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Abstract: The integrity of real-time data streams has not been solved for a long time and has gradually
become a difficult problem in the field of data security. Most of the current data integrity verification
schemes are constructed using cryptographic algorithms with complex computation, which cannot
be directly applied to real-time stream computing systems. Aiming at the above issue, this paper
adopts the Carter–Wegman MAC method, pseudo-random function and symmetric cryptography
mechanism to construct the Real-Time Data Integrity Verification scheme based on symmetric key in
stream computing systems (RT-DIV), which converts a one-time MAC to a multiple-time MAC and
retains the advantage of security performance. Then, a security analysis is given under the standard
model. Finally, experiments and data analysis are conducted in a simulated environment, and the
experimental results show that the RT-DIV scheme can effectively guarantee the integrity of real-time
data streams. Furthermore, the RT-DIV scheme lays the foundation for the secure application of the
stream computing system.

Keywords: data integrity verification; stream computing system; symmetric key

1. Introduction

Data integrity is the basic premise in guaranteeing the accuracy of big data analysis
and calculation and is an important research interest in the field of data security. There
are two main computing modes of big data: batch offline computing and stream real-time
computing. Batch computing is mainly oriented towards static, persistent data. Data are
stored previously and then distributed with the computing logic to distributed computing
nodes for calculation. Stream computing is mainly oriented towards data streams. Instead
of storing all data, it directly performs data calculation in memory for the data stream
within a certain period of time.

According to the survey, the current data integrity verification technology and research
in the batch computing mode are relatively mature, while there is no perfect scheme to
solve the data integrity problem in the stream computing mode. In the traditional batch
computing mode, the data integrity verification mechanism is divided into two categories
according to whether fault-tolerant recovery measures are performed on the data [1]: the
Provable Data Possession (PDP) and the Proofs of Retrievability (POR). However, the
current PDP and POR schemes are only suitable for the integrity verification of stored data
and cannot be directly applied in stream computing systems. Due to the real-time, burst,
disorder, and volatility characteristics of big data streams [2], the message and information
in stream computing systems are easy to lose or repeat and inconsistent in state. The
problem of incomplete data becomes more and more prominent, meaning the research of
data integrity and is faced with unprecedented difficulties.

Currently, although most stream computing systems have a message acknowledgment
mechanism (acker) [3] to check whether each message can be completely processed, the
integrity of the message data itself cannot be guaranteed, and if the complex verification
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calculation is run on the acker, it is easy to affect the efficiency of real-time message
calculation. At the same time, because the stream computing process is not persistent, it is
impossible to view the processing path of historical messages, which makes the problem of
incomplete message data difficult to reproduce.

Nowadays, research on data integrity verification in stream computing systems is
relatively rare. Most of the existing data integrity verification schemes adopt asymmetric
cryptographic algorithms such as elliptic curve, RSA signature or bilinear mapping to
construct data integrity verification schemes, which are computationally inefficient and
usually used for static data in storage mode. They cannot meet the efficiency requirements
of real-time data in stream computing systems, so an efficient and universal solution cannot
be formed.

To address the above issues, this paper constructed a Real-Time Data Integrity Verifica-
tion algorithm scheme (RT-DIV) based on symmetric key in the stream computing system.
By using the Carter–Wegman MAC construction method, pseudo-random function and
symmetric cryptography mechanism, the RT-DIV scheme can efficiently record, analyze
and verify the data of each message in different processing periods in real time, actively
discover the incompleteness of message and automatically alarm and replay erroneous data
to ensure the global integrity and consistency of message data throughout the life cycle.

The paper is organized as follows: We give the introduction in Section 1, and the
related work in Section 2. Then, the proposed model of our scheme is given in Section 3,
and the preliminaries in Section 4. The detailed implementation of scheme design and
system design is given in Section 5. We further give the security analysis and experiments
in Sections 6 and 7, respectively. Finally, the conclusion is given in Section 8.

2. Related Works

Most of the existing data integrity schemes are constructed based on RSA algorithms,
homomorphic verification tags, bilinear mapping, the third party, elliptic curve and other
emerging technologies.

1. Schemes based on RSA

Ateniese et al. [4] proposed the first PDP scheme, which is one of the most classic
data integrity verification schemes; it is based on the RSA scheme and randomly selects
a fixed number of data blocks to aggregate into a smaller value to guarantee each verifi-
cation, thus greatly reducing the communication and computational cost. Subsequently,
Ateniese et al. [5] proposed an efficient and securely verifiable PDP scheme, which can
support dynamic data manipulation, such as addition, deletion and modification, but
the number of verifications is limited. Erway et al. [6] proposed a Dynamic PDP (DPDP)
scheme, which is constructed by S-PDP with a jump table structure to add, modify and
delete data. Wang et al. [7] proposed a non-repudiable PDP scheme, which constructed a
reusable commitment function based on the Pederson commitment. It can guarantee the
security of both the user and the server.

2. Schemes based on homomorphic verification tags (HVT)

Shacham et al. [8] proposed a CPOR scheme using HVT which greatly reduces the
communication cost, then presented separate schemes for public and private verification
which overcomes the shortcoming of limited verification of the POR scheme [9]. Curt-
mola et al. [10] proposed a scheme to guarantee the integrity of data stored on multiple
cloud servers and combine the error correction codes. Wang et al. [11] use homomorphic
tokens to verify the data integrity of multiple servers, which can reduce the communication
cost, but leads to low security because it is easy to identify which server the data are stored
on. Wang et al. [12,13] proposed an external data integrity tracking and verification system
for stream computing systems, which meets the requirement of stream data integrity verifi-
cation to a certain extent, but, because the verification module is outside the stream system,
the real-time performance cannot be fully guaranteed.
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3. Schemes based on bilinear mapping (BM)

Zhu et al. [14–16] presented a Cooperative PDP (CPDP) scheme based on hash index
hierarchy and bilinear pairing to support data migration and scalability of service in hybrid
cloud. But the operation of bilinear pairing is very time-consuming and leads to low
computational efficiency.

4. Schemes based on the third party (TP)

Wang et al. [17,18] used Trusted Third Party (TTP) to protect the privacy of data and
user identity; they use TTP instead of client to verify data integrity, and TTP cannot obtain
the data content during verification. But the drawback is that TTP can cause additional
overhead to the user. Armknecht et al. [19] proposed an outsourced POR (OPOR) model,
which is named Fortress, using an Untrusted TP (UTP) instead of users to interact with
server and simultaneously protect user, server and TP.

5. Schemes based on elliptic curve (EC)

Hanser et al. [20] proposed the first simultaneous private and public PDP scheme
based on EC, which supports both private and public verification by using the same pre-
processing process to generate verification tags. The drawback is still the exponential
calculation. Wang et al. [21] presented an efficient PDP based on EC, which replaces
homomorphic multiplication with homomorphic addition to improve efficiency.

6. Schemes based on the group

Tate et al. [22] proposed the first group DIV scheme based on trusted hardware for
multi-user data sharing and data updating in cloud storage. Wang et al. [23] proposed an
identity privacy preserving group scheme to support private and public authentication,
where the group member identity will not be leaked during verification. Wang et al. [24]
proposed a public scheme to support revocation of group members; it guarantees that
revoked members cannot forge tags or proofs by using known information. Zhu et al. [25]
proposed a group provable of storage (GPOS) scheme to efficiently distinguish malicious
members and prevent selected member attacks and collusion attacks. Wang et al. [26] pro-
posed a group PDP scheme supporting data deduplication and resisting selected member
attacks. It ensures that group members use the same tags to complete the verification.

7. Schemes based on the emerging technologies

With the development of emerging technologies, data integrity verification has re-
ceived new development. Li et al. [27] proposed a data integrity audit scheme, which
is based on biometric identification technology to achieve the target of identity fuzzy;
they solved the complex key management problem but caused a large computation and
communication cost. Xu et al. [28] proposed an arbitrable and distributed remote data
auditing scheme based on blockchain, which adopts the smart contract to notarize the out-
sourced data integrity and achieves non-repudiation verification. Guo et al. [29] proposed
outsourced dynamic PDP scheme based on Merkle hash tree, which achieves multiple
updates at one time without repeated computation and transmission. Subsequently, they
proposed a dynamic PDP and replication (DPDPR) scheme [30], which stores the indexed
Merkle hash to reduce the local storage cost; however, the computational cost is large
when the data are uploaded, and the verification cost is expensive when data are updated.
Li et al. [31] proposed a cloud-side collaborative stream DIV scheme based on chameleon
authentication tree; it can guarantee integrity verification and data confidentiality with
stream data insertion and query by a trusted third party. Zhou et al. [32] proposed a lattice-
based PDP scheme for cloud-based smart grid data management systems. Wang et al. [33]
analyzed and improved a lattice-based public data integrity verification scheme, which can
guarantee proxy-oriented secure data outsourcing and storage correctness. Qi et al. [34]
proposed a blockchain-based light-weighted PDP scheme which enables “hash-sign-switch”
tag computing, which is suitable for low performance devices. However, these emerging
technologies do not meet real-time requirements.
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In summary, the current data integrity verification schemes cannot fully meet the
requirements of real-time and lightweight computing of stream computing systems, which
seriously restricts the wide application of stream systems in various fields. Therefore, it is
necessary to build an efficient and universal real-time data integrity verification scheme in
stream computing systems.

3. Proposed Model

The design objective and proposed model design are presented in this section.

3.1. Design Objective

The real-time data integrity verification subsystem inside the general stream comput-
ing system needs to meet the objectives of efficiency, accuracy and real-time data recoverability.

Efficiency: The most important characteristic of a stream computing system is ef-
ficiency, which needs to efficiently process the data stream in cache. Therefore, a data
integrity verification scheme suitable for stream computing systems must be efficient
enough to meet the computational performance of the original system.

Accuracy: A key consideration for stream computing systems is accuracy. Only
systems with high accuracy can have a wide range of applications. Therefore, the stream
computing system with data integrity guarantee also needs to meet the requirement of accuracy.

Real-time data recoverability: Stream computing systems are prone to data loss or data
errors, which can lead to errors in calculation results or system deviations. Therefore, it is
necessary to promptly recover the erroneous data to guarantee the stability of the system.
Meanwhile, the verification subsystem is inside the stream system, making it possible to
trace and recover erroneous data as soon as possible.

3.2. Model Design

The proposed model design is shown in Figure 1.
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The real-time data integrity verification subsystem is constructed inside the stream
computing system and consists of a key management center, a preprocessing module and
a verification module. The input and output messages of each processing module in the
stream system are collected into the data integrity verification subsystem for verification,
and the results are fed back and processed in real time.

Each message data has a unique message ID (MID) and a session ID (SID) while
passing through each processing module in the stream computing system. When a message
data passes through different processing modules, the message data will be changed and
the SID will also be changed accordingly, but the MID is the unique identifier of this
message throughout its life cycle which will never be changed.

The working process of the real-time data integrity verification subsystem is as follows:

1. The phase of key generation: The key management center respectively sends the
pre-generated keys to the preprocessing module and the verification module.

2. The phase of real-time data collection: The data collection point is added to the input
end and output end of each processing module in the stream computing system, and
the real-time collected data are sent to the verification module and the preprocessing
module, respectively.

3. The phase of data preprocessing: In this stage, all message data collected at the
output of each processing module in stream computing system are preprocessed, and
verification tags are generated and sent to the message verification module.

4. The phase of data integrity verification: The verification module uses the key to
perform integrity verification according to the collected input data of each processing
module and the corresponding verification tag. If the integrity verification of the entire
life cycle of the message is correct, it will return the success information and clear
the relevant information in cache; if there is a verification exception or termination
exception, it will actively alarm and handle the exception.

5. The phase of exception handling: According to the intermediate data of integrity
verification in cache, the exception message is recovered, and the original message
is replayed.

4. Preliminaries

In this section, we introduce Carter–Wegman MAC, pseudo-random function and
symmetric cryptography mechanism, which serve as the basis of the proposed scheme.

4.1. Carter–Wegman MAC

The Carter–Wegman MAC method [35] can convert a one-time MAC to a many-times
MAC. It is well known that the one-time MAC is safe from any attacker and is much
faster than the MAC calculation based on other cryptographic primitives, but the one-time
MAC calculation requires a key change at a time, which severely limits its practicality. It is
significant to adopt the Carter–Wegman MAC construction method to transform the secure
one-time MAC algorithm into a secure multiple-use MAC, while retaining the advantage
of the one-time MAC security performance.

Let (S, V) be a secure one-time MAC in (0, 1)n, and let F : K× {0, 1}n → {0, 1}n be a
secure pseudo-random function, where K is the key space.

The Carter–Wegman MAC is defined as follows:

Definition 1. The Carter–Wegman MAC is composed of three polynomial-time algorithms
(Key, Sign, Verif):

Key(1λ)→ (k1, k2) is a polynomial-time algorithm for generating keys; it inputs the security
parameter λ, and outputs the pair of keys (k1, k2).

Sign(k1, k2, m)→ t is a polynomial-time algorithm for generating MAC value; it inputs
keys (k1, k2) and message m, computes the MAC value t = (r, F(k1, r)⊕ S(k2, m)), where r is a
random number and S is the algorithm of one-time MAC, and finally outputs t.
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Verif(k1, k2, m, t)→ {0, 1} is a deterministic algorithm for verifying the MAC value; it
inputs keys (k1, k2), message m and the MAC value t, and runs and computes the algorithm
V(k2, m, F(k1, r)⊕ t) where V is the algorithm of one-time MAC. If the result is correct, output 1;
otherwise output 0.

It has been proven [32] that if (S, V) is a secure one-time MAC and F is a secure pseudo-random
function, then the Carter–Wegman MAC is a secure MAC in (0, 1)2n.

4.2. Pseudo-Random Function

The pseudo-random function (PRF) [36] is defined as follows:

Definition 2. Assume that Hk is the set of all functions mapped from Ik to Ik where Ik is the set of
bit strings of length k.

Then, the pseudo-random function Fk ⊆ Hk satisfies:
Indexability: With a unique index k, a function f ∈ Fk can be easily selected from the set

according to k.
Polynomial-time: Given a function f ∈ Fk and an input x, it can easily compute the value of

f (x) in polynomial-time.
Pseudo-randomness: It is impossible to distinguish a function in Fk from a function in

Hk in polynomial-time, nor can it distinguish a value of f (x) from a random number in Ik
in polynomial-time.

4.3. Symmetric Cryptography Mechanism

Symmetric cryptography [37], also known as the traditional cryptographic algorithm,
refers to using the same key for encryption and decryption, or the ability that the encryption
key and decryption key can be inferred from each other. Due to the advantages of high
efficiency, fast computation speed and easy implementation, symmetric cryptography is
widely used.

The formal definition is as follows:

Definition 3. A symmetric cryptography mechanism is a five tuple (P, C, K, E, D) that satisfies
the condition:

P represents a finite set of all possible plaintexts.
C represents a finite set of all possible ciphertexts.
K represents the key space, which is a finite set of all possible keys.
E and D represent the encryption algorithm and decryption algorithm, respectively. For each

k ∈ K, ek ∈ E, dk ∈ D, and ek : P→ C, dk : C → P, x ∈ P , satisfied: dk(ek(x)) = x.

5. Implementation

In this section, we provide the detailed design of the RT-DIV scheme and system, and
then list advantages of the RT-DIV scheme.

5.1. Scheme Design

The definition and detailed construction of RT-DIV is given in the following sub-section.

5.1.1. The Definition of Real-Time Data Integrity Verification Scheme Based on Symmetric
Key in Stream Computing System

Definition 4. The Real-Time Data Integrity Verification Scheme based on symmetric key
in stream computing system (RT-DIV) is composed of three polynomial-time algorithms
(KeyGen, TagGen, VerifTag):

KeyGen(1λ)→ Key is a probabilistic algorithm to generate keys; it takes a security parameter
λ as input, and outputs the secret symmetric key Key.

TagGen(Key, M(MID,SID))→ T(MID,SID) is an algorithm to generate verification tags; it
inputs the secret key Key and the collected output message data M(MID,SID) of processing module
in the stream computing system, and generates the corresponding tag value T(MID,SID).
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VerifTag(Key, T(MID,SID), M′(MID,SID))→ {1, 0} is a deterministic algorithm to verify
the integrity verification tags; it inputs the secret key Key, the verification tag T(MID,SID) and
the collected input message data M′(MID,SID) of the processing module with the same identifier of
verification tag (i.e., the same MID and SID), and outputs whether the verification is passed.

5.1.2. A Construction of Real-Time Data Integrity Verification Scheme Based on Symmetric
Key in Stream Computing System

Let f : κ × I → Fq be a pseudo-random function, and let q be the order of the finite
field Fq, which size depends on the security parameter λ (usually the value is q = 2λ), and
let κ be the key space.

• KeyGen(1λ)→ (k1, k2)

Input the security parameter λ, choose the random number k1, k2
R← κ, and output

symmetric key pair (k1, k2) ∈ κ.

• TagGen((k1, k2), M(MID,SIDi)
)→ T(MID,SIDi)

For all messages whose identifier is MID (i.e., the session identifier is SIDi, where
i = 1, . . . , n, and n is the total number of sessions), the preprocessing module calculates the
verification tag:

T(MID,SIDi)
= fk1(MID

∣∣∣∣∣∣SIDi)⊕ (k2 ·M(MID,SIDi)
) (1)

where || is the splicing operation, ⊕ is the XOR operation, M(MID,SIDi)
is the message data

collected from output port of processing module in stream computing system.
Output verification tag T(MID,SIDi)

.

• VerifTag((k1, k2), T(MID,SIDi)
, M′(MID,SIDi)

)→ {1, 0}
For the message data M′(MID,SIDi)

collected from the input port of the processing
module with the consistent identification MID and SID as verification tag, the verification
module uses the key (k1, k2) to verify the message and tag as follows:

Compute a = T(MID,SIDi)
⊕ (k2 ·M′(MID,SIDi)

) (2)

Compute b = fk1(MID
∣∣∣∣SIDi) (3)

Verify whether the equation a = b holds; if true, output 1, otherwise output 0.

5.2. System Design

The RT-DIV subsystem is constructed from the RT-DIV scheme in five phases, which
correspond to the working process of the real-time data integrity verification model
(i.e., Figure 1).

The phase of key generation: The key management center runs the algorithm KeyGen
to generate the symmetric key (k1, k2) and send it to the preprocessing module and the
verification module, respectively.

The phase of real-time data collection: According to the identifier MID and SID of
the message, the message data are collected from the output port and the input port of
each processing module in stream computing system, and then sent to the preprocessing
module and the verification module of the RT-DIV subsystem, respectively.

The phase of data preprocessing: The preprocessing module runs the algorithm
TagGen, calculates and generates a verification tag T(MID,SIDi)

for each collected message
M(MID,SIDi)

, and sends them to the verification module.
The phase of data integrity verification: The verification module receives the tag value

T(MID,SIDi)
from the preprocessing module, collects the message data M′(MID,SIDi)

with
the same identification MID and SID from the input port of the processing module in
stream computing system, and then runs the algorithm VerifTag to verify the integrity of
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the message data. If the verification is correct, the next stream processing of the message is
carried out, and the intermediate data in the cache is deleted. If the verification fails, the
message exception processing is carried out.

The phase of exception handling: When the subsystem receives the error information
of verification, according to the MID, the error message is called out from the message
queue and resent to the real-time stream computing system to reprocess.

5.3. Advantages

The main advantages of the RT-DIV scheme are as follows:

1. The previous research shows that the one-time MAC is safe from any attacker and is
much faster than the MAC calculation based on other cryptographic primitives, but
the one-time MAC calculation requires a key change at a time, which severely limits
its practicality. This paper adopts the Carter–Wegman MAC construction method to
transform the secure one-time MAC algorithm into a secure multiple-use MAC, while
retaining the advantage of the one-time MAC security performance.

2. The RT-DIV scheme only uses pseudo-random function calculation, XOR calculation
and one-time MAC calculation, mainly for bit calculation, multiplication and addi-
tion calculation operations. Compared with most current data integrity verification
schemes, which are mainly used for multiplication, exponentiation or bilinear map-
ping calculations, the efficiency is significantly improved, and it is suitable for data
integrity verification in stream real-time computing systems.

3. The RT-DIV scheme is based on symmetric cryptography mechanism, and uses a
symmetric key for preprocessing and verification calculations, which is easy to imple-
ment and has high computational efficiency. Compared with other schemes based on
asymmetric cryptography mechanism, the RT-DIV scheme is sufficiently efficient for
real-time data.

6. Security Analysis

In this section, we introduce the security model and security analysis of RT-DIV scheme.

6.1. Security Model

We state the security model with a game that capture the property of data integrity.

Game 1. Data integrity game
Setup: The challenger runs KeyGen(1λ)→ (k1, k2) , and keep (k1, k2) secret.
Query: The adversary queries adaptively: It selects and sends a message M to the challenger,

then the challenger runs TagGen((k1, k2), M)→ T to compute and send the tag to the adversary.
These queries can be executed multiple times. Then, the adversary stores the message set {M} together
with the tag set {T}.

Challenge: The challenger generates a challenge, then requests the adversary to generate a
verification tag for the message M′, where M′ /∈ {M}.

Forge: The adversary computes a tag T(T ∈ {T}) and returns it to challenger.
If VerifTag((k1, k2), T, M′)→ 1 , then the adversary wins the game.

6.2. Security Analysis

Theorem 1. Assume that f is a secure pseudo-random function, then RT-DIV scheme is a secure
data integrity verification scheme in the standard model.

Proof of Theorem 1. The security simulation method is used to analyze the security of the
scheme, specifically by using the pseudo-random function f and pure random number r to
simulate and execute the data integrity game of the RT-DIV scheme in the real environment
and the ideal environment, respectively.

In the real environment:
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The challenger runs the algorithm KeyGen to generate the pair of keys (k1, k2) and
keeps them private. The adversary selects the message M to ask the challenger for the verifi-
cation tag. The challenger runs the algorithm TagGen to generate the tag T = fk1 ⊕ (k2 ·M)
and sends it to the adversary. After performing multiple queries, the adversary has the
message set {M} and corresponding tag set {T}, and finally the adversary forges the message
M′(M′ /∈ {M}) and tag T(T ∈ {T}), and sends them to the challenger, at which point the
challenger uses the algorithm VerifTag to verify the correctness of message and tag.

In the ideal environment:
The operation of the challenger and the adversary is the same as the real environment,

the only difference is that the random number r is used instead of the pseudo-random
function f, and the generated tag is T = r⊕ (k2 ·M).

Assume that the adversary can forge M′ to pass the verification, that is, under
ideal conditions, the adversary can find a value M′ that satisfies T = r ⊕ (k2 · M′), i.e.,
M′ = (r⊕ T) · k−1

2 .
Since the adversary is unknown to k2, and r is a pure random number, then the

probability of successful forgery is:

Aideal
RT−DIV = Pr[M′|M′ = (r⊕ T) · k−1

2 ] = Pr[M′|M′ = R] ≤ 1
2λ

(4)

where R is a purely random number.
Because f is a secure pseudo-random function, within polynomial-time, the adversary

cannot distinguish whether the scheme is executed in the ideal environment or in the
real environment.

Therefore, the probability of adversary forgery in the real environment:

Areal
RT−DIV

∼= Aideal
RT−DIV ≤

1
2λ

(5)

is negligible.
Proof completed. �

7. Experiments

Experimental environment: All data are stored in Kafka [38] message queue with
version 2.8.1 and calculated in the storm framework [39] simulation environment, and
the cryptographic library is OpenSSL [40] with version 0.9.7a. Because the results of each
experiment will be slightly different (caused by environmental deviation), all data are
obtained by averaging multiple experiments. Most existing schemes adopt the sampling
method to achieve probabilistic security; for accuracy and fairness, these experiments use
all messages for calculation, and the verification accuracy can reach 100%.

7.1. Performance Comparison of Various Schemes

The comparison of various schemes is shown in Table 1, where n is the total number of
data chunks or messages, c is the number of data chunks sampled in a proof, w is additional
storage such as verification tags stored on the server, l is the number of small data blocks in
each large data chunks and L is the number of members in a group.

It can be seen from Table 1 that most of the traditional data integrity verification
schemes require larger computational costs, communication costs and storage costs than
the RT-DIV scheme and are not suitable for real-time stream computing systems. The RT-
DIV scheme omits the computation cost of proof generation and communication bandwidth,
thus greatly improving efficiency.

Compared with the data integrity verification scheme in the traditional storage mode,
the RT-DIV scheme adopts a more lightweight calculation operation. In the tag generation
phase and verification phase, there are only XOR, multiplication and pseudo-random
function calculation, respectively, while the existing solutions mainly use multiplication,
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exponentiation or bilinear mapping and other calculations. For this reason, computing
efficiency is significantly improved, and it can be applied to real-time stream comput-
ing systems.

Table 1. The comparison of the performance of data integrity verification schemes.

Based on
RSA [4]

Based on
HVT [8]

Based on
BM [15]

Based on
TP [19]

Based on
EC [21]

Based on
Group [26] RT-DIV

Data integrity Yes Yes Yes Yes Yes Yes Yes
Sampling verification Yes Yes Yes Yes Yes Yes No

Private verification Yes Yes No No Yes Yes Yes
Symmetric key No No No No No No Yes
Pre-processing O(n) O(t log n) O(t log n) 2O(n) O(n) O(n) O(n)

Proof generation O(c) O(c) O(c) 2O(c) O(c) O(c) /
Proof/Tag verification O(1) O(1) O(1) O(1) O(1) O(1) O(1)

Communication O(1) O(l) O(l) 2O(l) O(1) O(L) / 1

Storage O(n + w) O(n + w) O(n + w) O(n + w) O(n + w) O(n + w/L) O(1)
Real-time No No No No No No Yes

Data stream No No No No No No Yes
1 This refers to the communication cost required during the data integrity verification phases, excluding the
communication during the data collection and data replay phases of the stream computing system itself.

7.2. Overall Performance of the RT-DIV Scheme

Since the RT-DIV scheme is built inside the stream computing system, in order to
ensure the real-time requirements of the system, the RT-DIV scheme omits the phase
of proof generation, which is unlike other data integrity verification schemes. In the
simulation experiment, the key generation phase is one-time and pre-generated, which
does not affect the performance of the RT-DIV scheme. The time consumed in the real-
time data collection phase entirely depends on the generating and processing time of the
message in the original stream computing system and has no impact on the efficiency of
the RT-DIV scheme. Thus, the time of key generation and data collection is ignored. In the
phase of data preprocessing, the experiment only records the calculation time of generating
tags and ignores the I/O times such as data retrieval, reading and transmission, etc. In
the phase of data integrity verification, the experiment only records the calculation time of
verification between messages and tags while ignoring the I/O time. The time consumed
in the exception handling phase is determined by the efficiency of original system, so it is
not considered in the performance of the RT-DIV scheme.

As can be seen from Figure 2, with the increase of message concurrency, the prepro-
cessing time (TagGen) and verification time (VerifTag) increase linearly, which is because
RT-DIV scheme calculates and verifies all messages. Nevertheless, this scheme is still
sufficiently efficient to be used in real-world applications; for example, when the mes-
sage concurrency is 1000, the preprocessing time is approximately 200 milliseconds (0.2 S)
and the verification time is approximately 150 milliseconds (0.15 S). In short, this solu-
tion can meet the requirement of real-time integrity verification in the majority of stream
computing systems.

Figure 3 records the calculation time of preprocessing and verification for five random
messages, wherein m1-pre and m1-verify respectively refer to the preprocessing calculation
time and verification calculation time of message 1, and the rest can be performed in
the same manner. In practical experiments, due to the significant impact of I/O time to
record a single message, we randomly selected one message to execute 100 times and
calculated the average time of this message to reduce the impact of I/O. As can be seen
from Figure 3, the entire process of data integrity verification of each message consumes
about 0.35 milliseconds (3.5 × 10−4 S), which is a very efficient calculation. Therefore, the
RT-DIV scheme can meet the real-time requirements of stream computing systems.
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7.3. Comparison of Preprocessing Efficiency

In order to ensure the fairness of the experiments, this paper selects two classical data
integrity verification schemes, respectively based on RSA (S-PDP [4]) and EC (E-PDP [21]),
as the reference schemes. In the experiment, the RT-DIV scheme and the reference PDP
schemes are used to preprocess the same number of messages, and the calculation time
is recorded.

Figure 4 shows the comparison of preprocessing efficiency between RT-DIV, S-PDP
and E-PDP under the condition of different message concurrency. In the experiment, only
the calculation time of tag generation is recorded, while other I/O times are ignored.

As can be seen from Figure 4, with the increase of message concurrency, the prepro-
cessing time increases linearly in all schemes, which is because these schemes calculate
all messages in the preprocessing phase. However, the RT-DIV scheme has much higher
computational efficiency than other schemes, with a difference of about tens to hundreds
of times, and this advantage becomes more obvious as the message concurrency increases.
This is because the RT-DIV scheme uses efficient XOR computation, while the S-PDP
scheme uses exponentiation operation and the E-PDP scheme uses homomorphic addition
operation on elliptic curves. Therefore, the computational efficiency of the RT-DIV scheme
has been significantly improved.
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7.4. Comparison of Verification Efficiency

In this experiment, we respectively compared the calculation time of single verification
and the calculation time of proof generation add verification. The reason for designing
the experiment in this way is that the RT-DIV scheme does not need the phase of proof
generation and can directly verify the tags, while other reference schemes need to generate
proof before verification. In the experiment, all schemes are used to verify the same number
of messages, and the calculation time is recorded.

As can be seen from Figure 5, with the increase of message concurrency, the verification
time increases linearly in all schemes, and the RT-DIV scheme has higher computational
efficiency than other schemes, which is because the RT-DIV scheme uses efficient XOR
operations for verification calculation. Comparing Figure 5a,b, it can be concluded that
the proof generation process leads to lower efficiency of the reference schemes. Therefore,
the RT-DIV scheme is more suitable for data integrity verification in real-time stream
computing systems.
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7.5. Storage Cost

In the data integrity verification scheme of the traditional storage mode, the size of
the tag corresponding to each data depends on the security parameter, and the traditional
schemes generally store firstly and then calculate; thus, the verification tags and data need
to be stored for a long time, so the required storage cost increases linearly with the amount
of data.

The storage cost required by the RT-DIV scheme is relatively small. The temporary
storage required of a tag is only related to the security parameter, which has nothing to do
with the length of message itself. When the message stream is processed completely and
the verification result is correct, the intermediate data of the message will be deleted in the
cache and will not occupy additional storage cost.

7.6. Communication Cost

In the data collection phase, the communication cost is equal to the total message
number, and the communication cost is O(n). It is not related to the RT-DIV scheme,
but rather to the overhead of the stream computing system itself. In preprocessing and
verification phases, all operations are executed inside the RT-DIV subsystem; thus, there is
no communication cost. In the exception handling phase, whether it is the case of message
replay caused by verification failure or the case of message deletion caused by successful
verification, only one message needs to be delivered, and the communication cost is O(1).

8. Conclusions

Aiming at the difficult issue that real-time data integrity cannot be efficiently guaran-
teed in stream computing systems, this paper adopts the Carter–Wegman MAC method,
pseudo-random function and symmetric cryptography mechanism to construct a Real-Time
Data Integrity Verification scheme based on symmetric key in stream computing system
(RT-DIV), which uses the XOR calculation to improve the computational efficiency. Then, a
security analysis is given under the standard model, and experiments are conducted in a
simulated environment; the experimental results show that the RT-DIV scheme can effec-
tively guarantee the integrity of a real-time data stream. Furthermore, the RT-DIV scheme
gives a new thought and new approach for the field of real-time data integrity verification
and lays the foundation for the secure application of the stream computing system.

In future work, the main research direction that need to be considered is reasonable
disposal of data: in some stream computing systems, deviated data or duplicate messages
may be reasonably discarded; the data integrity verification scheme needs to be able to
distinguish this situation and efficiently guarantee the integrity of valid data without
generating a false alarm.
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