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Abstract: This research work introduces a novel method called the Sumudu–generalized Laplace
transform decomposition method (SGLDM) for solving linear and nonlinear non-homogeneous
dispersive Korteweg–de Vries (KdV)-type equations. The SGLDM combines the Sumudu–generalized
Laplace transform with the Adomian decomposition method, providing a powerful approach to
tackle complex equations. To validate the efficacy of the method, several model problems of dispersive
KdV-type equations are solved, and the resulting approximate solutions are expressed in series form.
The findings demonstrate that the SGLDM is a reliable and robust method for addressing significant
physical problems in various applications. Finally, we conclude that this transform is a symmetry to
other symmetric transforms.
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1. Introduction

The dispersive wave phenomenon holds significant importance in the fields of plasma
physics and quantum mechanics. Notably, the Korteweg–de Vries (KdV) equation, derived
by Korteweg and de Vries, serves as a dimensional representation of these equations.
However, obtaining accurate solutions for the KdV equation can often be challenging.

Laplace transformation is a mathematical gadget applied for resolving and converting
differential equations. In some areas of science and engineering, the Laplace transformation
methods are often used. In [1], the authors discussed the solution of fractional differential
equations by applying Laplace transform. The Korteweg–de Vries (KdV) equation, first
introduced in 1895, is a non-dimensionalized type of equation that has proven to be of
immense importance in various scientific and technological fields. This mathematical
model is widely employed to study and understand dispersive wave phenomena, with
applications spanning disciplines such as plasma physics and quantum mechanics. Its
versatility and ability to describe complex wave behaviors have made it a cornerstone
in the exploration and analysis of diverse wave phenomena across different domains of
science and technology [2].

Time-fractional third-order dispersive partial differential equations play a crucial role
in mathematical sciences. Previous research has suggested combining the Laplace trans-
form with the Adomian decomposition method to address the solution of such equations.
These combined techniques have successfully solved four different types of KdV equa-
tions [3]. Additionally, researchers have explored numerical methods for solving the third-
and fifth-order dispersive Korteweg-de Vries equations [4]. Several methodologies have
been employed to investigate fractional partial differential equations of order three. These
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include the fractional-order variational iteration method [5], modified fractional-order
differential transformation method [6], spline technique [7], and homotopy analysis trans-
form technique [8]. Recent research has explored a fundamental transform coupled with
Adomian’s approach to tackling nonlinear growth equations endowed with non-integer
derivatives [9]. In [10], the study focused on the n-th partial derivative of the Gα-transform
for specific partial differential equations. The researchers in [11] examined the applicability
range of the Gα-transform in solving ordinary differential equations with variable coeffi-
cients. The study conducted in [12] delves into the solutions of Abel’s integral equations on
distribution spaces using the distributional Gα-transform. Furthermore, the author of [13]
analyzed the analytic solution of third-order dispersive partial differential equations.

The primary objective of this study is to introduce a novel definition for the Sumudu–
generalized Laplace transform. Furthermore, we propose the application of this new
transform to fractional partial derivatives. Finally, we leverage the Sumudu–generalized
Laplace transform decomposition technique to successfully solve one- and two-dimensional
fractional dispersive Korteweg–de Vries (KdV) equations. This approach opens up new
avenues for solving complex fractional differential equations and sheds light on potential
applications in various scientific and engineering domains.

2. Definitions and Ideas

Here, we introduce some fundamental requisite definitions and preliminary concepts
related to fractional calculus and Sumudu–generalized Laplace transform decomposition,
which are useful in this work. Generalized Laplace transform of the function ψ(t) is given
by Gα in the following definition.

Definition 1. If ψ(t) is an integrable function defined for all t ≥ 0, its generalized Laplace
transform Gα is the integral of ψ(t) times sαe−

t
s from t = 0 to ∞ . It is a function of s, denoted by

Ψ(s), and is represented as Gα(ψ); thus,

Ψ(s) = Gt(ψ) = sα
∫ ∞

0
ψ(t)e−

t
s dt,

where s ∈ C and α ∈ Z,. For more details, see [14].

Definition 2 ([15]). If ψ(t) ∈ C([a, b]) and a < t < b, then the Riemann–Liouville fractional
integral of order σ is given by

Iσ
a+ψ(t) =

1
Γ(σ)

∫ t

a
(t− ι)σ−1ψ(τ)dτ (1)

where σ ∈ (−∞, ∞) and Iσ
a+ indicates the left side of the Riemann–Liouville fractional integral of

order σ.

Definition 3 ([15]). Whenever the integral exists, the Riemann–Liouville derivative of fractional
order σ, where n− 1 < σ < n, is defined by

Dσ
a+ψ(t) =

1
Γ(n− σ)

(
d
dt

)n ∫ t

a
(t− ι)n−σ−1ψ(τ)dτ, (2)

Here, Dσ
a+ indicates the left Riemann–Liouvill derivative of fractional order σ.

Definition 4. The Caputo time-fractional derivative operator of order σ > 0 is given by

Dσ
t ψ(x, t) = {

1
Γ(m−σ)

∫ t
0 (t−τ)m−σ−1 ∂mψ(x,τ)

∂τm dτ,
∂mψ(x,t)

∂tm , for m=σ∈N
m− 1 < σ < m,

For more details, see [16–19].
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In the next definition, we define the Sumudu–generalized Laplace transform:

Definition 5. Let ψ(x, t) be a function. The definition of the Sumudu–generalized Laplace
transform of the function ψ(x, t) , t, x ∈ R+, is given by

Ψ(µ, s) = SxGt[ψ(x, t)] =
sα

µ

∫ ∞

0

∫ ∞

0
e−(

x
µ +

t
s )ψ(x, t)dxdt, (3)

Here, SxGt indicates a Sumudu–generalized Laplace transform and the symbols µ and s indi-
cate transforms of the variables x and t in Sumudu and generalized Laplace transforms, respectively.

Thus, an inverse Sumudu–generalized Laplace transform is denoted by

S−1
µ G−1

s (SxGt[ψ(x, t)]) = ψ(x, t) =
1

(2πi)2

∫ δ−i∞

δ−i∞

∫ σ−i∞

σ−i∞
e

1
µ x+ 1

s tSxGt[ψ(x, t)]ds dp,

where the symbol S−1
µ G−1

s indicates an inverse Sumudu–generalized Laplace transform.

The Sumudu–generalized Laplace transform of the function ψ(x, t) is offered by
SxGt[ψ(x, t)] = Ψ(µ, s), so the Sumudu–generalized Laplace transform of , ∂ψ(x,t)

∂t and
∂2ψ(x,t)

∂t2 is presented by

SxGt

[
∂σψ(x, t)

∂tσ

]
=

Ψ(µ, s)
sσ

− sα−σ+1Sx[Ψ(x, 0)], 0 < σ ≤ 1 (4)

SxGt

[
∂2σψ(x, t)

∂t2σ

]
=

Ψ(µ, s)
s2σ

− sα−2σ+1Sx[ψ(x, 0)]− sα−2σ+2Sx[ψt(x, 0)],

0 < σ ≤ 1 (5)

3. Main Results

The investigation of analytical solutions for third-order dispersive fractional partial
differential equations has been explored by various authors through diverse methods.
Notable approaches include the Laplace–Adomian decomposition method presented in [3],
the Sumudu transform iterative method discussed in [20], and the homotopy analysis
Sumudu transform method outlined in [8]. In this section, we aim to address the same
problem but with a fresh perspective by employing the Sumudu–generalized Laplace trans-
form decomposition (SGLDM) technique. This innovative approach holds the promise of
providing valuable insights into solving such complex equations efficiently and effectively.

3.1. Sumudu–Generalized Laplace Transform Decomposition Method for Handling
One-Dimentional KdV Equations

In this subsection, we harness the power of the Sumudu–generalized Laplace trans-
form decomposition (SGLDM) method to tackle both linear and nonlinear one-dimensional
KdV equations. These equations are expressed as follows:

∂σψ

∂tσ
+ a

∂ψ

∂x
+

∂3ψ

∂x3 = f (x, t), t > 0, 0 < σ ≤ 1 (6)

with the initial conditions
ψ(x, 0) = f1(x) (7)

and
∂αψ

∂tα
+ a

∂3ψ

∂x3 + bψ
∂ψ

∂x
= f (x, t), (8)

ψ(x, 0) = f1(x). (9)
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The SGLDM technique offers a promising approach to effectively handle the complex-
ities of these KdV equations and to provide accurate solutions. Through this method, we
aim to contribute to the understanding and analysis of dispersive wave phenomena in
various fields of science and engineering.

3.1.1. Linear One-Dimensional Fractional KdV

In order to discuss the solution of Equation (6), the following steps are addressed:
Step 1: With the assistance of the Sumudu–generalized Laplace transform, Equation (6)
becomes

SxGt

[
∂σψ

∂tσ

]
+ SxGt

[
a

∂ψ

∂x
+

∂3ψ

∂x3

]
= SxGt[ f (x, t)] (10)

Step2: Applying Equation (4), we have

1
sσ

Ψ(µ, s)− sα

sσ−1 F(µ, 0) = −SxGt

[
a

∂ψ

∂x
+

∂3ψ

∂x3

]
+ F(µ, s) (11)

where F(µ, 0) and F(µ, s) are the Sumudu– generalized Laplace transform for f (x, 0) and
f (x, t), respectively.
Step 3: Multiplying Equation (11) by sσ, we have

Ψ(µ, s) = sα+1F(µ, 0)− sσSxGt

[
a

∂ψ

∂x
+

∂3ψ

∂x3

]
+ sσF(µ, s) (12)

Step 4: Taking an inverse Sumudu–generalized Laplace transform for Equation (12),

ψ(x, t) = S−1
µ G−1

s

[
sα+1F(µ, 0) + sσF(µ, s)

]
− S−1

µ G−1
s

[
sσSxGt

[
a

∂ψ

∂x
+

∂3ψ

∂x3

]]
(13)

Step 5: Using the ADM for Equation (13),

∞

∑
n=0

ψn = S−1
µ G−1

s

[
sα+1F(µ, 0) + sσF(µ, s)

]
− S−1

µ G−1
s

[
sσSxGt

[
a

∞

∑
n=0

∂ψn

∂x
+

∞

∑
n=0

∂3ψn

∂x3

]]
(14)

where
ψ0 = S−1

µ G−1
s

[
sα+1F(µ, 0) + sσF(µ, s)

]
(15)

The other components are given by

ψn+1 = −S−1
µ G−1

s

[
sσSxGt

[
a

∞

∑
n=0

∂ψn

∂x
+

∞

∑
n=0

∂3ψn

∂x3

]]
(16)

The exact solution is given by

ψ = ψ0 + ψ1 + ψ2 + ......

Example 1 ([3]). The fractional dispersive KdV equation is considered as follows:

∂σψ

∂tσ
+

∂3ψ

∂x3 = − sin(πx) sin(t)− π3 cos(πx) cos(t), x, t > 0, 0 < σ ≤ 1 (17)

subject to the initial condition

ψ(x, 0) = sin(πx). (18)
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Solution 1. By employing the Sumudu–generalized Laplace transform of Equation (17) and using
Equation (12), we have

Ψ(µ, s) =
πµsα+1

1 + µ2π2 − sσSxGt

[
∂3ψ

∂x3

]
+ sσSxGt

[
sin(πx) sin(t)− π3 cos(πx) cos(t)

]
. (19)

Applying the sin(t) and cos(t) series in Equation (19), we obtain

Ψ(µ, s) =
πµsα+1

1 + µ2π2 − sσSxGt

[
∂3ψ

∂x3

]
−sσSxGt

[
sin(πx)

(
t− t3

3!
+

t5

5!
− t7

7!
+ ...

)]
(20)

−sσSxGt

[
π3 cos(πx)

(
1− t2

2!
+

t4

4!
− t6

6!
+ ...

)]
,

Ψ(µ, s) =
πµsα+1

1 + µ2π2 − sσSxGt

[
∂3ψ

∂x3

]
− πµ

1 + µ2π2

(
sσ+α+2 − sσ+α+4 + sσ+α+6 − sσ+α+8 + ...

)
(21)

−
[

π3

1 + µ2π2

(
sσ+α+1 − sσ+α+3 + sσ+α+5 − sσ+α+7 + ...

)]
.

By involving an inverse Sumudu–generalized Laplace transform for Equation (22) and using
ADM proceeding, we obtain

∞

∑
n=0

ψn(x, t) = sin(πx)− sin(πx)
(

tσ+1

Γ(σ + 2)
− tσ+3

Γ(σ + 4)
+

tσ+5

Γ(σ + 6)
− tσ+7

Γ(σ + 8)
+ ...

)
−π3 cos(πx)

(
tσ

Γ(σ + 1)
− tσ+2

Γ(σ + 3)
+

tσ+4

Γ(σ + 5)
− tσ+6

Γ(σ + 7)
+ ...

)
−S−1

µ G−1
s

[
sσSxGt

[
∞

∑
n=0

∂3ψn

∂x3

]]

ψ0(x, t) = sin(πx)− sin(πx)
(

tσ+1

Γ(σ + 2)
− tσ+3

Γ(σ + 4)
+

tσ+5

Γ(σ + 6)
− tσ+7

Γ(σ + 8)
+ ...

)
−π3 cos(πx)

(
tσ

Γ(σ + 1)
− tσ+2

Γ(σ + 3)
+

tσ+4

Γ(σ + 5)
− tσ+6

Γ(σ + 7)
+ ...

)
and

ψn+1(x, t) = −S−1
µ G−1

s

[
sσSxGt

[
∂3ψn

∂x3

]]
(22)

where n ≥ 0, and the first terms are denoted by
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ψ1(x, t) = −S−1
µ G−1

s

[
sσSxGt

[
∂3ψ0

∂x3

]]
= S−1

µ G−1
s

[
sσSxGt

[
π3 cos(πx)

]]
−S−1

µ G−1
s

[
sσSxGt

[
π3 cos(πx)

(
tσ+1

Γ(σ + 2)
− tσ+3

Γ(σ + 4)
+

tσ+5

Γ(σ + 6)
− tσ+7

Γ(σ + 8)
+ ...

)]]
+S−1

µ G−1
s

[
sσSxGt

[
π6 sin(πx)

(
tσ

Γ(σ + 1)
− tσ+2

Γ(σ + 3)
+

tσ+4

Γ(σ + 5)
− tσ+6

Γ(σ + 7)
+ ...

)]]
ψ1(x, t) =

π3tσ

Γ(σ + 1)
cos(πx)− π3 cos(πx)

[(
t2σ+1

Γ(2σ + 2)
− t2σ+3

Γ(2σ + 4)
+

t2σ+5

Γ(2σ + 6)
− t2σ+7

Γ(2σ + 8)
+ ...

)]
+π6 sin(πx)

(
t2σ

Γ(2σ + 1)
− t2σ+2

Γ(2σ + 3)
+

t2σ+4

Γ(2σ + 5)
− t2σ+6

Γ(2σ + 7)
+ ...

)

ψ2(x, t) = −S−1
µ G−1

s

[
sσSxGt

[
∂3ψ1

∂x3

]]
= −S−1

µ G−1
s

[
sσSxGt

[
π6 tσ

Γ(σ + 1)
sin(πx)

]]
−S−1

µ G−1
s

[
sσSxGt

[
π6 sin(πx)

(
t2σ+1

Γ(2σ + 2)
− t2σ+3

Γ(2σ + 4)
+

t2σ+5

Γ(2σ + 6)
− t2σ+7

Γ(2σ + 8)
+ ...

)]]
−S−1

µ G−1
s

[
sσSxGt

[
π9 cos(πx)

(
t2σ

Γ(2σ + 1)
− t2σ+2

Γ(2σ + 3)
+

t2σ+4

Γ(2σ + 5)
− t2σ+6

Γ(2σ + 7)
+ ...

)]]
ψ2(x, t) = − π6t2σ

Γ(2σ + 1)
sin(πx) + π6 sin(πx)

[(
t3σ+1

Γ(3σ + 2)
− t3σ+3

Γ(3σ + 4)
+

t3σ+5

Γ(3σ + 6)
− t3σ+7

Γ(3σ + 8)
+ ...

)]
+π9 cos(πx)

(
t3σ

Γ(3σ + 1)
− t3σ+2

Γ(3σ + 3)
+

t3σ+4

Γ(3σ + 5)
− t3σ+6

Γ(3σ + 7)
+ ...

)
Eventually, the approximate solution of Equation (17) is given by

ψ(x, t) = sin(πx)− sin(πx)
(

tσ+1

Γ(σ + 2)
− tσ+3

Γ(σ + 4)
+

tσ+5

Γ(σ + 6)
− tσ+7

Γ(σ + 8)
+ ...

)
−π3 cos(πx)

(
tσ

Γ(σ + 1)
− tσ+2

Γ(σ + 3)
+

tσ+4

Γ(σ + 5)
− tσ+6

Γ(σ + 7)
+ ...

)
+

π3tσ

Γ(σ + 1)
cos(πx)− π3 cos(πx)

[(
t2σ+1

Γ(2σ + 2)
− t2σ+3

Γ(2σ + 4)
+

t2σ+5

Γ(2σ + 6)
− t2σ+7

Γ(2σ + 8)
+ ...

)]
+π6 sin(πx)

(
t2σ

Γ(2σ + 1)
− t2σ+2

Γ(2σ + 3)
+

t2σ+4

Γ(2σ + 5)
− t2σ+6

Γ(2σ + 7)
+ ...

)
− π6t2σ

Γ(2σ + 1)
sin(πx) + π6 sin(πx)

[(
t3σ+1

Γ(3σ + 2)
− t3σ+3

Γ(3σ + 4)
+

t3σ+5

Γ(3σ + 6)
− t3σ+7

Γ(3σ + 8)
+ ...

)]
+π9 cos(πx)

(
t3σ

Γ(3σ + 1)
− t3σ+2

Γ(3σ + 3)
+

t3σ+4

Γ(3σ + 5)
− t3σ+6

Γ(3σ + 7)
+ ...

)
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Therefore, the exact solution at σ = 1 is presented by

ψ(x, t) = sin(πx)− sin(πx)
(

t2

Γ(3)
− t4

Γ(5)
+

t6

Γ(7)
− t8

Γ(7)
+ ...

)
−π3 cos(πx)

(
t

Γ(2)
− t3

Γ(4)
+

tσ5

Γ(6)
− t7

Γ(8)
+ ...

)
+

π3t
Γ(2)

cos(πx)− π3 cos(πx)
[(

t3

Γ(4)
− t5

Γ(6)
+

t7

Γ(8)
− t9

Γ(10)
+ ...

)]
+π6 sin(πx)

(
t2

Γ(3)
− t4

Γ(5)
+

t6

Γ(7)
− t8

Γ(9)
+ ...

)
−π6t2

Γ(3)
sin(πx) + π6 sin(πx)

[(
t4

Γ(5)
− t6

Γ(7)
+

t8

Γ(9)
− t10

Γ(11)
+ ...

)]
+π9 cos(πx)

(
t3

Γ(4)
− t5

Γ(6)
+

t7

Γ(8)
− t9

Γ(10)
+ ...

)
.

By simplifying

ψ(x, t) = sin(πx)− sin(πx)
(

t2

Γ(3)
− t4

Γ(5)
+

t6

Γ(7)
− t8

Γ(7)
+ ...

)
= sin(πx)

(
1− t2

Γ(3)
+

t4

Γ(5)
− t6

Γ(7)
+

t8

Γ(7)
− ...

)
ψ(x, t) = sin(πx) cos(t)

3.1.2. Nonlinear One-Dimensional Fractional KdV

In this subsection, we delve into the nonlinear one-dimensional fractional Kortewegâ€“de
Vries (KdV) equation and elucidate the Sumudu–generalized Laplace transform decomposition
method (SGLDM) that we employ to find its solution.
Problem: Consider the nonlinear one-dimensional fractional dispersive KdV equation

∂αψ

∂tα
+ a

∂3ψ

∂x3 + bψ
∂ψ

∂x
= f (x, t), (23)

ψ(x, 0) = f1(x). (24)

where f (x, t) and f1(x) are known functions and a and b are constants. For the ideal of ob-
taining the solution of Equation (23) by using the past examining method, the fundamental
approximation is proposed via

ψ(x, t) = S−1
µ G−1

s

[
sα+1F(µ, 0) + sσF(µ, s)

]
− S−1

µ G−1
s

[
sσSxGt

[
a

∂3ψ

∂x3 + bψ
∂ψ

∂x

]]
, (25)

Therefore,

∞

∑
n=0

ψn = S−1
µ G−1

s

[
sα+1F(µ, 0) + sσF(µ, s)

]
−S−1

µ G−1
s

[
sσSxGt

[
a

∞

∑
n=0

∂3ψn

∂x3 + b
∞

∑
n=0

ψn
∂ψn

∂x

]]
(26)

where
ψ0 = S−1

µ G−1
s

[
sα+1F(µ, 0) + sσF(µ, s)

]
(27)
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The other components are given by

ψn+1 = −S−1
µ G−1

s

[
sσSxGt

[
a

∂3ψn

∂x3 + bAn

]]
(28)

where the nonlinear term An = ∑∞
n=0 ψn

∂ψn
∂x is determined by

A0 = ψ0ψ0x

A1 = ψ0xψ1 + ψ0ψ1x

A2 = ψ0xψ2 + ψ0ψ2x + ψ1ψ1x

A3 = ψ0xψ3 + ψ0ψ3x + ψ1xψ2 + ψ1ψ2x. (29)

Therefore, the approximate solution of Equation (23) is given by

ψ(x, t) = ψ0 + ψ1 + ψ2 + .....

Assuming a = 1, b = −2, and f (x, t) = 0, in Equation (23), we have the following
example:

Example 2. Consider the following nonlinear one-dimensional fractional KdV equation

∂αψ

∂tα
+

∂3ψ

∂x3 − 2ψψx = 0, (30)

subjected to the initial condition
ψ(x, 0) = x. (31)

Solution 2. By utilizing Equations (27) and (28), we obtain

ψ0 = x, . (32)

The additional components are provided by

ψn+1 = −S−1
µ G−1

s

[
sσSxGt

[
∂3ψn

∂x3

]]
+ S−1

µ G−1
s [sσSxGt[2An]]. (33)

By substituting n = 0 in Equation (33), we achieve

ψ1 = −S−1
µ G−1

s

[
sσSxGt

[
∂3ψ0

∂x3

]]
+ S−1

µ G−1
s [sσSxGt[2A0]]

= −S−1
µ G−1

s [sσSxGt[0]] + S−1
µ G−1

s [sσSxGt[2ψ0ψ0x]]

= S−1
µ G−1

s [sσSxGt[2x]]

= S−1
µ G−1

s S−1
2

[
2µsσ+α+1

]
ψ1(x, t) = 2x

tσ

Γ(σ + 1)
.
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At n = 1, we have

ψ2 = −S−1
µ G−1

s

[
sσSxGt

[
∂3ψ1

∂x3

]]
+ S−1

µ G−1
s [sσSxGt[2A1]]

= 2S−1
µ G−1

s [sσSxGt[ψ0ψ1x + ψ1ψ0x]]

= S−1
µ G−1

s

[
sσSxGt

[
8x

tσ

Γ(σ + 1)

]]
= S−1

µ G−1
s

[
8µs2σ+α+1

]
ψ2(x, t) = 8x

t2σ

Γ(2σ + 1)

and at n = 2, we have

ψ3 = −S−1
µ G−1

s

[
sσSxGt

[
∂3ψ1

∂x3

]]
+ S−1

µ G−1
s [sσSxGt[2A2]]

= S−1
µ G−1

s

[
sσSxGt

[
32x

t2σ

Γ(2σ + 1)
+ 8x

t2σ

Γ(σ + 1)Γ(σ + 1)

]]
= S−1

µ G−1
s

[
32µs3σ+α+1 + 8µs3σ+α+1 Γ(2σ + 1)

Γ(σ + 1)Γ(σ + 1)

]
= 32x

t3σ

Γ(3σ + 1)
+ 8x

t3σΓ(2σ + 1)
Γ(σ + 1)Γ(σ + 1)Γ(3σ + 1)

.

Therefore, the approximation solution of Equation (30) is presented by

ψ = x + 2x
tσα

Γ(σ + 1)
+ 8x

t2σ

Γ(2σ + 1)

+32x
t3σ

Γ(3σ + 1)
+ 8x

t3σΓ(2σ + 1)
Γ(σ + 1)Γ(σ + 1)Γ(3σ + 1)

+ ....

In the particular case when σ = 1, we obtain

ψ = x + 2xt + 4xt2 + 8xt3 + ...

= x
(

1 + 2t + (2t)2 + (2t)3+
)

...

=
x

1− 2t

4. Sumudu–Generalized Laplace Transform Decomposition Method for Handling
Two-Dimentional KdV Equations

Here, we present the details of the Sumudu–generalized Laplace transform decompo-
sition method for solving the two-dimensional fractional KdV equation:

∂σψ

∂tσ
+ a

∂3ψ

∂x3 + b
∂3ψ

∂y3 = f (x, y, t), x, y, t > 0, 0 < σ ≤ 1 (34)

with the initial condition
ψ(x, 0) = f1(x, y) (35)

where a and b are constant. In order to obtain the solution of Equation (34), the following
steps are proposed:
Step 1: Upon using double a Sumudu–generalized Laplace transform for Equation (34)
and a double Sumudu transform for Equation (35), we obtain

S2Gt

[
∂σψ

∂tσ

]
+ S2Gt

[
a

∂3ψ

∂x3 + b
∂3ψ

∂y3

]
= S2Gt[ f (x, , y, t)] (36)



Symmetry 2023, 15, 1540 10 of 13

where the symbol S2 indicates a double Sumudu transform.
Step 2: Applying Equation (4), we obtain

1
sσ

Ψ(µ, λ, s)− sα

sσ−1 F(µ, λ, 0) = −S2Gt

[
a

∂3ψ

∂x3 + b
∂3ψ

∂y3

]
+ F(µ, λ, s) (37)

where F(µ, λ, 0) and F(µ, λ, s) are the double Sumudu–generalized Laplace transform for
f (x, y, 0) and f (x, y, t), respectively.
Step 3: Multiplying Equation (37) by sσ, we have

Ψ(µ, λ, s) = sα+1F(µ, λ, 0)− sσS2Gt

[
a

∂3ψ

∂x3 + b
∂3ψ

∂y3

]
+ sσF(µ, λ, s) (38)

Step 4: Employing the inverse double Sumudu–generalized Laplace transform for
Equation (38),

ψ(x, y, t) = S−1
2 G−1

s

[
sα+1F(µ, λ, 0) + sσF(µ, λ, s)

]
− S−1

2 G−1
s

[
sσS2Gt

[
a

∂3ψ

∂x3 + b
∂3ψ

∂y3

]]
(39)

Step 5: Using the ADM for Equation (39),

∞

∑
n=0

ψn = S−1
2 G−1

s

[
sα+1F(µ, λ, 0) + sσF(µ, λ, s)

]
− S−1

2 G−1
s

[
sσS2Gt

[
a

∞

∑
n=0

∂3ψn

∂x3 + b
∞

∑
n=0

∂3ψn

∂y3

]]
(40)

Then, we determine the repetition relations as

ψ0 = S−1
2 G−1

s

[
sα+1F(µ, λ, 0) + sσF(µ, λ, s)

]
(41)

ψn+1 = −S−1
2 G−1

s

[
sσS2Gt

[
a

∞

∑
n=0

∂3ψn

∂x3 + b
∞

∑
n=0

∂3ψn

∂y3

]]
(42)

The series solution is given by

ψ = ψ0 + ψ1 + ψ2 + ......

Example 3. The non-homogeneous fractional dispersive KdV equation in two dimensions is con-
sidered as follows:

∂σψ

∂tσ
+

∂3ψ

∂x3 +
∂3ψ

∂y3 = sin(x + y) cos(t)− 2 cos(x + y) sin(t), x, t > 0, 0 < σ ≤ 1 (43)

subject to the initial condition
ψ(x, y, 0) = 0. (44)

Solution 3. With the help of Equations (41) and (42), we obtain

ψ0 = S−1
2 G−1

s

[
sσ

(
µ + λ

(1 + µ2)(1 + λ2)

(
sα+1 − sα+3 + sα+5 − sα+7 + ...

))]
−S−1

2 G−1
s

[
sσ

(
2(1− µλ)

(1 + µ2)(1 + λ2)

(
sα+2 − sα+4 + sα+6 − sα+8 + ...

))]
(45)

ψn+1 = −S−1
2 G−1

s

[
sσS2Gt

[
∂ψn

∂x
+

∂3ψn

∂x3

]]
(46)
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ψ0 = sin(x + y)
(

tσ

Γ(σ + 1)
− tσ+2

Γ(σ + 3)
+

tσ+4

Γ(σ + 5)
− tσ+6

Γ(σ + 7)
+ ...

)
−2 cos(x + y)

(
tσ+1

Γ(σ + 2)
− tσ+3

Γ(σ + 4)
+

tσ+5

Γ(σ + 6)
− tσ+7

Γ(σ + 8)
+ ...

)
where n ≥ 0. The element of the solution is denoted by

ψ1 = −S−1
2 G−1

s

[
sσS2Gt

[
∂ψ0

∂x
+

∂3ψ0

∂x3

]]
= S−1

2 G−1
s [sσS2Gt[2 cos(x + y)[∆] + 4 sin(x + y)[Π]]]

where

∆ =

(
tσ

Γ(σ + 1)
− tσ+2

Γ(σ + 3)
+

tσ+4

Γ(σ + 5)
− tσ+6

Γ(σ + 7)
+ ...

)
Π =

(
tσ+1

Γ(σ + 2)
− tσ+3

Γ(σ + 4)
+

tσ+5

Γ(σ + 6)
− tσ+7

Γ(σ + 8)
+ ...

)
The first three terms are given by

ψ1 = −S−1
2 G−1

s

[
sσS2Gt

[
∂ψ0

∂x
+

∂3ψ0

∂x3

]]
= 2 cos(x + y)

(
t2σ

Γ(2σ + 1)
− t2σ+2

Γ(2σ + 3)
+

t2σ+4

Γ(2σ + 5)
− t2σ+6

Γ(2σ + 7)
+ ...

)
+4 sin(x + y)

(
t2σ+1

Γ(2σ + 2)
− t2σ+3

Γ(2σ + 4)
+

t2σ+5

Γ(2σ + 6)
− t2σ+7

Γ(2σ + 8)
+ ...

)

ψ2 = −S−1
2 G−1

s

[
sσS2Gt

[
∂ψ1

∂x
+

∂3ψ1

∂x3

]]
= −4 sin(x + y)

(
t3σ

Γ(3σ + 1)
− t3σ+2

Γ(3σ + 3)
+

t3σ+4

Γ(3σ + 5)
− t3σ+6

Γ(3σ + 7)
+ ...

)
+8 cos(x + y)

(
t3σ+1

Γ(3σ + 2)
− t3σ+3

Γ(3σ + 4)
+

t3σ+5

Γ(3σ + 6)
− t3σ+7

Γ(3σ + 8)
+ ...

)

ψ3 = −S−1
2 G−1

s

[
sσS2Gt

[
∂ψ2

∂x
+

∂3ψ2

∂x3

]]
= −8 cos(x + y)

(
t4σ

Γ(4σ + 1)
− t4σ+2

Γ(4σ + 3)
+

t4σ+4

Γ(4σ + 5)
− t34σ+6

Γ(4σ + 7)
+ ...

)
−16 sin(x + y)

(
t4σ+1

Γ(4σ + 2)
− t4σ+3

Γ(4σ + 4)
+

t4σ+5

Γ(4σ + 6)
− t4σ+7

Γ(4σ + 8)
+ ...

)
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and so on. Therefore, upon adding up the above iterations, the solution is now denoted by

ψ(x, y, t) = sin(x + y)
(

tσ

Γ(σ + 1)
− tσ+2

Γ(σ + 3)
+

tσ+4

Γ(σ + 5)
− tσ+6

Γ(σ + 7)
+ ...

)
−2 cos(x + y)

(
tσ+1

Γ(σ + 2)
− tσ+3

Γ(σ + 4)
+

tσ+5

Γ(σ + 6)
− tσ+7

Γ(σ + 8)
+ ...

)
+2 cos(x + y)

(
t2σ

Γ(2σ + 1)
− t2σ+2

Γ(2σ + 3)
+

t2σ+4

Γ(2σ + 5)
− t2σ+6

Γ(2σ + 7)
+ ...

)
+4 sin(x + y)

(
t2σ+1

Γ(2σ + 2)
− t2σ+3

Γ(2σ + 4)
+

t2σ+5

Γ(2σ + 6)
− t2σ+7

Γ(2σ + 8)
+ ...

)
−4 sin(x + y)

(
t3σ

Γ(3σ + 1)
− t3σ+2

Γ(3σ + 3)
+

t3σ+4

Γ(3σ + 5)
− t3σ+6

Γ(3σ + 7)
+ ...

)
+8 cos(x + y)

(
t3σ+1

Γ(3σ + 2)
− t3σ+3

Γ(3σ + 4)
+

t3σ+5

Γ(3σ + 6)
− t3σ+7

Γ(3σ + 8)
+ ...

)
−8 cos(x + y)

(
t4σ

Γ(4σ + 1)
− t4σ+2

Γ(4σ + 3)
+

t4σ+4

Γ(4σ + 5)
− t34σ+6

Γ(4σ + 7)
+ ...

)
−16 sin(x + y)

(
t4σ+1

Γ(4σ + 2)
− t4σ+3

Γ(4σ + 4)
+

t4σ+5

Γ(4σ + 6)
− t4σ+7

Γ(4σ + 8)
+ ...

)
In the particular when case σ = 1, the solution of becomes

ψ(x, y, t) = sin(x + y)
(

t
Γ(2)

− t3

Γ(4)
+

t5

Γ(6)
− t7

Γ(8)
+ ...

)
= sin(x + y) sin(t)

5. Conclusions

Our research demonstrates the significance of employing the Sumudu–generalized
Laplace transform decomposition to derive solutions for the one and two-dimensional
fractional dispersive KdV equation. The method we employed proves to be straightforward
in its fundamentals, and we have provided three illustrative examples to validate the
accuracy and relevance of our approach. Building on these promising results, we anticipate
exploring and solving various novel and intriguing scientific phenomena in the future,
utilizing our technique to expand the horizons of modeling in our field.
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