T2-B-spline curve.

(c) For p = m, with m ≥ 2, m ∈ N, the curve

s(u) =
m

∑
i=0

si Ni,2,µ(u) ; u ∈ [u2, um+1) (44)
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is called a clamped T2-B-spline curve (with respect to the partition µ) with the control
points s0, . . . , sm.

5. Conclusions and Future Work

We have proposed one-frequency trigonometric spline bases with shape-preserving
properties. For uniform knot partitions, the corresponding parametric trigonometric spline
curves are described and a de Boor–Cox-like algorithm is obtained. Additionally, an
alternative corner cutting algorithm for evaluation is deduced. It is also shown that these
curves share many properties with polynomial spline curves. In fact, it is shown that they
converge to uniform quadratic B-spline curves. This new class of curves has great potential
for applications in computer-aided design and manufacturing, robotics, motion control,
path planning, computer graphics, animation and other related fields.

There is some worthwhile work to study further. We wish to define the normalized B-bases
of spline spaces formed by piecewise pure trigonometric and mixed algebraic–trigonometric
functions with simple and multiple knots by considering the results in [38]. We shall investigate
whether it is possible to construct new algebraic-trigonometric Pythagorean-Hodograph
B-spline curves taking into account the results from [16,17,26], allowing the resolution of
interpolation problems with geometrically invariant and symmetric parameterizations.
Applications to reverse engineering for the recovery of lost design specifications for an
object, from its physical realization, can also be explored [20].

Our goal is to focus on these issues in the near future.
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