
Citation: Yang, S.; Zhang, Z.; Xia, H.;

Li, Y.; Liu, Z. Edge Intelligence-

Assisted Asymmetrical Network

Control and Video Decoding in the

Industrial IoT with Speculative

Parallelization. Symmetry 2023, 15,

1516. https://doi.org/10.3390/

sym15081516

Academic Editors: Chao Fang, Peng

Li and Christos Volos

Received: 8 June 2023

Revised: 9 July 2023

Accepted: 26 July 2023

Published: 1 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Edge Intelligence-Assisted Asymmetrical Network Control
and Video Decoding in the Industrial IoT with
Speculative Parallelization
Shuangye Yang 1,2,3,* , Zhiwei Zhang 2,3, Hui Xia 2,3, Yahui Li 2,3 and Zheng Liu 4

1 School of Mechanical Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, China

2 CNPC Baoji Oilfield Machinery Co., Ltd., Baoji 721002, China; bszzw@cnpc.com.cn (Z.Z.);
xiahui999@cnpc.com.cn (H.X.); liyahui999@cnpc.com.cn (Y.L.)

3 CNPC National Engineering Research Center for Oil & Gas Drilling Equipment Co., Ltd., Baoji 721002, China
4 School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;

liuzheng@xaut.edu.cn
* Correspondence: yangshuangye@cnpc.com.cn

Abstract: Industrial Internet of Things (IIoTs) has drawn significant attention in the industry. Among
its rich applications, the field’s video surveillance deserves particular interest due to its advantage
in better understanding network control. However, existing decoding methods are limited by the
video coding order, which cannot be decoded in parallel, resulting in low decoding efficiency and
the inability to process the massive amount of video data in real time. In this work, a parallel
decoding framework based on the speculative technique is proposed. In particular, the video is first
speculatively decomposed into data blocks, and then a verification method is designed to ensure the
correctness of the decomposition. After verification, the data blocks having passed the validation can
be decoded concurrently in the parallel computing platform. Finally, the concurrent decoding results
are concatenated in line with the original encoding order to form the output. Experiments show that
compared with traditional serial decoding ones, the proposed method can improve the performance
by 9 times on average in the parallel computing environment with NVIDIA Tegra 4 chips, thus
significantly enhancing the real-time video data’s decoding efficiency with guaranteed accuracy.
Furthermore, proposed and traditional serial methods obtain almost the same peak signal-to-noise
ratio (PSNR) and mean square error (MSE) metrics at different bit rates and resolutions, showing that
the introduction of the speculative technique does not degrade the decoding accuracy.

Keywords: edge intelligence; asymmetrical network control; video decoding; speculative parallelization; IIoT

1. Introduction

The merging of Internet of Things (IoTs) with industrial manufacturing, i.e., industrial
IoTs (IIoTs), has drawn great interest from both academia and industry, especially in
the data collection from IIoT devices [1,2]. Among the rich industrial IoT applications,
the ultra high-definition video surveillance in the field deserves special attention due to its
advantages in better understanding the field operation and alerting for possible failures.
More precisely, various IIoT devices, e.g., cameras or unmanned aerial vehicles (UAVs)
can monitor the field operation on the edge of the industry by means of the space-air-
ground integrated network (SAGIN). Nevertheless, the transmission of surveillance data
is non-trivial, especially in remote sites far away from central cloud data centres. Thus,
it is advocated that the streaming video is processed locally. Further, the industry calls
for a fast way to make decisions at the edge, and the answer lies in edge computing.
By incorporating the prevailing edge intelligence and machine learning into the field,
the real-time decision-making and operational intelligence are enabled using video data [3].

Symmetry 2023, 15, 1516. https://doi.org/10.3390/sym15081516 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15081516
https://doi.org/10.3390/sym15081516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0691-173X
https://doi.org/10.3390/sym15081516
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15081516?type=check_update&version=1

Symmetry 2023, 15, 1516 2 of 20

The video data has become one major component in the industry [3], and the moni-
toring video decoding has drawn great attention in terms of low-density parity-heck code
(LDPC) [4], in MPEG-5 [5], and in the dense video captioning [6]. China has a tremen-
dous digital audio and video industry, yet with weaker intellectual property rights, which
have long been by MPEG-2, MPEG-4, H.264, as well as other foreign standards. In recent
years, with the rapid advents in the mobile Internet industry, the demand for audio and
video applications has been increasing, e.g., tele-medicine, in-vehicle video, live video,
tele-education, and industry monitoring [7–10]. To promote the standardization of audio
and video applications in the mobile Internet era, China’s audio video coding standard
working group has launched the coding standard for mobile video, i.e., audio video coding
standard for mobile (AVS-M). AVS-M is the seventh part of standard series advanced audio
and video coding for information technology, is the second-generation source coding standard
with independent intellectual property, and is also the foundation of the digital audio and
video industry [11,12]. As a hybrid coding one based on spatial and temporal prediction,
spatial-domain transformation, and statistical entropy coding, AVS-M’s coding framework
thus consists of these three modules. Conversely, its decoding framework includes entropy
decoding, anti-quantization, inverse transformation, and loop filtering modules [13]. In
particular, Cuozzo et al. in [14] proposed to monitor the production cycle of industrial
goods with LoRa, by designing the network architecture and medium access control proto-
col, and Magrin et al. in [15] evaluated the performance of a LoRa-based network in which
multiple IIoT devices communicate with a centralized unit. In particular, the federated
learning is the potential for intelligent IIoT by coordinating several distributed units to train
in the edge, thereby facilitating the protecting of security in information [16]. Since only
the decoding in the field is analyzed, not considering the explicit transmission of encoded
video (from distributed node to the central unit) and privacy issues (among multiple nodes),
either LoRa or federated learning is not involved in this study.

In particular, the AVS-M encoded video comprises several network abstraction layer
units (NALUs) in sequence. Therefore, the AVS-M decoder has to sequentially analyze the
header information of NALUs, anti-quantize its residual information, execute reverse dis-
crete cosine transform (DCT), perform both the intra-frame prediction and the inter-frame
motion compensation at the macro-block level, and finally filter the information to recover
the image [17]. Since the AVS-M data are encoded via variable-length encoding, the size of
each NALU is unfixed, making the boundary between NALUs obscure. Therefore, exist-
ing decoding methods for AVS-M encoded video to advocate for sequentially analyzing
NALUs. That is, starting from the initial position, the contents in the network abstraction
layer (NAL) header are first read in sequence, and then some certain method is used to
process the NAL loads in the NALU following instructions in the NAL header, until all
NALUs are traversed. More precisely, AVS-M has to sequentially analyze the contents in
NALUs and then merge the analytical results. Nevertheless, when the large data spans
multiple NALUs (e.g., in the industry monitoring), this type of NALU sequential analyzing
and decoding method could not fully utilize the computing resources, incurring a large
processing delay and failing to make a real-time operational decision [18], and thus not
adapt to rapidly changing industrial field situations. As such, the simultaneous speculative
parallelization has been utilized to speed up the decoding efficiency [19–21]. In particular,
Lee et al. in [21] have proposed simultaneous and speculative backend execution, to offset
the performance loss by speeding up the execution in the thread migration, and meanwhile
to sustain the low energy overhead.

For low-latency surveillance and monitoring services, a timely video processing and
decoding method is a prerequisite. Nevertheless, traditional serial decoding methods are
limited by the video coding order, and cannot decode the video data in parallel, resulting
in low decoding efficiency and overlarge processing delay. Thus, boosted by recent advents
in both edge computing and IIoT applications, and to track the industrial environment,
we try to introduce the speculative parallelization technique [18], rather than use the
traditional NALU sequential analyzing method, to save the surveillance video processing

Symmetry 2023, 15, 1516 3 of 20

and decoding delay in the industrial field. In particular, with advances in mobile chips and
compelling techniques, the speculative parallel decoding can be promoted to some extent,
thereby significantly improving the performance of AVS-M in terms of decoding efficiency.
The contribution of this work can be summarized as follows:

• An edge intelligence-assisted and asymmetrical IIoT AVS-M decoding framework is
designed. Not only cameras in terrestrial networks, but also UAVs in the SAGIN, are
used to monitor the industrial field, and then the video data are locally processed
and decoded at the edge server asymmetrically in parallel, without transmitted to the
remote central cloud for analyses.

• A speculative parallelization-based video decoding method is proposed. That is,
the data are first divided speculatively following the starting code, then one verifica-
tion method is designed to improve the dividing accuracy, and segments are finally
stitched together to reconstitute the video.

• The deployment of proposed method in the hardware platform Cortex-A15 is dis-
cussed, including the linking and compiling of the code, the structure-based code-
level optimization, as well as the the memory space allocation strategy to speed up
the running.

• Both function and performance environments are conducted for traditional serial and
proposed parallel methods. Proposed method does improve the decoding efficiency
in the industrial edge, in terms of running time, speed-up ratio, and parallel efficiency,
particularly in the high-bit rate and high-resolution video.

The remaining is organized as follows. The preliminary is listed in Section 2, the
proposed method is presented in Section 3, the implementation of the method to the plat-
form is discussed in Section 4, and experiment results are shown in Section 5, respectively.
Section 6 concludes this work.

2. Preliminary
2.1. Edge Computing and IIoT

IIoT is a collection of various devices (e.g., sensors, cameras, UAVs, and meters),
working together to gather, monitor, and analyze data from an industrial environment.
Such data analysis facilitates the visibility of operators and maintenance on facilities, also
enhancing efficiencies, save costs, and improve security. In particular, in the oil and gas
industry, the drilling scenario, including drilling rigs, construction yards, vessels, pipelines,
production wells, etc., have been taken as one typical use case in IIoT [22,23]. Note that,
in the industrial monitoring, to facilitate the fast detection and decoding of the surveillance
video, the video data are no longer delivered to the remote cloud computing, but processed
and decoded locally, thereby necessitating edge computing in the field. Many recent works
have emerged in edge computing or edge intelligence in IIoTs, e.g., in terrestrial cellular
networks [23], either using prevailing machine learning (neural networks) or statistics.

Further, affected by the encoded data structure, the decoding is performed serially and
thus with low efficiency, and even the hardware investment cannot improve the efficiency.
Thus, to improve the video decoding efficiency in edge servers, the parallel decoding
method is preferable to the serial one, which could compete with finite resources to speed
up the decoding, without degrading the decoding correctness.

For illustration, we present an edge intelligence-assisted drilling field in the oil and gas
industry in Figure 1, where three edge servers and one cloud server coexist. In particular,
to promote video data analysis, both cameras and UAVs (in SAGIN) are used to record the
maintenance and operation of drilling rigs, mud pumps, or pipelines. Further, to lower
the transmission and propagation delay and enable a fast adaptation to the industrial
environment, captured video data are delivered directly to the edge server, rather than to
the remote cloud computing server for decoding. Although the processing delay could be
further reduced in the cloud server, it suffices to dispose not too large a volume of data in
the edge server, aided by the built-in speculative parallelization.

Symmetry 2023, 15, 1516 4 of 20

SensorCamera

Drawworks
Rotary

table
Mud

 pump

Camera

Edge server

SensorCamera

Drawworks
Rotary

table
Mud

pump

Camera

SensorCamera

Drawworks Rotary

table
Mud

pump

Camera

Edge server

Edge server

UAV UAV

UAV

Cloud computing center

Parallel video

decoding

Figure 1. Edge intelligence-assisted drilling scenario.

2.2. Decoding in AVS-M

One typical decoding method for AVS-M encoded video is illustrated in Figure 2.
The AVS-M’s decoding structure consists of two layers, i.e, the video coding layer (VCL),
representing the video data sequence after compression and encoding, and the network
abstraction layer (NAL), responsible for formatting the data and providing headers to
ensure the successful transmission of data over various channels and storage media. In par-
ticular, the data from VCL is first packeted at the NAL layer unit, and then packed by
the network protocol to constitute the NAL unit. This type of packetization of NALUs is
shown in Figure 3, where each NALU is byte-aligned, and consists of a 3-byte starting code
(0x000001), a 1-byte NAL header, and a variable-length NAL load.

Reference

Frame

Movement

compensation

Intraframe

prediction

Rebuild

Frame

Loop

filtering

+ D'
Inverse

transformation
+

Anti-

quantization
Reordering

X

Entropy

decoding

NAL

Figure 2. Workflow of traditional decoding for AVS-M coded video.

As shown in Figure 3, the starting code marks the beginning of the NALU, the raw
byte sequence payload (RBSP) is stored in the ending NAL load, and the NAL header
between them specifies the property and type of RBSP and other information. In particular,
the NAL header contains three parts: (1) prohibited bit (1 bit), indicating whether or not
there exists a bit error code in the current NALU (0 means that there is no bit error code,
1 vice versa); (2) NAL reference number (2 bits), indicating the property of load hosted in
the current NALU (0 means that the load is non-reference frame data, and 6=0 means that
the load is reference frame data; and (3) NALU type (5 bits), indicating the load type in the
current NALU, wherein values 1–6 are valid, and other values are reserved or not defined.

Symmetry 2023, 15, 1516 5 of 20

 Starting code (0x000001) NAL header NAL load

 3 bytes 1 byte Variable length

 Prohibited position NAL ref. number NAL type

 1 bit 2 bits 5 bits

Figure 3. NALU structure.

Since the AVS-M standard uses variable-length coding to encode video data, the size of
each NALU is uncertain, and the boundary between NALUs in the video is undetermined.
Note that, the traditional decoding method for AVS-M encoded video has to sequentially
analyze NALUs. First, the initial position of the video is accessed. Then, after the starting
code, the contents in the succeeding NAL header are read. Next, following the instruction
in the NAL header, one certain method is used to process the NAL load hosted in the NALU.
Finally, the NAL load is successfully processed, and the above procedure repeats until all
NALUs are traversed. Yet, in the case of large data volume, particularly in the industry
monitoring domain in Figure 1, the traditional AVS-M decoding method (sequentially
analyzing NALUs) could not fully utilize the computing resources, thus incurring a large
processing delay. Further, the computing resources in edge servers are essentially limited
compared to those in cloud centres, asking for a more efficient decoding method residing
in edge servers.

2.3. Speculative Parallelization

To make the boundary between NALUs obvious and speed up the decoding rate in
edge servers in IIoT, we intend to use the speculative parallelization technique to enable
parallel decoding. As a mature parallel accelerating tool on multi-core platforms, thread-
level speculation (TLS) has emerged to empower thread-level speculative parallelization
with domain knowledge [18]. By tolerating inter-unit dependencies, TLS allows threads
or computations (that were thought to be non-parallel) to proceed in the speculative
parallelization, thereby gaining the parallelization when speculation succeeds. Figure 4
illustrates the execution of TLS-based parallelization.

As shown in Figure 4, since threads T1 to T2 have data dependencies, they have to
be synchronized, and T2 can only be executed after T1 in the serial execution (Figure 4a).
In the TLS case (Figure 4b), if the value prediction succeeds, then the parallel execution
is performed, and the program running time is significantly reduced compared to the
traditional serial one. Even if the prediction fails, the parallel program would roll back and
be executed again, taking the time equal to the serial execution time plus some parallel
overhead (Figure 4c). Thus, TLS is utilized to parallelize the irregular algorithms with
complex data dependencies on multi-core platforms, e.g., the ones including many do-
while loops [12]. Furthermore, TLS can improve the success rate of speculative execution
by using domain knowledge to guide thread division, thus obtaining a higher speed-up
ratio for programs [24].

Note that existing speculative parallelization techniques require high flexibility among
concurrent units and consume a lot of extra overhead to maintain the inter-instructional
biased order relations of algorithm semantics, and thus are mainly used to parallelize
algorithms with a large number of complex control dependencies inside. The challenge
in this work, however, is that there are dependencies between the input data that prevent
parallelization of the decoding, which in turn manifests itself in the form of data flow and
control flow during the data decoding. Therefore, the speculative parallelization cannot

Symmetry 2023, 15, 1516 6 of 20

directly participate in parallelizing the decoding itself. Instead, the whole algorithm has to
be divided into four parts: data decomposition, result verification, decoding, and result
merging. Then only the first three parts can be parallelized, making the proposed method
differ from other existing speculative parallelization method.

T1
Definitive

thead
T2

Speculate

thread

Value

prediction

SP thread

spawn point
CQIP thread

boundary

T1

T2

S
e

ri
a

l
e

x
e

c
u

ti
o

n
 t

im
e

SP

CQIP

CQIP

(a). Serial execution (b). Speculation success (c). Speculation failure

T1

T2

P
a

ra
lle

l
e

x
e

c
u

ti
o
n

 t
im

e

SP

CQIP

CQIP

Spawn

success

T1

T2

SP

CQIP

CQIP

T2

CQIP

Spawn

failure

P
a

ra
lle

l
e

x
e

c
u

ti
o
n

 t
im

e

Figure 4. Illustration of speculative parallelization model.

3. Speculative Parallelization-Based Decoding in Industrial Edge
3.1. Internal Dependency Dnalysis

To design the speculative parallel decoding method, we first need to analyze the
traditional decoding for AVS-M encoded video, finding the key factor affecting the decoding.
Then, the speculative parallelization method is designed following this factor. As described
in Section 2.2, AVS-M uses variable-length encoding to encode data, and the decoding
method is also performed by sequentially analyzing NALU. The flow can be summarized
as follows: after obtaining the video data, the traditional decoding method would read the
starting code of the first NALU from the beginning of the video, then read the contents
in the NAL header, and further process the NAL load hosted in that NALU following
the instruction in the NAL header. Repeat the procedure until all NALUs are traversed.
Figure 5 represents the general process of the AVS-oriented decoding method and its
corresponding dependency graph.

As shown in Figure 5a, one NALU is decoded in each loop. When the NALU is
decoded, variable pos (representing the position information) is updated and will point
to the starting position of the next NALU. out_buf stores the decoded data, and stcd and
err indicate whether or not a starting code is found and whether or not an error occurs.
If there are no errors, then the result is written to the output file out_stream after all NALUs
are decoded. In Figure 5b, each loop includes three types of dependency to prevent
the concurrent execution of multiple loops, i.e, the control dependency by the variable
stcd, the data dependency by the variable pos, and the data dependency by the variable
out_stream. In the case of large data volume, the input data contains a large number
of NALUs, and the embedded dependencies could seriously degrade the performance.
Therefore, it is a prerequisite to integrate the AVS-M video with speculative parallelization
to exactly find the starting code, and then slice the data (before decoding) following the
starting code to enable the parallel decoding.

Symmetry 2023, 15, 1516 7 of 20

1: while (!eof)

 {

 // decode one NALU

2: len = decode_NALU

 (&pos, out_buf, &stcd, &err);

3: if (!err && len>0)

4: fwrite(out_buf, sizeof(char),

 len, out_stream);

 }

1 2

3 4

pos

Control

dependency

Data

dependency

(a) Pseudo code (b) Dependency graph

Figure 5. Pseudo code of dependency graph of traditional AVS-M method.

3.2. Speculative Data Division

As seen in Figure 5, one simple way to divide the video is using the starting code
as the identifier to slice the data. However, despite the starting code’s single structure
and simple content, the video encoding sequence might still coincide with the content
of the starting code; if the division is just simply performed using 0x000001, then the
division results would go wrong and destroy the file’s integrity. Therefore, we propose
to speculatively divide the data following the content in the starting code. Further, based
on the speculative division, one dividing verification method is designed to improve the
accuracy. Finally, division results are sent to the embedded device to improve the AVS-M
video decoding efficiency. More precisely, as shown in Figure 6, the starting code 0x000001
is used as a speculation pointer to scan the video data byte by byte, and all data segments
with the same starting code are recorded, which would be taken as the possible speculative
division points.

Although the division in Figure 6 can be performed in serial, the parallel dividing can
also be implemented [25]. In the possible parallel dividing, apart from parallel compilation
techniques, a sufficiently large memory is required as hardware. In particular, the data to
be divided must reside in the memory and be uniformly executed via the bus system [26].
More precisely, the main thread is in the pending state and instructs the parallel task by
monitoring the memory state. After the speculative division, the main thread resumes from
the pending state and proceeds to verify the division results.

3.3. Division Result Validation

In Section 3.1, the starting code in AVS-M is taken as the criteria to divide the input
data, possibly incurring the wrong division. If the speculation is used to slice the input
data and verify the division results, then the input data integrity can be preserved, and the
dependency between different NALUs can be broken. As such, the video data can be
divided into a collection of NALUs decoded independently, thus supporting for decoding
video data in parallel.

Note that the position obtained by searching for the header identifier is not necessarily
the starting code of NALU since the concatenating segments of binary strings in the
encoded data are possibly the same as the starting code of NALU. Therefore, it is necessary
to propose one verification method based on the NALU structure. If an error occurs and
is not detected via the validation scheme, then all the succeeding data might go incorrect
from the point where the error occurs, thus incurring more cost. Thus, we use the NAL
header to decide whether or not the starting code-based division results are correct.

More precisely, we further use both the forbidden bit check and the NAL cell type check
to check the legitimacy of the NAL header. The forbidden bit check decides whether or
not the forbidden bit in the NAL header is 0; if that in the NAL header of one segment is
not 0, then its division result is incorrect. Further, the NAL cell type check scans the last

Symmetry 2023, 15, 1516 8 of 20

5 bits of the NAL header: when the NAL cell type value lies in [1, 6], the division is correct.
In particular, although the header legitimacy can be ensured by either forbidden bit or
NAL cell type checking, the data integrity could only be ensured by both types together.
As shown in Table 1, only the load data ranging from 1 to 6 is specified.

NAL payload

File header

Start code

(variable length)

Speculation

Pointer Speculative

division point

(Correct)

Speculative

division point

(Incorrect)

NAL header

NAL payload

Starting code

Speculative

division point

(Correct)
NAL header

NAL payload

Start code

Speculative

division point

(Correct)
NAL header

Figure 6. Speculative data division.

Based on the legitimacy check criteria, we would use OpenMP (i.e., a portable and
scalable model to develop the shared-memory parallelization for multi-platforms), together
with the ARM-Anrdoid-NDK compiler, to enable the parallel optimization of legitimacy
check against the NAL header [24]. Multiple threads are opened to check in parallel via
the high-level description provided by OpenMP, together with the self-contained pragma
instruction. Figure 7 illustrates the workflow of parallel verification on inferred results.
As shown in Figure 7, three sets of speculative division results are obtained from the
starting code, the verification is as follows. First, in T1, the forbidden bit in the third data
block is 1, not meeting the standard NALU format, and failing in the check. Furthermore,
the remaining two groups of data could pass the header check. Then, the NAL cell type
check is executed on the data having passed the forbidden bit check. In T2, the NAL cell
type data is 0 in the second data segment, not falling into interval [1, 6], also with the wrong
result. Finally, only the first speculative data segment passes all checks, implying that the
first data segment is correctly divided, with the true starting code residing in it.

Symmetry 2023, 15, 1516 9 of 20

Table 1. NAL cell type.

NAL Cell Type Value Description

0 Not specified
1 Striping of non-IDR images: slice_layer_rbsp()
2 Striping IDR images: slice_layer_rbsp()
3 Image header: picture_header_rbsp()
4 Sequence parameter set: seq_parameter_set_rbsp()
5 Image parameter set: pic_parameter_set_rbsp()
6 Auxiliary enhancement information: sei_rbsp()

7–23 Reserved bits
24–31 Not specified

Starting code 0 11 00001 Valid Block 1

Prohibit bit
check

Valid Block 2

Succeed Block 1

NALU type
check

Failed

Invalid

T1 T2 Time

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

NAL payload

Starting code 0 00 00000

Starting code 1

Figure 7. Parallel checking on division results.

3.4. Parallel Decoding

After receiving the speculative parallel task from the main thread, all working threads
simultaneously decode the chunked data and perform the same task but with different
data. FFmpeg is one of the most popular open-source multimedia tools, used extensively
in video websites and commercial software (e.g., Youtube and iTunes), and is the standard
encoding/decoding technique in many audio and video formats [27,28]. The flow of each
working thread calling for FFMPEG decoding is illustrated in Figure 8.

As shown in Figure 8, the decoding consists of entropy decoding, anti-quantization,
inverse variation, intra-frame and inter-frame mode selection, and loop filtering. First,
the stream information is read by FFMPEG, and the residual data are obtained after entropy
decoding, reordering, anti-quantization, and inverse variation in NALU units. Meanwhile,
the intra-frame prediction or inter-frame motion compensation is performed. In particular,
the NAL load in the data segment has to be extracted, and then the information in the NAL
header is analyzed, followed by the processing of extracted NAL load. If the NAL unit
type value of NALU is 1, then its NAL load is justified to be a strip of non-instantaneous
decoder refresh (IDR) images, and FFmpeg for the strip of non-IDR images is called to
process the NAL load. Finally, the residual and predicted data are fused, which further
input the loop filter to reconstruct the image.

After the parallel processing, all working threads would immediately terminate the
task and notify the main thread, which then resumes from the pending state and collects
the results from all working threads. Next, the main thread would destroy all working
threads and restore the computing resources. More precisely, following the dividing order,
all working threads’ results are stitched together to constitute the decoding result.

Symmetry 2023, 15, 1516 10 of 20

Decoding NALU

Loop filtering

Store and organize

reference image list

Reconstructed

image

Common film

decoding

DPA decoding

DPB decoding

DPC decoding

Read encoded data from

stream

EBSP->RBSP->SODB

Init mapping of

macroblocks to slice

groups

Init reference image list

Slice decoding Macroblock decoding

ReadIng in the syntax

elements of a macroblock

Init macroblock

 decoding settings

Init reference image

sequence array

Figure 8. Parallel decoding of AVS-M video.

3.5. Error Handling

When the decoding error occurs, i.e., the main thread receives an error decoding
message from the working thread, it would switch from the pending to the working state.
Then, the error decoding message is recorded, the preceding decoding results are saved,
the error decoding results are discarded, and the incorrect boundary information is also
removed from the data segment boundary list. Finally, the residual data are rolled back
and processed in parallel. Error handling could further bring robustness in decoding. In
particular, the error-handling part is mainly used to improve the overall robustness. Since
the multiple verification process for the division results is established before decoding data
in parallel, the division results having passed such verification must be correct. The po-
tential misprediction is due to the partial error code that might be generated during the
transmission of the binary code, and the probability of this occurrence in the short-distance
transmission is very low, which barely happens enough to degrade the algorithm’s perfor-
mance. Finally, frequent mispredictions do affect the performance of parallel programs
theoretically; nevertheless, the error handling part only handles the wrong blocks, while
the other correctly predicted ones would still be decoded normally.

4. Algorithm Implementation
4.1. Hardware

We select ARM’s Cortex-A15 as the implementation platform for the proposed method.
Cortex-A15 uses the ARMv7a instruction set, allowing the CPU to increase its memory
addressing to 1 TB, no longer restricted by the 4GB memory addressing space of 32-bit
processors. ARMv7a’s NENO SIMD instruction set can also operate the 128-bit register
and support virtualization. In addition, the CPU uses a 128-bit AX14 bus, with its physical
addressing space upgraded to 40-bit [29,30], and the Cortex-A15’s certificate pipeline
depth is extended to 10–12 levels, slightly boosting the frequency. Finally, the Cortex-A15
architecture is powered by the latest Mali-T622 graphics processor, which improves the
performance by 50% than its predecessor T600 series, and supports OpenGL ES 3.0 for
better 3D visualization. Furthermore, Mali-V600 video accelerator residing in Cortex-A15
is tailored for video acceleration, including one 8-core engine to handle video up to 4K
120 frames per second (FPS). Figure 9 illustrates the architecture of the Mali-T604 graphics
processor in Cortex-A15.

Symmetry 2023, 15, 1516 11 of 20

Mali
TM

-T604

Inter-core task management

Shader core Shader core

Memory management unit

Level 2 cache/SCU

AMBA
®
4 ACE-Lite

TM

Figure 9. Architecture of Mali-T604 graphics processor.

More precisely, to support the multi-threaded parallelization, Cortex-A15 has two
decoding units and focuses on its branch prediction capabilities. ARM has transferred the
branch predicting unit from Cortex-A53 to Cortex-A15, and the latter is equipped with
two units (naming and sending). Apart from the ability to execute in chaotic, Cortex-A15
also has abundant instruction launch ports and computing resources. Via the multi-level
branch caching, Cortex-A15’s branch prediction capability is more powerful than that of
its predecessor, enabling a more efficient A15 pipeline execution. Further, by embedding
a VFPv4 floating-point unit, Cortex-A15 can run both fused-multiply-add (FMA) and
hardware division instructions, while Cortex-A9’s floating-point capacity is only half of
that of Cortex-A15 [31].

4.2. Algorithm Deployment and Optimization

To deploy the proposed method on Cortex-A15, we have to compile and link the code
via the integrated development tool codewarrior for ARM developer suite [32]. Then, the open-
source library FFmpeg would generate four executables (including FFmpeg for transcoding
and pushing media streaming, FFplay for playing media files, FFprobe for obtaining media
file information, and Fserver as a simple streaming media server), and eight static libraries
(i.e., modules of FFmpeg) after compilation. In the algorithm implementation, it is a
prerequisite to use AVCodec (i.e., the library module among eight modules), to determine
the type of NALU and select the method to handle the NAL load. Furthermore, code-
level optimization is required to improve the parallel algorithm on embedded devices.
Specifically, the input data is stored in structures, putting the data and sub-structures in
one large structure [33]. As such, the proposed method can dynamically allocate memory
to meet different decoding requirements, save memory space and avoid system resource
scarcity due to memory leakage. Each encoded video is indexed by the outer structure,
but the nested structure has at most two levels, thus saving the time for addressing.

Finally, it is necessary to optimize the memory allocation strategy in parallel. In the
intra-frame prediction, local variables are used in the left and upper segments, to temporar-
ily store prediction results. Since local variables are placed in the stack, their space would be
released and reused by the next function once the current one ends. Further, continuously
reusing the same memory space can improve the caching hit rate, thus speeding up the

Symmetry 2023, 15, 1516 12 of 20

algorithm. More precisely, the request number is lowered to save space. Further, it is
undesired to assign values for each variable (array), but use batch assignment statements
(e.g., MEMCPY and MEMSET) to duplicate data. Thus, the above optimization could
greatly not only simplify the speculative parallelization-based AVS-M decoding method,
but also improve the performance of embedded devices in the Cortex-A15 architecture.
The overall flowchart of the proposed method is illustrated in Figure 10.

Verify

blocks
D

e
c

o
d

e
 b

lo
c
k
s
 1

D
e

c
o
d

e
 b

lo
c
k
s
 2

D
e
c
o

d
e

 b
lo

c
k
s
 n

Verify

blocks

Verify

blocks

1 2 n
Spawn parallel

division tasks

Master

control

device

Parallel computing platform

Operation Data

Data

division

Data

division

Data

division

Spawn the

verification

tasks

Spawn

concurrent

decoding tasks

Concurrent

results merging

Decoded data

submission

Thread 1 Thread 2 Thread n

Figure 10. Flowchart of proposed parallel video decoding method.

5. Experiments Results and Analyses
5.1. Experiment Configuration

To verify the performance of the speculative parallelization-based AVS-M video de-
coding method, experiments are conducted as follows. First, Nvidia Tegra 4 mobile chip
built on Cortex-A15 architecture is taken as the experiment platform. In particular, Nvidia
Tegra 4 packs 72 customized GeForce GPU cores and a quad-core ARM Cortex-A15 CPU,
reaching the maximum frequency of 1.9 GHz [34], and can dynamically activate either the
single core or all four cores simultaneously through its built-in symmetric multi-processing
architecture, in line with the resource consumption of current task. In this experiment, all
four cores are activated by default.

Further, the experiment data are obtained from the drilling machining monitoring
data set collected by CNPC national engineering research center for oil & gas drilling
equipment Co., Ltd. Four stream segments are selected as the experiment data to verify the
proposed method’s performance in terms of different bit rates and resolutions. In particular,
the speculative parallelization-based decoding method is compared with the traditional

Symmetry 2023, 15, 1516 13 of 20

serial decoding one. We first conduct function experiments on both methods, to exhibit that
the proposed method can achieve a comparable effect as the serial one, and the introduction
of the speculative parallelization does not degrade the decoding accuracy. Further, the
proposed method’s efficiency is verified, to prove that the speculative parallelization can
improve the decoding efficiency for AVS-M encoded video, in terms of the execution time,
decoding efficiency, and speed-up ratio.

5.2. Accuracy Validation

Before verifying the acceleration performance of the proposed method, the basic
decoding accuracy has to be validated, i.e., the parallel method can achieve comparable
accuracy as the serial one. That is, the introduction of speculative parallelization would not
destroy the decoding accuracy. In particular, peak signal-to-noise ratio (PSNR), i.e., the ratio
of maximum possible power of the signal to noise power, is taken as the frame evaluation
metric [35,36]. Since signals are extended in a large dynamic range, PSNR is taken in the
logarithmic decibel units. First, before obtaining the PSNR, the mean square error (MSE)
between two frames is expressed as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2, (1)

where I and K denote the m× n-sized decoded and original frames, respectively.
Then, to evaluate the difference between decoded and original frames, the MSE-based

PSNR is expressed as

PSNR = 10 log10

(
MAX2

MSE

)
= 20 log10

(
MAX√

MSE

)
, (2)

where MAX is the possible maximum pixel number for the frame. For instance, if an 8-bit
binary represents each pixel, then MAX equals 255. In particular, the MAX value for floating-
point data equals 1. Assume the pixel value is represented by a B-bit binary, and we have
MAX = 2B − 1. More precisely, PSNR above 40 dB, at 30–40 dB, at 20–30 dB, and below
20 dB, respectively, indicate superior (close to the original frame), good (detectable but
acceptable distortion), poor, and unacceptable quality.

Finally, the accuracy validation results are shown in Table 2, with four data sets. It
is evident that the PSNR of both methods are identical, indicating that the optimization
does not affect the decoding. Thus, the proposed method is undistorted as the serial
one, keeping the decoded frame quality unchanged. That is because the speculative
parallelization only changes the decoding order, but does not optimize the decoding itself.
Further, the verification also ensures the correctness of speculative results, thus ensuring
the accuracy of speculative decoding results. Thus, the speculative parallelization would
not degrade the decoding quality of AVS-M encoded video.

Table 2. Accuracy validation results.

Test Data Format Resolution PSNR (Serial) PSNR (Parallel)

Stream 1 AVI 720 × 480 44.02 44.02
Stream 2 MP4 1280 × 720 42.03 42.03
Stream 3 WebM 1920 × 1080 43.59 43.59
Stream 4 MKV 2560 × 1440 45.01 45.01

5.3. Acceleration Performance Validation

Based on the above function experiments, the following performance experiments
are conducted. First, the decoding efficiency of the test data on different resolutions
and bit rates is recorded on the experiment platform (composed of Nvidia Tegra 4 and

Symmetry 2023, 15, 1516 14 of 20

using the traditional serial decoding method). Then, also on this experiment environment,
the efficiency of the speculative parallelization decoding method is tested by decoding
data with different resolutions and bit rates. Note that, Nvidia’s virtual symmetric multi-
processing mechanism is turned off throughout the experiment, allowing both serial and
parallel methods to run on a multi-core and multi-threaded CPU. Further, the results
of the performance experiment are shown in Tables 3 and 4, which show the decoding
efficiency of serial and parallel methods, respectively. From both Tables 3 and 4, it is evident
that for any bit rate and resolution in AVS-M encoded video, the decoding efficiency of
the parallel method in a multi-core environment is significantly improved over the serial
one. In statistics, the average decoding efficiency of the parallel method is 7.9, 8.1, 9.2,
and 11.5 times higher than that of serial one, respectively, at 480p, 720p, 1080p, and 2K
resolutions, thus verifying the superior performance of the proposed method. More
precisely, it is more evident in the higher video quality, and proposed method is favored to
process high bit rate and high-resolution videos.

Table 3. Decoding efficiency of serial method.

Bit Rate (Mbps) Stream 1
(720 × 480)

Stream 2
(1280 × 720)

Stream 3
(1920 × 1080)

Stream 4
(2560 × 1440)

1 20.54 9.42 4.67 2.82
2 18.71 8.65 4.08 2.16
4 18.01 7.59 3.81 1.83
6 16.92 7.30 3.54 1.17
8 15.83 6.81 3.39 0.94

Table 4. Decoding efficiency of parallel method.

Bit Rate (Mbps) Stream 1
(720 × 480)

Stream 2
(1280 × 720)

Stream 3
(1920 × 1080)

Stream 4
(2560 × 1440)

1 155.32 74.47 40.33 21.83
2 147.58 72.19 37.27 20.09
4 140.12 70.93 35.31 18.38
6 135.37 68.24 33.76 16.69
8 128.81 62.05 32.51 15.51

Further, to show the performance improvement of speculative parallelization in more
depth, the running time, as well as a speed-up ratio are also evaluated, and the latter is
defined as

Sp =
Tl
Tp

, (3)

where Tl and Tp separately denote the running time for serial and parallel decoding.
With (3), we can explain how much faster the parallel decoding is than the serial one.
More precisely, Figure 11 shows the variation of speed-up ratio at different resolutions
and bit rates. As shown in Figure 11, the parallel method has a significant speed-up ratio
when decoding video for different bit rates and resolutions in a multi-core environment.
In particular, for high-definition and high-bit-rate video, the speed-up ratio can reach 11.22.
That is, although the speculative parallelization and verification may incur some overhead,
dividing the video data (which should have been serially decoded from beginning to end)
can bring forth a set of tasks decoded simultaneously. Once all tasks are decoded, the results
are assembled sequentially in line with the division order. More precisely, with the growth
of bit rate and resolution, the computational complexity also increases, incurring a widened
gap in decoding efficiency between serial and parallel methods. On one hand, it shows that
the speed-up ratio almost increases linearly with the growth of bit rate (Mb/s), since the
serial decoding method’s running time enlarges linearly but the parallel one could remain
the running time due to its simultaneous decoding principle; on the other hand, with the

Symmetry 2023, 15, 1516 15 of 20

increment of resolutions, the larger resolution would incur more pixels, thereby bringing
the linearly increased speed-up ratio. Thus, the speculative parallelization better fits the
high-quality videos.

Bit rate (Mb/s)
1 2 4 6 8

S
p
e
e
d
-u

p
 r

a
ti
o

0

2

4

6

8

10

12

Steam 1 (720×480p)
Steam 2 (1280×720p)
Steam 3 (1920×1080p)
Steam 4 (2560×1440p)

Figure 11. Speed-up ratio of proposed method versus bit rate.

Next, on the basis of the speed-up ratio, we further introduce the parallel efficiency
metric to exhibit the performance in a multi-core system-on-a-chip (SOC) environment in
more depth, which is calculated as

E =
Sp

N
, (4)

where Sp and N separately represent the speed-up ratio and the number of SOC cores
involved, respectively.

With (4), the decoding efficiency of the proposed parallel method under different
hardware conditions is shown in Figures 12–16, i.e., efficiency versus core number. Since
Nvidia Tegra 4 uses a 4-core Cortex-A15 architecture in all figures, the x-axis indicates the
core number involved in parallel when one to four SOCs are used in the decoding.

Core number
4 8 12 16

E
ff
ic

ie
n
c
y

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Stream 1 (720 × 480p)
Stream 2 (1280×720p)
Stream 3 (1920×1080p)
Stream 4 (2560×1440p)

Figure 12. Efficiency of proposed method versus bit rate (1 Mbps).

Symmetry 2023, 15, 1516 16 of 20

Core number
4 8 12 16

E
ff
ic

ie
n
c
y

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Stream 1 (720×480p)
Stream 2 (1280×720p)
Stream 3 (1920×1080p)
Stream 4 (2560×1440p)

Figure 13. Efficiency of proposed method versus bit rate (2 Mbps).

Core number
4 8 12 16

E
ff

ic
ie

n
c
y

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Stream 1 (720×480p)
Stream 2 (1280×720p)
Stream 3 (1920×1080p)
Stream 4 (2560×1440p)

Figure 14. Efficiency of proposed method versus bit rate (4 Mbps).

Symmetry 2023, 15, 1516 17 of 20

Core number
4 8 12 16

E
ff

ic
ie

n
c
y

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Stream 1 (720×480p)
Stream 2 (1280×720p)
Stream 3 (1920×1080p)
Stream 4 (2560×1440p)

Figure 15. Efficiency of proposed method versus bit rate (6 Mbps).

As can be seen from Figures 12–16, the efficiency of the proposed decoding method
always lies between 0.75 and 1, regardless of the bit rate and resolution. On one hand,
the larger the bit rate, the higher the parallel efficiency of the proposed method, further
showing the advantage in the real-time decoding of high-quality video. On the other hand,
the efficiency decreases as the core number enlarges while keeping the bit rate constant. It is
because that with the growth of parallel size, the overhead also proliferates, thus degrading
the parallel efficiency. Further, the parallel overhead typically comes from the bandwidth
limitation of the bus, the communication delay between cores, and the load balancing
between tasks. Further, with the increment of bit rate from 1 Mbps to 8 Mbps, the efficiency
across different resolutions grows by 11.2% on average. In particular, in Figures 12–15,
the efficiency almost decreases linearly between 4 and 12 cores, yet with a lowered slope
between 12 and 16 cores. Conversely, the efficiency decreases with a enlarged slope between
12 and 16 cores in Figure 16.

Core number
4 8 12 16

E
ff
ic

ie
n
c
y

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Stream 1 (720×480p)
Stream 2 (1280×720p)
Stream 3 (1920×1080p)
Stream 4 (2560×1440p)

Figure 16. Efficiency of proposed method versus bit rate (8 Mbps).

Symmetry 2023, 15, 1516 18 of 20

6. Conclusions and Future Work

This work investigated an edge intelligence-assisted and speculative parallelization-
based asymmetrical video decoding paradigm to save time and cost in industrial man-
ufacturing. Both theoretical and environmental results have been provided to show the
superiority of the proposed parallel method over serial ones in terms of the decoding
efficiency in the industrial edge. Specifically, an edge computing-assisted asymmetrical
video decoding framework was presented in the well-drilling field to show the impor-
tance of timeliness in field operation. First, a parallel decoding method was proposed to
solve the low efficiency brought by the traditional video decoding method. The proposed
method could break up the data dependency by using speculative and multi-threaded
parallelization. In particular, the proposed method disrupted the serial decoding order,
thereby allowing simultaneous parallel decoding. Also, a speculative verification method
was designed to achieve efficiency gains while guaranteeing decoding accuracy. The ex-
periments exhibited that the proposed parallel method is well-suited for real-time video
decoding scenarios in industrial manufacturing. On Nvidia Tegra 4 embedded chips, the
proposed method could achieve impressive decoding results for high-bit-rate and high-
resolution video, thus showing the advantage of speculative parallelization in decoding
real-time surveillance video and live streaming for industrial manufacturing. In future
work, the blockchain and consensus mechanism would be embedded into the speculative
parallelization to further secure the parallel decoding. Further, since the final result merg-
ing step becomes the one that most affects the overall performance and it is impossible to
improve the merging efficiency by the speculative parallelization, some other approaches
have to be exploited.

Author Contributions: Conceptualization, S.Y. and H.X.; methodology, S.Y. and Z.Z.; software,
Z.L.; validation, Z.Z., Y.L. and H.X.; formal analysis, Z.Z.; investigation, Z.L.; resources, Z.L.; data
curation, S.Y. and Z.Z.; writing—original draft preparation, H.X.; writing—review and editing, Z.L.;
visualization, Z.L.; supervision, S.Y.; project administration, S.Y.; funding acquisition, Z.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was in part supported by the Science and Technology Project of China National
Petroleum Corporation under Grant 2022ZG06-01 (Ultra Deep Intelligent Drilling Rig Development),
in part by the Foundation of National Engineering Research Center for Oil & Gas Drilling Equipment
under Grant BOMCO-J118-JKY003-2022 (Top Layer Design and Platform Frame of Intelligent Control
Platform of Drilling Rig), and in part by the Natural Science Foundation of Shaanxi Province of China
under Grant 2020JQ-647.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors would like to thank the editor and all reviewers for their valuable
comments and efforts on this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, J.; Wang, R.; Wang, K. Service function chaining in industrial Internet of Things with edge intelligence: A natural actor-critic

approach. IEEE Trans. Industr. Inform. 2022, 19, 491–502. [CrossRef]
2. Fang, C.; Yao, H.; Wang, Z.; Wu, W.; Jin, X.; Yu, F.R. A survey of mobile information-centric networking: Research issues and

challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2353–2371. [CrossRef]
3. Wan, S.; Xu, X.; Wang, T.; Gu, Z. An intelligent video analysis method for abnormal event detection in intelligent transportation

systems. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4487–4495. [CrossRef]
4. Zhang, Y.; Sun, L.; Cao, Q. TLP-LDPC: Three-level parallel FPGA architecture for fast prototyping of LDPC decoder using

high-level synthesis. J. Comput. Sci. Technol. 2022, 37, 1290–1306. [CrossRef]
5. Choi, K.; Chen, J.; Rusanovskyy, D.; Choi, K.P.; Jang, E.S. An overview of the MPEG-5 essential video coding standard [standards

in a Nutshell]. IEEE Signal Process. Mag. 2020, 37, 160–167. [CrossRef]

http://doi.org/10.1109/TII.2022.3177415
http://dx.doi.org/10.1109/COMST.2018.2809670
http://dx.doi.org/10.1109/TITS.2020.3017505
http://dx.doi.org/10.1007/s11390-022-1499-9
http://dx.doi.org/10.1109/MSP.2020.2971765

Symmetry 2023, 15, 1516 19 of 20

6. Zhou, L.; Zhou, Y.; Corso, J.J.; Socher, R.; Xiong, C. End-to-end dense video captioning with masked transformer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8739–8748.

7. Gao, L.; Lei, Y.; Zeng, P.; Song, J.; Wang, M.; Shen, H.T. Hierarchical representation network with auxiliary tasks for video
captioning and video question answering. IEEE Trans. Image Process. 2021, 31, 202–215. [CrossRef]

8. Zhou, Y.; Tian, L.; Zhu, C.; Jin, X.; Sun, Y. Video coding optimization for virtual reality 360-degree source. IEEE J. Sel. Top. Signal
Process. 2020, 14, 118–129. [CrossRef]

9. Kaye, D.B.V.; Chen, X.; Zeng, J. The co-evolution of two Chinese mobile short video apps: Parallel platformization of Douyin and
TikTok. Mob. Media Commun. 2021, 47, 229–253. [CrossRef]

10. Ma, S.; Zhang, L.; Wang, S.; Jia, C.; Wang, S.; Huang, T.; Wu, F.; Gao, W. Evolution of AVS video coding standards: Twenty years
of innovation and development. Sci. China Inf. Sci. 2022, 65, 1–24. [CrossRef]

11. Ji, Z.; Jiao, F.; Pang, Y.; Shao, L. Deep attentive and semantic preserving video summarization. Neurocomputing 2020, 406, 200–207.
[CrossRef]

12. Li, J.; Li, B.; Lu, Y. Deep contextual video compression. In Proceedings of the NeurIPS, Montreal, QC, Canada, 11–12 December
2021; pp. 18114–18125.

13. Wang,T.; Zhang, R.; Lu, Z.; Zheng, F.; Cheng, R.; Luo, P. End-to-end dense video captioning with parallel decoding. In Proceedings
of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 6827–6837.

14. Cuozzo, G.; Buratti, C.; Verdone, R. A 2.4-GHz LoRa-based protocol for communication and energy harvesting on industry
machines. IEEE Internet Things. J. 2022, 9, 7853–7865. [CrossRef]

15. Magrin, D.; Capuzzo, M.; Zanella, A.; Vangelista, L.; Zorzi, M. Performance analysis of LoRaWAN in industrial scenarios. IEEE
Trans. Industr. Inform. 2021, 17, 6241–6250. [CrossRef]

16. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Poor, H.V. Federated learning for industrial Internet of
Things in future industries. IEEE Wirel. Commun. 2021, 28, 192–199. [CrossRef]

17. Yun, H.; Yu, Y.; Yang, W.; Lee, K.; Kim, G. Pano-AVQA: Grounded audio-visual question answering on 360° videos. In Proceedings
of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 2011–2021.

18. Wang, Z.; Hei, X.; Ma, W.; Wang, Y.; Wang, K.; Jia, Q. Parallel anomaly detection algorithm for cybersecurity on the high-speed
train control system. Math. Biosci. Eng. 2021, 19, 287–308. [CrossRef] [PubMed]

19. Kumar, S.; Singh, S.K.; Aggarwal, N.; Gupta, B.B.; Alhalabi, W.; Band, S.S. An efficient hardware supported and parallelization
architecture for intelligent systems to overcome speculative overheads. Int. J. Intell. Syst. 2022, 37, 11764–11790. [CrossRef]

20. Feliu, J.; Ros, A.; Acacio, M.E.; Kaxiras, S. Speculative inter-thread store-to-load forwarding in SMT architectures. J. Parallel Distrib.
Comput. 2023, 173, 94–106. [CrossRef]

21. Lee, C.; Ro, W.W. Simultaneous and speculative thread migration for improving energy efficiency of heterogeneous core
architectures. IEEE Trans. Comput. 2018, 67, 498–512. [CrossRef]

22. Duggal, A.S.; Malik, P.K.; Gehlot, A.; Singh, R.; Gaba, G.S.; Masud, M.; Al-Amri, J.F. A sequential roadmap to industry 6.0:
Exploring future manufacturing trends. IET Commun. 2022, 16, 521–531. [CrossRef]

23. Fang, C.; Xu, H.; Yang, Y.; Hu, Z.; Tu, S.; Ota, K.; Yang, Z.; Dong, M.; Han, Z.; Yu, F.R.; et al. Deep-reinforcement-learning-based
resource allocation for content distribution in fog radio access networks. IEEE Internet Things J. 2022, 9, 16874–16883. [CrossRef]

24. Wang, Z.; Qi, J.; Ma, W.; Lv, Y.; Yang, D. An expansion planning approach for intelligent grids with speculative parallelism.
J. Circuits, Syst. Comput. 2023, 32, 2350046. [CrossRef]

25. Jayatilaka, T.; Ueno, H.; Georgakoudis, G.; Park, E.; Doerfert, J. Towards compile-time-reducing compiler optimization selection
via machine learning. In Proceedings of the International Conference on Parallel Processing (ICPP), Lemont, IL, USA, 9–12
August 2021; pp. 1–6.

26. Lv, Z.; Chen, D.; Singh, A.K. Big data processing on volunteer computing. ACM Trans. Internet Technol. 2021, 21, 1–20. [CrossRef]
27. Jiang, C.; Wang, Y.; Huang, Q.; Wang, Y.; Dai, Y. Intelligent video surveillance platform based on FFmpeg and Yolov5. In

Proceedings of the ACM Multimedia Asia Conference, Tokyo, Japan, 13–16 December 2022; pp. 1–3.
28. Sheng, X.; Li, J.; Li, B.; Li, L.; Liu, D.; Lu, Y. Temporal context mining for learned video compression. IEEE Trans. Multimed. 2022,

to appear. [CrossRef]
29. Anastasova, M.; Azarderakhsh, R.; Kermani, M.M. Fast strategies for the implementation of SIKE round 3 on ARM Cortex-M4.

IEEE Trans. Circuits Syst. I. Regul. Pap. 2021, 68, 4129–4141. [CrossRef]
30. Mandal, S.K.; Bhat, G.; Patil, C.A.; Doppa, J.R.; Pande, P.P.; Ogras, U.Y. Dynamic resource management of heterogeneous mobile

platforms via imitation learning. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2019, 27, 2842–2854. [CrossRef]
31. Wu, C.; Wang, M.; Chu, X.; Wang, K.; He, L. Low-precision floating-point arithmetic for high-performance FPGA-based CNN

acceleration. ACM Trans. Reconfig. Technol. Syst. 2021, 15, 1–21. [CrossRef]
32. Dörflinger, A.; Albers, M.; Kleinbeck, B.; Guan, Y.; Michalik, H.; Klink, R.; Blochwitz, C.; Nechi, A.; Berekovic, M. A comparative

survey of open-source application-class RISC-V processor implementations. In Proceedings of the ACM International Conference
on Computing Frontiers, Sicily, Italy, 11–13 May 2021; pp. 12–20.

33. Ford, B.W.; Qasem, A.; Tesic, J.; Zong, Z. Migrating software from x86 to ARM architecture: An instruction prediction approach.
In Proceedings of the International Conference on Networking, Architecture, and Storage, Riverside, CA, USA, 24–26 October
2021; pp. 1–6.

http://dx.doi.org/10.1109/TIP.2021.3120867
http://dx.doi.org/10.1109/JSTSP.2019.2957952
http://dx.doi.org/10.1177/2050157920952120
http://dx.doi.org/10.1007/s11432-021-3461-9
http://dx.doi.org/10.1016/j.neucom.2020.04.132
http://dx.doi.org/10.1109/JIOT.2021.3115251
http://dx.doi.org/10.1109/TII.2020.3044942
http://dx.doi.org/10.1109/MWC.001.2100102
http://dx.doi.org/10.3934/mbe.2022015
http://www.ncbi.nlm.nih.gov/pubmed/34902992
http://dx.doi.org/10.1002/int.23062
http://dx.doi.org/10.1016/j.jpdc.2022.11.007
http://dx.doi.org/10.1109/TC.2017.2770126
http://dx.doi.org/10.1049/cmu2.12284
http://dx.doi.org/10.1109/JIOT.2022.3146239
http://dx.doi.org/10.1142/S0218126623500366
http://dx.doi.org/10.1145/3409801
http://dx.doi.org/10.1109/TMM.2022.3220421
http://dx.doi.org/10.1109/TCSI.2021.3096916
http://dx.doi.org/10.1109/TVLSI.2019.2926106
http://dx.doi.org/10.1145/3474597

Symmetry 2023, 15, 1516 20 of 20

34. Dong, J.; Fan, G.; Zheng, F.; Lin, J.; Xiao, F. TX-RSA: A high performance RSA implementation scheme on NVIDIA Tegra X2. In
Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications (WASA), Nanjing, China, 25–27
June 2021; pp. 210–222.

35. Dziembowski, A.; Mieloch, D.; Stankowski, J.; Grzelka, A. IV-PSNR—The objective quality metric for immersive video applica-
tions. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7575–7591. [CrossRef]

36. Fang, C.; Guo, S.; Wang, Z.; Huang, H.; Liu, Y. Data-driven intelligent future network: Architecture, use cases, and challenges.
IEEE Commun. Mag. 2019, 57, 34–40. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSVT.2022.3179575
http://dx.doi.org/10.1109/MCOM.2019.1800769

	Introduction
	Preliminary
	Edge Computing and IIoT
	Decoding in AVS-M
	Speculative Parallelization

	Speculative Parallelization-Based Decoding in Industrial Edge
	Internal Dependency Dnalysis
	Speculative Data Division
	Division Result Validation
	Parallel Decoding
	Error Handling

	Algorithm Implementation
	Hardware
	Algorithm Deployment and Optimization

	Experiments Results and Analyses
	Experiment Configuration
	Accuracy Validation
	Acceleration Performance Validation

	Conclusions and Future Work
	References

