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Abstract: This paper aims to investigate the robustness of exponential synchronization in complex
dynamic networks (CDNs) with time-varying delays and random disturbances. Via the Gronwall–
Bellman lemma and partial inequality methods, by calculating the transcendental equations, the
delays limits and maximum disturbance size of the CDNs are estimated. This means that the
perturbed system achieves exponential synchronization if the disturbance strength is within our
estimation range. The theoretical results are illustrated by several simulations.
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1. Introduction

Complex dynamic networks (CDNs) consist of a large number of nodes or edges; each
node or edge represents a basic dynamic system with a specific content. CDNs have become
an interesting research field in various fields, such as ecological networks [1], biological
neural networks [2], and communication networks [3,4]. With the continuous exploration
of the dynamic behavior of CDNs, the analysis of complex behavior of CDNs has been
recognized as a research hotspot [5–8].

Synchronization, as one of the topics worth thinking about in CDNs, has been used
in various industries, such as face recognition, information security, and so on [9,10]. The
earliest research on synchronization dates back to the time of Huygens in 1655 [11]. In
recent years, synchronization control of CDNs, such as global Mittag–Leffler synchroniza-
tion [2], adaptive synchronization [12] and lag synchronization [13], etc., has attracted great
attention as an interesting direction of control systems.

Generally speaking, because of the different characteristics of CDN nodes, it is difficult
to realize synchronization. Then, the synchronous implementation of the CDNs still needs
some control strategy. Therefore, many scholars have produced some effective controllers
to synchronize CDNs. To the best of our knowledge, controllers are divided into linear
controllers [14,15] and nonlinear controllers [16–19]. The synchronization problem of the
CDN is studied using a hierarchical controller in [20]. The authors of [21,22] studied the
synchronization of a CDN with delays under the adaptive control strategy.

Because of the limitation of information transmission rate between nodes, CDNs
are inevitably affected by time-varying delays and random noises [19]. The existence of
time-varying delays may cause delays in information transfer between CDN nodes, and
may cause the CDN to lose synchronization [23]. In general, the main types of time delays
are leakage delays [24], discrete delays [25], and state-dependent delays [26], etc. For the
random disturbances, the disturbance process is complex, and noise interference may lead
to the deviation of information transmission in CDNs. For CDNs interfered by time-varying
delays and external noise, the synchronization phenomenon has attracted the attention of
scholars at home and abroad in recent years [19,27–29].
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It is noted that CDNs may lose synchronization if the time-varying delays and noise
intensity exceed certain limits [30]. We know that CDNs may still have exponential syn-
chronization (ESy) if the intensity of time-varying delays and random noise disturbance is
small when ESy has been achieved in CDNs [31]. Many interesting results were obtained
for CDN synchronization interfered by time-varying delays [32–34] and random noise
in [16,19,21,23,28,35–37]. It should be noted that the above work pays little attention to the
robustness of ESy in CDNs. Therefore, how much time-varying delay and noise intensity
CDNs can withstand without losing synchronization is an interesting question.

Robustness means that the system maintains certain characteristics under the certain
disturbance of external factors. It has important reference value for the analysis and design
of complex systems. In [38], the robustness of exponential stability in recurrent neural
networks is explored for the first time. In recent years, there have been many interesting
results on the robustness of stability [39]. In addition, with the development of CDNs,
the Lyapunov stability theory and the linear matrix inequality methods have been used
to analyze the synchronization of CDNs extensively, but the robustness of ESy is rarely
studied by estimating the upper bound of noise intensity and delays. The robustness of
ESy in CDNs with piecewise constant parameters is studied for the first time in [40]. In
addition, in [41], Zhang et al. investigated the robustness of ESy in CDNs with random
disturbances.

Inspired by the above works, this paper discusses the robustness of ESy in CDNs with
time-varying delays and noise interference. The main works are as follows.

• Using the Gronwall–Bellman lemma and inequality methods, the upper bound of a
CDN subject to both delays and random noise intensity is obtained. By calculating
the transcendental equations, The allowable ESy range of a CDN with both delay and
external noise is estimated.

• In the systems discussed in this paper, the parameter configuration matrices without
delay and with delay are not necessarily symmetric.

• Compared with the [23,41], this article comprehensively considers the influence of
time-varying delays and random disturbance on ESy of CDNs. This paper provides a
judgment basis for the analysis and designs of CDNs.

• In [39], the robustness of neural network stability was thoroughly studied. Unlike
the aforementioned paper, we investigate the robustness of ESy in CDNs with time-
varying delays and random disturbances.

The structure of this paper is as follows: Section 2 introduces the preparatory knowl-
edge. Section 3 is the results. In Section 4, some simulations are given. In Section 5 is the
summary of this paper.

2. Problem Statement and Model
2.1. Notation

In this paper, Rm is sets of m-dimensional Euclidean spaces, and Rm×m represents
m×m-dimensional matrices composed of spaces or sets. Im is an identity matrix of m×m.
θ ⊗ ϑ is the Kronecker product of matrices θ and ϑ. Let (Ω,F, {Ft}t>0) be a complete
probability space with filtering {Ft}t>0, and the filter contains all P-null sets and is right-
continuous. $(t) stands for time delays. B(t) is a Brownian motion. || ∗ || is the Euclidean
norm. E{?} stands for a mathematical expectation operator in probability measure P.

A graph G = (V, E , A) has three elements. V = {1, . . . , m} is the node set, and the
edge set E ⊂ V×V. Coupling matrix is A = (aij)m×m, where aij represents the coupling
weight from the i-th node to the j-th node. If the information is from the j-th node to the
i-th node (i 6= j), then the aij 6= 0; otherwise, aij = 0.
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2.2. Problem Formulation

Consider the following CDN model consisting of m nodes with time delays
żi(t) =Θ(zi(t), t) + k

m

∑
j=1

aijzj(t) + k
m

∑
j=1

bijzj(t− $(t)) + ci(t),

zi(t0) =zi0 ∈ Rm,

(1)

where zi(t) = (zi1, . . . , zim)
T ∈ Rm is the state vector of the i-th node; Θ: Rm → Rm is

vector-valued function; k is called the coupling strength; ci(t) ∈ Rm is the latter needed the
design of the controllers. aij, bij represents the matrix A, B, and satisfying aii = −∑m

j=1,j 6=i aij

and bii = −∑m
j=1,j 6=i bij; $(t) are delays that satisfy $(t) : [t0,+∞), $′(t) ≤ ϑ < 1, ψ =

{ψ(s) : −$̃ ≤ s ≤ 0} ∈ C([−$̃, 0],Rm).
The dynamic equation of isolated nodes of CDN (1) is

χ̇(t) = Θ(χ(t), t), (2)

where χ(t) is any expected state.
In addition, when CDN (1) has no time delay interference, the following form is obtained:

˙̂zi(t) =Θ(ẑi(t), t) + k
m

∑
j=1

aij ẑj(t) + k
m

∑
j=1

bij ẑj(t) + ci(t),

ẑi(t0) =ẑi0 ∈ Rm.

(3)

Defining system (2) and (3), the error is li(t) = ẑi(t)− χ(t), and subtracting (2) from
system (3) gives the following error system:

l̇i(t) =Υ(li(t), t) + k
m

∑
j=1

aijlj(t) + k
m

∑
j=1

bijlj(t) + ci(t),

li(t0) =li0 ∈ Rm,

(4)

where Υ(li(t), t) = Θ(ẑi(t), t)−Θ(χ(t), t), and the function Υ(li(t), t) satisfies the follow-
ing assumptions.

(H1) The function Υ(?, t) will satisfy the following condition:

||Υ(l(t), t)− Υ(q(t), t)|| ≤ Φ||l(t)− q(t)||, (5)

where Φ is a known constant.
To obtain synchronization of (1) and (2), the linear controller is expressed as

ci(t) = S̆li(t), i = 1, . . . , m, (6)

where S̆ ∈ Rm×m is the feedback gain matrix.
Substitute (6) into (4):

l̇i(t) =Υ(li(t), t) + k
m

∑
j=1

aijlj(t) + k
m

∑
j=1

bijlj(t) + S̆li(t),

li(t0) =li0 ∈ Rm.

(7)

Denote l(t) = (l1(t), l2(t), . . . , lm(t))
T , l(t− $(t)) = (l1(t− $(t)), . . . , lm(t− $(t)))T ,

Υ(l(t), t) = (Υ(l1(t), t)T , . . . , Υ(lm(t), t)T)
T

, A = (aij)m×m, B = (bij)m×m, A = Im ⊗A, B =

Im ⊗ B, S = Im ⊗ S̆.
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Then, CDN (7) can be rewritten into the following matrix form:{
l̇(t) = Υ(l(t), t) + kAl(t) + kBl(t) + Sl(t),

l(t0) = l0 ∈ Rm×m.
(8)

Define system (1) and (2); the synchronization error is qi(t) = zi(t)− χ(t). Subtracting
(2) from (1) gives the following error system:

q̇i(t) =Υ(qi(t), t) + k
m

∑
j=1

aijqi(t) + k
m

∑
j=1

bijqi(t− $(t)) + S̆qi(t),

qi(t0) =qi0 ∈ Rm.

(9)

The matrix form of the error system (9) is{
q̇(t) =Υ(q(t), t) + kAq(t) + kBq(t− $(t)) + Sq(t),

q(t0) =q0 ∈ Rm×m,
(10)

For the convenience of the analysis, this paper first provides some basic definitions,
and abbreviates some nouns (see Table 1).

Table 1. This article deals with abbreviated tables.

Full Name Abbreviation

Exponential stability ESt
Mean-square exponential stability (synchronization) MSESt (MSESy)
Almost surely exponential stability (synchronization) ASESt (ASESy)

Definition 1. If the error system (8) achieved ESt (Table 1), then the CDN (2) and (3) said to
achieve ESy. That is, for ∀l0 ∈ Rm, ∃ L > 0,D > 0, such that for any t ∈ R+, satisfying

||l(t)|| ≤ L||l0|| exp(−D(t− t0)).

3. Main Results

A controller is an algorithm or rule that makes the system reach the desired state
under certain control rules. Next, we discuss the robustness of ESy of CDNs with time
delays and noise interference under linear and nonlinear controllers, respectively.

We first discuss how much time delay CDN can withstand without losing synchro-
nization under linear and nonlinear controllers.

3.1. Effect of Time Delays on CDN Synchronization
3.1.1. The Linear Controller

In this section, we will investigate the robustness of ESy for CDNs with time delays
under linear controllers. For CDNs that have reached ESy, how much external time
delay can the system withstand without losing synchronization? That is, the CDN is still
synchronous if the limits of the system being disturbed by external time delays is within
our estimate. From this, we can obtain the following theorem:

Theorem 1. If Assumption H1 is trues, and (8) is ESt, then (10) is ESt. That is, systems (1) and
(2) can realize ESy under (6), if $̃ < min(∆/2, $̆), where $̆ is the only nonnegative solution of the
following transcendental equation.

L exp(−D(∆− $̃)) + L4 exp(2∆L3) = 1, (11)



Symmetry 2023, 15, 1510 5 of 29

where

∆ > lnL/D,

L3 =(Φ + k||A||+ ||S||+ k||B||) + k||B||
[
Φ + k||A||+ ||S||+ k||B||(1− ϑ)−1]$̆,

L4 =k||B||[$̆ + $̆(1− ϑ)−1 + k||B||$̆2(1− ϑ)−1] + k$̆||B||[Φ + k||A||+ ||S||

+ k||B||(1− ϑ)−1]L
/
D.

Proof. Denote l(t; t0, ψ(0)), p(t; t0, ψ(0)) is l(t), q(t) and l0 = q0. According to the systems
(8) and (10), the differential equation is transformed into an integral equation, and we have

||l(t)− q(t)|| =
∣∣∣∣∣∣∣∣ ∫ t

t0

(Υ(l(s), s)− Υ(q(s), s)) + kA(l(s)− q(s)) + kB(l(s)

− q(s− $(s))) + S(l(s)− q(s)) ds
∣∣∣∣∣∣∣∣

≤
∫ t

t0

||(Υ(l(s), s)− Υ(q(s), s))||+ ||kA(l(s)− q(s))||

+ ||kB(l(s)− q(s− $(s)))||+ ||S(l(s)− q(s))|| ds.

(12)

From (5),

||l(t)− q(t)|| ≤
∫ t

t0

Φ||l(s)− q(s)||+ k||A|| ||l(s)− q(s)||+ k||B|| ||l(s)

− q(s− $(s))||+ ||S|| ||(l(s)− q(s))|| ds

≤
∫ t

t0

(Φ + k||A||+ k||B||+ ||S||)||l(s)

− q(s)||+ k||B|| ||q(s)− q(s− $(s))|| ds

=(Φ + k||A||+ k||B||+ ||S||)

×
∫ t

t0

||l(s)− q(s)||ds + k||B||
∫ t

t0

||q(s)− q(s− $(s))||ds.

(13)

Furthermore, when t ≥ t0 + $̃, from (5) and (9),∫ t

t0+$̃
||q(s)− q(s− $(s))||ds ≤

∫ t

t0+$̃
ds
∫ s

s−$̃

[
(Φ + k||A||+ ||S||) ||q(r)||

+ k||B|| ||q(r− $(r))||
]
dr.

(14)

Exchange integration order, one has∫ t

t0+$̃
ds
∫ s

s−$̃
(Φ + k||A||+ ||S||) ||q(r)||dr

=
∫ t

t0

dr
∫ min(r+$̃,t)

max(t0+$̃,r)
(Φ + k||A||+ ||S||) ||q(r)||ds

≤(Φ + k||A||+ ||S||)$̃
∫ t

t0

||q(r)||dr.

(15)
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Similarly, one has∫ t

t0+$̃
ds
∫ s

s−$̃
k||B|| ||q(r− $(r))||dr

=
∫ t

t0

dr
∫ min(r+$̃,t)

max(t0+$̃,r)
k||B|| ||q(r− $(r))||ds

≤k||B||$̃(1− ϑ)−1
(

$̃ sup
t0−$̃≤s≤t0

||q(s)||+
∫ t

t0

||q(u)|| du
)

.

(16)

When t ≥ t0 + $̃, substitute (14) and (15) into (13), and one has

∫ t

t0+$̃
||q(s)− q(s− $(s))||ds ≤k||B||$̃2(1− ϑ)−1

(
sup

t0−$̃≤s≤t0

||q(s)||
)

+ (Φ + k||A||+ ||S||+ k||B||$̃(1− ϑ)−1)

×
∫ t

t0

||q(s)|| ds.

(17)

When t ≥ t0 + $̃, substitute (16) into (12), and one has

||l(t)− q(t)|| ≤(Φ + k||A||+ ||S||+ k||B||)
∫ t

t0

||l(s)− q(s)|| ds

+ k||B||
[
$̃ + $̃(1− ϑ)−1]( sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
+ k2||B||2$̃2(1− ϑ)−1

(
sup

t0−$̃≤s≤t0

||q(s)||
)

+ k||B||
[

Φ + k||A||+ ||S||+ k||B||(1− ϑ)−1
]

$̃
∫ t

t0

||q(s)|| ds.

(18)

By Definition 1, further available is

||l(t)− q(t)|| ≤
{
(Φ + k||A||+ ||S||+ k||B||) + k||B||[
Φ + k||A||+ ||S||+ k||B||(1− ϑ)−1

]
$̃

} ∫ t

t0

||l(s)− q(s)|| ds

+ k||B||
{

$̃ + $̃(1− ϑ)−1 + k||B||$̃2(1− ϑ)−1
}

×
(

sup
t0−$̃≤s≤t0+$̃

||q(s)||
)

+ k$̃||B||
[

Φ + k||A||+ ||S||+ k||B||(1− ϑ)−1
]
L
/
D||l0||

≤L1

∫ t

t0

||l(s)− q(s)|| ds + L2

(
sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
,

(19)

where

L1 =(Φ + k||A||+ ||S||+ k||B||) + k||B||
[
Φ + k||A||+ ||S||+ k||B||(1− ϑ)−1]$̃,

L2 =k||B||[$̃ + $̃(1− ϑ)−1 + k||B||$̃2(1− ϑ)−1] + k$̃||B||[Φ + k||A||+ ||S||

+ k||B||(1− ϑ)−1]L
/
D.
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Using the Gronwall–Bellman lemma [42], when t ≤ t0 + 2∆,

||l(t)− q(t)|| ≤ L2 exp(2∆L1)

(
sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
.

Hence, when t0 + $̃ ≤ t ≤ t0 + 2∆,

||q(t)|| ≤||l(t)||+ ||l(t)− q(t)||

≤||l(t)||+ L2 exp(2∆L1)

(
sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
.

(20)

Notice $̃ < min(∆/2, $̆), due to t0 − $̃ + ∆ ≤ t ≤ t0 − $̃ + 2∆,

||q(t)|| ≤
[
L exp(−D(∆− $̃)) + L2 exp(2∆L1)

](
sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
=Ĉ
(

sup
t0−$̃≤s≤t0+$̃

||q(s)||
)

,
(21)

where Ĉ = L exp(−D(∆− $̃)) + L2 exp(2∆L1).
From (10), when $̃ < min(∆/2, $̆), Ĉ < 1.
Choose

Ξ = − ln Ĉ/∆.

From (21), one has

supt0−$̃≤t≤t0−$̃+∆||q(t; t0, ψ)||

≤ exp(−Ξ∆)
(

sup
t0−$̃≤t≤t0−$̃+∆

||q(t; t0, ψ)||
)

.
(22)

Then, for any nonnegative integer d = 1, 2, . . . , when t ≥ t0 + (d− 1)∆, one has

q(t; t0, ψ) =q(t; t0 + (d− 1)∆, q(t0 + (d− 1)∆; t0, ψ)). (23)

From (22) and (23),

supt0+d∆≤t≤t0+(d+1)∆|q(t; t0, ψ)| =(
sup

t0+(d−1)∆+∆≤t≤t0+(d−1)∆+2∆
|q
(
t; t0 + (d− 1)∆, q(t0 + (d− 1)∆; t0, ψ)

)
|
)

≤ exp(−Ξ∆)
(

sup
t0+(d−1)∆≤t≤t0+2d∆

|q(t; t0, ψ)|
)

. . .

≤ exp(−Ξd∆)
(

sup
t0≤t≤t0+∆

|q(t; t0, ψ)|
)

=̃c exp(−Ξd∆),

where c = supt0≤t≤t0+∆ |q(t; t0, ψ)|. So, for ∀t > t0 + ∆, there is a nonnegative integer d,
such than t0 + d∆ ≤ t ≤ t0 + (d + 1)∆, and we have

|p(t; t0, q0)| ≤ c exp(−Ξt + Ξt0 + 2Ξ∆)

= (c exp(2Ξ∆)) exp(−Ξ(t− t0)).
(24)

The condition is also trues when t0 ≤ t ≤ t0 + ∆. So, the error system (10) achieves
ESt. Thus, systems (1) and (2) achieve ESy under linear controller (6).
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Remark 1. Theorem 1 shows that the error system (10) still achieves ESt when the magnitude
of delays is within the range of our derivation. Thus, systems (1) and (2) are ESy under linear
controller (6).

3.1.2. The Nonlinear Controller

In the previous section, we discussed for how much time delay the CDN is still ESy
under linear controllers. Now, we discuss the robustness of ESy in CDNs with time delays
under nonlinear controllers.

To obtain synchronization of (1) and (2), the nonlinear controllers are expressed as

ci(t) = −Θ(li(t), t) + Θ(χ(t), t) + Ŏli(t), i = 1, . . . , m, (25)

Combining (4) and (25), one has
l̇i(t) = k

m

∑
j=1

aijlj(t) + k
m

∑
j=1

bijlj(t) + Ŏli(t),

li(t0) = li0 ∈ Rm,

(26)

The matrix form is {
l̇(t) = kAl(t) + kBl(t) + Ol(t),

l(t0) = l0 ∈ Rm×m,
(27)

where O = Im ⊗ Ŏ.
The system (27) disturbed by the time delays will take the following form:{

q̇(t) = kAq(t) + kBq(t− $(t)) + Oq(t),

q(t0) = q0 ∈ Rm×m,
(28)

where q(t) = (q1(t), . . . , qm(t))
T , q(t− $(t)) = (q1(t− $(t)), . . . , qm(t− $(t)))T , O = Im ⊗

Ŏ.
The following theorem describes how much time delay CDN can withstand under a

nonlinear controller that is ESy.

Theorem 2. If Assumption H1 is trues, and (27) is ESt, then (26) is ESt. That is, systems (1) and
(2) can realize ESy under (25), if $̃ < min(∆/2, $̆), where $̆ is the only nonnegative solution of the
following transcendental equation.

L exp(−D(∆− $̃)) + T4 exp(2∆T3) = 1, (29)

where

∆ > lnL/D > 0,

T3 =(k||A||+ ||O||+ k||B||) + k||B||
[
k||A||+ ||O||+ k||B||(1− ϑ)−1]$̆,

T4 =k||B||[$̆ + $̆(1− ϑ)−1 + k||B||$̆2(1− ϑ)−1] + k$̆||B||[k||A||+ ||O||

+ k||B||(1− ϑ)−1]L
/
D.
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Proof. Similar to Theorem 1, from (8) and (10), we have

||l(t)− q(t)|| ≤
∫ t

t0

k||A|| ||l(s)− q(s)||+ k||B|| ||l(s)− q(s− $(s))||

+ ||O|| ||l(s)− q(s)|| ds

=
∫ t

t0

(k||A||+ ||O||) ||l(s)− q(s)||+ k||B|| ||l(s)− q(s− $(s))|| ds

≤(k||A||+ k||B||+ ||O||)
∫ t

t0

||l(s)− q(s)|| ds

+ k||B||
∫ t

t0

||q(s)− q(s− $(s))|| ds.

(30)

In addition, when t ≥ t0 + $̃, from (28) and (5),∫ t

t0+$̃
||q(s)− q(s− $(s))|| ds ≤

∫ t

t0+$̃
ds
∫ s

s−$̃
(k||A||+ ||O||)||q(r)||

+ k||B|| ||q(r− $(r))|| dr.
(31)

Similarly to (15),

∫ t

t0+$̃
ds
∫ s

s−$̃
(k||A||+ ||O||) ||q(r)||dr =

∫ t

t0

dr
∫ min(s+$̃,t)

max(t0+$̃,s)
(k||A||+ ||O||) ||q(r)||ds

≤ (k||A||+ ||O||)$̃
∫ t

t0

||q(r)||dr.
(32)

Similarly to (16),∫ t

t0+$̃
ds
∫ s

s−$̃
k||B|| ||p(r− $(r))||dr

=
∫ t

t0

dr
∫ min(s+$̃,t)

max(t0+$̃,s)
k||B|| ||q(r− $(r))||ds

≤k||B||$̃(1− ϑ)−1
(

$̃ sup
t0−$̃≤s≤t0

||q(s)||+
∫ t

t0

||q(u)|| du
)

.

(33)

When t ≥ t0 + $̃, substitute (32) and (33) into (31):∫ t

t0+$̃
||q(s)− q(s− $(s))||ds ≤k||B||$̃2(1− ϑ)−1

(
sup

t0−$̃≤s≤t0

||q(s)||
)

+ (k||A||+ ||O||+ k||B||$̃(1− ϑ)−1)
∫ t

t0

||q(s)|| ds.

(34)

For t ≥ t0 + $̃, substitute (34) into (30):

||l(s)− q(s)|| ≤(k||A||+ ||O||+ k||B||)
∫ t

t0

||l(s)− q(s)|| ds

+ k||B||
[
$̃ + $̃(1− ϑ)−1]( sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
+ k2||B||2$̃2(1− ϑ)−1

(
sup

t0−$̃≤s≤t0

||q(s)||
)

+ k||B||
[

k||A||+ ||O||+ k||B||(1− ϑ)−1
]

$̃
∫ t

t0

||q(s)|| ds.

(35)
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By Definition 1, one has

||l(s)− q(s)|| ≤k||A||+ ||O||+ k||B||+ k||B||
[

k||A||+ ||O||

+ k||B||(1− ϑ)−1
]

$̃
∫ t

t0

||l(s)− q(s)|| ds

+ k||B||
[
$̃ + $̃(1− ϑ)−1]( sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
+ k2||B||2$̃2(1− ϑ)−1

(
sup

t0−$̃≤s≤t0

||q(s)||
)

+ k||B||
[

k||A||+ ||O||+ k||B||(1− ϑ)−1
]

$̃
∫ t

t0

||l(s)|| ds

≤T1

∫ t

t0

||l(s)− q(s)|| ds + T2

(
sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
,

(36)

where

T1 =(k||A||+ ||O||+ k||B||) + k||B||
[
k||A||+ ||O||+ k||B||(1− ϑ)−1]$̃,

T2 =k||B||[$̃ + $̃(1− ϑ)−1 + k||B||$̃2(1− ϑ)−1] + k$̃||B||[k||A||+ ||O||

+ k||B||(1− ϑ)−1]L
/
D.

For t ≤ t0 + 2∆, using the Gronwall–Bellman lemma [42],

||l(t)− q(t)|| ≤ T2 exp(2∆T1)

(
sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
.

Due to $̃ < min(∆/2, $̆), and t0 − $̃ + ∆ ≤ t ≤ t0 − $̃ + 2∆,

||q(t)|| ≤
[
L exp(−D(∆− $̃)) + T2 exp(2∆T1)

](
sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
=Ĥ

(
sup

t0−$̃≤s≤t0+$̃
||q(s)||

)
,

(37)

where Ĥ = L exp(−D(∆− $̃)) + T2 exp(2∆T1). From (29), when $̃ < min(∆/2, $̆), Ĥ < 1.
Select

C = − ln Ĥ/∆.

From (37), one has

sup
t0−$̃+∆≤t≤t0−$̃+2∆

||q(t; t0, ψ)|| ≤ exp(−C∆)
(

sup
t0−$̃≤t≤t0−$̃+∆

||q(t; t0, ψ)||
)

. (38)

The following proof is similar to Theorem 1.

Remark 2. Theorem 2 shows that CDNs achieve ESy under nonlinear controllers. When the time
delays does not exceed the deduced range, the CDNs (1) and (2) are still exponentially synchronized.

Remark 3. Theorems 1 and 2 show that CDNs achieve ESy under the controllers. When the time
delays of external interference is within the range we deduced, that is, $̃ < min(∆/2, $̆), CDNs
still remain ESy.
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3.2. Effect of Time Delays and Random Disturbances on CDN Synchronization

Consider the following CDN model consisting of m nodes with time delays and
random disturbances:

dzi(t) =
[

Θ(zi(t), t) + k
m

∑
j=1

aijzj(t) + ci(t) + k
m

∑
j=1

bijzj(t− $(t))
]

dt

+ δ
m

∑
j=1

vijzj(t)dB(t),

zi(t0) =zi0 ∈ Rm,

(39)

where δ is the random interference intensity, and vij represents the coupling matrix V ,
satisfying vii = −∑m

j=1,j 6=i vij.
When CDN (39) is not interfered by time delays and external noise, system (39) will

become the following form:
˙̂zi(t) =Θ(ẑi(t), t) + k

m

∑
j=1

aij ẑj(t) + k
m

∑
j=1

bij ẑj(t) + ci(t),

ẑi(t0) =ẑi0 ∈ Rm.

(40)

Similarly, (2) is defined as the isolated node equation of CDN (39) and (40).
Similar to system (4), we have

l̇i(t) =Υ(li(t), t) + k
m

∑
j=1

aijlj(t) + k
m

∑
j=1

bijlj(t) + ci(t),

li(t0) =li0 ∈ Rm,

(41)

where Υ(li(t), t) is defined in (4).
Substituting the linear controller (6) into (41), we have

l̇i(t) =Υ(li(t), t) + k
m

∑
j=1

aijlj(t) + k
m

∑
j=1

bijlj(t) + S̆li(t),

li(t0) =li0 ∈ Rm.

(42)

The matrix form of system (42) is{
l̇(t) = Υ(l(t), t) + kAl(t) + kBl(t) + Sl(t),

l(t0) = l0 ∈ Rm×m.
(43)

Similar to system (9), we have{
dq(t) =

[
Υ(q(t), t) + kAq(t) + kBq(t− $(t)) + Sq(t)

]
dt + δVq(t)dB(t),

q(t0) =q0 ∈ Rm×m,
(44)

where V = Im ⊗ V , V = (vij)m×m.
For the error system (39), we have the following definitions.

Definition 2 ([42,43]). CDN (44) is called to be ASESt, if ∀t0 ∈ R+, q0 ∈ Rm, the Lyapunov
exponent

lim sup
t→∞

1
t
(ln ||qi(t; t0, q0)||) < 0, i = 1, 2, . . . , m,
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then, the CDN (39) with (2) is called to be ASESy. That is, if ∃M > 0, and the ℘ > 0, ς > 0, such
that

||qi(t)|| ≤ ג exp(−℘ς(t− t0)), i = 1, 2, . . . , m,

where ג > 0 is constant.

Definition 3 ([29,42]). CDN (44) is called to be MSESt, if ∀t0 ∈ R+, q0 ∈ Rm, the Lyapunov
exponent

lim sup
t→∞

(ln
1
t
(E||qi(t; t0, q0)||2)) < 0, i = 1, 2, . . . , m,

then, the CDN (39) with (2) is called to be MSESy, That is, if ∃G > 0, and the ℘ > 0, ς > 0, such
that

E||li(t)||2 ≤ 1ג exp(−℘ς(t− t0)), i = 1, 2, . . . , m,

where 1ג > 0 is constant.

From Definitions 2 and 3, MSESt can be derived from ASESt, but vice versa is not
trues. However, if (5) is assumed to hold, the MSESt of (44) implies the ASESt of the CDN
(44) [42].

3.2.1. The Linear Controller

In this section, we will analyze the effects of time delays and random disturbance
on ESy of CDNs under linear controllers. For CDNs that have reached ESy, how much
external delay and random noise interference can the system withstand without losing
synchronization? In other words, if the disturbance of the system by external delays and
random noise is within the range of our estimation, the CDNs are still ESy.

Theorem 3. If assumption H1 is trues, and (43) is ESt, then (44) is ESt. That is, systems (39)
and (2) can realize ESy under (6), if |δ| ≤ δ̃, $̃ < min(∆/2, $̆), where δ̃ is the only nonnegative
solution of the following transcendental equation.

2L2 exp(−2D∆) + 4L2δ̃2||V||2/D exp
{

8∆
[

4∆(||Φ||2

+ k2||A||2 + k2||B||2 + ||S||2) + δ̃||V||2
]}

= 1,
(45)

and $̆ is the only nonnegative solution of the following transcendental equation.

2N2 exp(∆N1) + 2L2 exp(−2D(∆− $̃)) = 1, (46)

where

∆ > ln(2L2)/(2D),

N1 =16∆(||Φ||2 + k2||A||2 + 2k2||B||2 + ||S||2) + 2δ̃2||V||2 + 64∆k2||B||2
(

8$̃2
[
||Φ||2

+ k2||A||2 + ||S||2 + k2||B||2(1− ϑ)−1
]
+ 2$̃δ̃2||V||2

)
,

N2 =64∆k2||B||2
[

$̃ + $̃(1− ϑ)−1
]
+ 2∆k2||B||2

[
8$̃3k2||B||2(1− ϑ)−1 +

(
8$̃2
[
||Φ||2

+ k2||A||2 + ||S||2 + k2||B||2(1− ϑ)−1
]

+ 2$̃δ̃2||V||2
)
||V||2L2/D

]
+ 2δ̃2L2/D.
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Proof. Similar to Theorem 1, from (43) and (44), we have

l(t)− q(t) =
∫ t

t0

[
(Υ(l(s), s)− Υ(q(s), s)) + kA(l(s)− q(s)) + kB(l(s)

− q(s− $(s))) + S(l(s)− q(s))
]

ds−
∫ t

t0

δVq(s) dB(s).
(47)

For t ≤ t0 + ∆, based on the Hölder inequality, combine (5) and the ESt of (43):

E||l(t)− q(t)||2 ≤2E
∣∣∣∣∣∣∣∣ ∫ t

t0

(Υ(l(s), s)− Υ(q(s), s)) + kA(l(s)− q(s))

+ kB(l(s)− q(s− $(s))) + S(l(s)− q(s)) ds
∣∣∣∣∣∣∣∣2

+ 2E
∣∣∣∣∣∣∣∣ ∫ t

t0

δVq(s) dB(s)
∣∣∣∣∣∣∣∣2

≤
[
16∆(||Φ||2 + k2||A||2 + 2k2||B||2 + ||S||2) + 4δ2||V||2

]
×
∫ t

t0

E||l(s)− q(s)||2ds

+ 2∆k2||B||2
∫ t

t0

E||q(s)− q(s− $(s))||2 ds

+ 4δ2||V||2
∫ t

t0

E||l(s)||2 ds.

(48)

In addition, when t ≥ t0 + $̃, from (44) and (5), one has∫ t

t0+$̃
E||q(s)− q(s− $(s))||2ds ≤

∫ t

t0+$̃
ds
∫ s

s−$̃

{[
8$̃
(
||Φ||2 + k2||A||2

+ ||S||2
)
+ 2δ2||V||2

]
E||q(r)||2

+ 8$̃k2||B||2E||q(r− $(r))||2
}

dr.

(49)

Like (14) and (15), combined with (49),

∫ t

t0+$̃
E||q(s)− q(s− $(s))||2ds ≤8$̃3k2||B||2(1− ϑ)−1

(
sup

t0−$̃≤s≤t0

E||q(s)||2
)

+

{
8$̃2
[
||Φ||2 + k2||A||2 + ||S||2

+ k2||B||2(1− ϑ)−1
]
+ 2$̃δ2||V||2

}
×
∫ t

t0

E||q(s)||2ds.

(50)
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Substituting (50) into (48),

E||l(t)− q(t)||2 ≤
[
16∆(||Φ||2 + k2||A||2 + 2k2||B||2 + ||S||2) + 4δ2||V||2

]
×
∫ t

t0

E||l(s)− q(s)||2ds

+ 64∆k2||B||2
[

$̃ + $̃(1− ϑ)−1
](

sup
t0−$̃≤s≤t0+$̃

E||q(s)||2
)

+ 2∆k2||B||2
{

8$̃3k2||B||2(1− ϑ)−1
(

sup
t0−$̃≤s≤t0

E||q(s)||2
)

+

(
8$̃2
[
||Φ||2 + k2||A||2 + ||S||2

+ k2||B||2(1− ϑ)−1
]
+ 2$̃δ2||V||2

)
×
∫ t

t0

E||l(s)− q(s) + l(s)||2ds
}

+ 2δ2||V||2L2/D
(

sup
t0−$̃≤s≤t0

E||q(s)||2
)

.

(51)

Further obtained by (51),

E||l(t)− q(t)||2 ≤ N3

∫ t

t0

E||l(s)− q(s)||2ds +N4

(
sup

t0−$̃≤s≤t0+$̃
E||q(s)||2

)
, (52)

where

N3 =16∆(||Φ||2 + k2||A||2 + 2k2||B||2 + ||S||2) + 4δ2||V||2

+ 64∆k2||B||2
(

8$̃2
[
||Φ||2 + k2||A||2 + ||S||2 + k2||B||2(1− ϑ)−1

]
+ 2$̃δ2||V||2

)
,

N4 =64∆k2||B||2
[

$̃ + $̃(1− ϑ)−1
]
+ 2∆k2||B||2 ×

[
8$̃3k2||B||2(1− ϑ)−1

+

(
8$̃2
[
||Φ||2 + k2||A||2 + ||S||2 + k2||B||2(1− ϑ)−1

]
+ 2$̃δ2||V||2

)
L2/D

]
+ 2δ2||V||2L2/D.

For t + $̃ ≤ t0 + ∆, using the Gronwall–Bellman lemma [42],

E||l(t)− q(t)||2 ≤ N4 exp(∆N3)

(
sup

t0−$̃≤s≤t0+$̃
E||q(s)||2

)
. (53)

Hence,

E||q(t)||2 ≤2E||l(t)− q(t)||2 + 2E||l(t)||2

≤
[

2N4 exp(∆N3) + 2L2 exp(−2D(t− t0))

](
sup

t0−$̃≤s≤t0+$̃
E||q(s)||2

)
.

(54)
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When t0 − $̃ + ∆ ≤ t ≤ t0 − $̃ + ∆,

E||q(t)||2 ≤
[

2N4 exp(2∆N3) + 2L2 exp(−2D(∆− $̃))

](
sup

t0−$̃≤s≤t0−$̃+∆
E||q(s)||2

)
=:}(δ, $̃)

(
sup

t0−$̃≤s≤t0−$̃+∆
E||q(s)||2

)
,

(55)

where }(δ, $̃) = 2N4 exp(∆N3) + 2L2 exp(−2D(∆− $̃)).
Due to }(0, 0) < 1, }(∞, 0) > 1 and }(δ, 0) is strictly monotonically increasing with

respect to δ, there is a only solution δ̃ such that }(δ̃, 0) = 1, that is (45) is trues. When
|δ| < δ̃, }(δ, ∞) > 1, }(δ, 0) < 1, and }(δ, $̃) is strictly monotonically increasing with
respect to $̃, there is a only $̆, such that }(δ̃, $̆) = 1, that is, (46) is trues. From (45) and (46),
for |δ| < δ̃ and $̃ < min(∆/2, $̆), then }(δ, $̃) < 1.

Choose
ð = − ln}(δ, $̃)/∆,

From (55), we have

sup
t0−$̃+∆≤t≤t0−$̃+∆

E|q(t; t0, ψ)|2 ≤ exp(−ð∆)
(

sup
t0−$̃≤t≤t0−$̃+∆

E|q(t; t0, ψ)|2
)

. (56)

The rest of the proof is exactly like Theorem 1.

Remark 4. According to Theorem 3, the CDN can realize ESy under (6). When the delays and
random disturbances intensity are satisfied, |δ| < δ̃ and $̃ < min(∆/2, $̆), that is, the CDN is still
ESy within the range of time delays and noise intensity.

3.2.2. The Nonlinear Controller

In the previous section, we discussed the effect of time delays and random disturbances
on the ESy of CDNs under linear controllers. In this section, we will explore the influence
of nonlinear controllers on the ESy of CDNs.

To obtain synchronization of systems (39) and (2), (25) is still the nonlinear controller.
Substitute (25) into (41):

l̇i(t) =k
m

∑
j=1

aijlj(t) + k
m

∑
j=1

bijlj(t) + Ŏli(t),

li(t0) =li0 ∈ Rm.

(57)

Written in matrix form is as follows:{
l̇(t) = kAl(t) + kBl(t) + Ol(t),

l(t0) = l0 ∈ Rm×m.
(58)

Similarly, subtract (2) from (39) and write in matrix form{
dq(t) =[kAq(t) + kBq(t− $(t)) + Oq(t)]dt + δVq(t)dB(t),

q(t0) =q0 ∈ Rm×m,
(59)

the definition of ESy of the (58) is similar to Definition 1.
The following theorem describes how much time delay and random disturbance a

CDN can withstand under a nonlinear controller that is ESy.
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Theorem 4. If Assumption H1 is trues, and (58) is ESt, then (59) is ESt. That is, systems (39)
and (2) can realize ESy under (25), if |δ| ≤ δ̃, $̃ < min(∆/2, $̆), where δ̃ is the only solution to the
following transcendental equation.

2L2 exp(−2D∆) + 4L2δ̃2||B||2/D exp
{

2∆
[

6∆

(k2||A||2 + 2k2||B||2 + ||O||2) + 2δ̃||B||2
]}

= 1,
(60)

and $̆ is the only solution to the following transcendental equation.

2N6 exp(2∆N5) + 2L2 exp(−2D(∆− $̃)) = 1, (61)

where

∆ > ln(2L2)/(2D),

N5 =12∆(k2||A||2 + 2k2||B||2 + ||O||2) + 2δ̃2||V||2

+ 48∆k2||B||2
(

6$̃2
[

k2||A||2 + ||S||2 + k2||B||2(1− ϑ)−1
]
+ 2$̃δ̃2||V||2

)
,

N6 =48∆k2||B||2
[

$̃ + $̃(1− ϑ)−1
]
+ 24∆k2||B||2

[
4$̃3k2||B||2(1− ϑ)−1

+

(
4$̃2
[

k2||A||2 + ||O||2 + k2||B||2(1− ϑ)−1
]

+ 2$̃δ̃2||V||2
)
||V||2L2/D

]
+ 2δ̃2||V||2L2/D.

Proof. Similar to Theorem 1, from (58) and (59), one has

l(t)− q(t) =
∫ t

t0

[
kA(l(s)− q(s)) + kB(l(s)− q(s− $(s))) + O(l(s)− q(s))

]
ds

−
∫ t

t0

δVq(s) dB(s).
(62)

For t ≤ t0 + 2∆, using the Hölder inequality, define the ESt of system (58):

E||l(t)− q(t)||2 ≤
[
12∆(k2||A||2 + 2k2||B||2 + ||O||2) + 4δ2||V||2

] ∫ t

t0

E||l(s)− q(s)||ds

+ 24∆k2||B||2
∫ t

t0

E||q(s)− q(s− $(s))||2 ds

+ 4δ2||V||2
∫ t

t0

E||l(s)||2 ds.

(63)

Furthermore, when t ≥ t0 + $̃, from (59),

∫ t

t0+$̃
E||q(s)− q(s− $(s))||2ds ≤

∫ t

t0+$̃
ds
∫ s

s−$̃

{[
4$̃
(
k2||A||2 + ||O||2

)
+ 2δ2||V||2

]
E||q(r)||2 + 4$̃k2||B||2E||q(r− $(r))||2

}
dr.

(64)

Similarly to (14) and (15),

E||l(t)− q(t)||2 ≤N7

∫ t

t0

E||l(s)− q(s)||2ds +N8

(
sup

t0−$̃≤s≤t0+$̃
E||q(s)||2

)
, (65)
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where

N7 =12∆(k2||A||2 + 2k2||B||2 + ||O||2) + 4δ2||V||2 + 48∆k2||B||2
(

4$̃2
[

k2||A||2 + ||O||2

+ k2||B||2(1− ϑ)−1
]
+ 2$̃δ2||V||2

)
,

N8 =48∆k2||B||2
[

$̃ + $̃(1− ϑ)−1
]
+ 24∆k2||B||2

[
4$̃3k2||B||2(1− ϑ)−1

+

(
4$̃2
[

k2||A||2 + ||O||2 + k2||B||2(1− ϑ)−1
]

+ 2$̃δ2||V||2
)
||V||2L2/D

]
+ 2δ2||V||2L2/D.

For t + $̃ ≤ t0 + 2∆, using the Gronwall–Bellman lemma [42],

E||l(t)− q(t)||2 ≤ N8 exp(2∆N7)

(
sup

t0−$̃≤s≤t0+$̃
E||q(s)||2

)
. (66)

Like (54), (55), and when t0 − $̃ + ∆ ≤ t ≤ t0 − $̃ + 2∆,

E||q(t)||2 ≤
[

2N8 exp(2∆N7) + 2L2 exp(−2D(∆− $̃))

](
sup

t0−$̃≤s≤t0−$̃+∆
E||q(s)||2

)
=:h̄0(δ, $̃)

(
sup

t0−$̃≤s≤t0−$̃+∆
E||q(s)||2

)
,

(67)

where h̄0(δ, $̃) = 2N8 exp(2∆N7) + 2L2 exp(−2D(∆− $̃)).
Similar to Theorem 3, h̄0(δ, $̃) is strictly monotonically increasing in terms of δ and $̃.

Therefore, there exist only solutions δ̃ and $̆, such that h̄0(δ̃, 0) = 1, h̄0(δ̃, $̆) = 1, that is, (60)
and (61) hold. For |δ| < δ̃ and $̃ < min(∆/2, $̆), then h̄0(δ, $̃) < 1.

Select
ℵ = − ln h̄0(δ, $̃)/∆,

from (67),

sup
t0−$̃+∆≤t≤t0−$̃+2∆

E|q(t; t0, ψ)|2 ≤ exp(ℵ∆)
(

sup
t0−$̃≤t≤t0−$̃+∆

E|q(t; t0, ψ)|2
)

. (68)

The rest of the proof is exactly like Theorem 1.

Remark 5. From Theorem 4, when the external delays and random interference intensity are
satisfied, |δ| < δ̃ and $̃ < min(∆/2, $̆), that is, the CDN is still ESy within the range of external
delays and random interference intensity.

Remark 6. Theorems 3 and 4 show that CDNs achieve ESy under the controllers. As long as the
external delays and the random interference are within the range of our derivation, the CDNs can
still achieve ESy.

4. Numerical

In this section, some examples are given to illustrate the correctness of the results in
this paper.

Remark 7. In Table 2, we represent random disturbances as RD, deviating argument as DAr,
time-varying delays as TvD and asymptotic synchronization as AsSy, respectively.
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Table 2. Comparing other articles with this one.

Controllers RP DAr TvD ESy AsSy Robustness

Shen [16] X − X − − X −
Zhang [23] X X − X X − −
Wang [29] X X − − X − −
Lia [40] X − X − X − X

Zhang [41] X X − − X − X
This paper X X − X X − X

Example 1. Consider CDN consisting of three nodes with time delays in the linear controller

˙̂zi(t) =Θ(ẑi(t), t) + k
3

∑
j=1

aij ẑj(t) + k
3

∑
j=1

bij ẑj(t− $(t)) + ci(t),

ẑi(t0) =ẑi0 ∈ R3×3,

ci(t) =S̆li(t),

χ̇(t) =Θ(χ(t), t),

(69)

without delay interference, system (69) becomes

˙̂zi(t) =Θ(ẑi(t), t) + k
3

∑
j=1

aij ẑj(t) + k
3

∑
j=1

bij ẑj(t) + ci(t),

ẑi(t0) =ẑi0 ∈ R3×3,

ci(t) =S̆li(t),

χ̇(t) =Θ(χ(t), t),

(70)

where i ∈ 1, 2, 3, define the error as li(t) = ẑi(t)− χ(t), and li(t) = (li1(t), li2(t), li3(t))
T ∈

R3×3 is the i state vector of the CDN. $(t) is time delays and satisfies $(t) : [t0,+∞), $′(t) ≤
ϑ < 1, ψ = {ψ(s) : −$̇ ≤ s ≤ 0} ∈ C([−$̃, 0],Rm). The matrix forms of system (69) and (70)
are, respectively, {

l̇(t) =Υ(l(t), t) + kAl(t) + kBh(t− $(t)) + Sl(t),

l(t0) =l0 ∈ R3×3,
(71)

and {
l̇(t) = Υ(l(t), t) + kAl(t) + kBl(t) + Sl(t),

l(t0) = l0 ∈ R3×3.
(72)

Suppose the coupling matrix is

A =

 −0.4 0.1 1
0.1 −0.4 1
0.1 −0.16 −0.064

, B =

 −0.08 0.01 0.6
0.01 −0.08 0.1
0.01 0.06 −0.3

,

S =

 −0.006 0 0
0 −0.006 0
0 0 −1

.

The coupling coefficient is k = 1.5. The activation function is Υ(·) = sin (·) and satisfies that
||Υ(h)− Υ(p)|| ≤ ||l − p|| holds, so that means Φ = 1. The initial value of the three-nodes and
isolated node is l1 = (1,−1, 0)T , l2 = (−1, 1, 0)T , l3 = (1,−1, 1)T and χ(t) = (−0.3, 0.3, 0)T .
When L = 2, D = 2.2, the error system (71) is ESt.
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Choose ∆ = 0.4, ϑ = 0, through calculation L3 = 0.6658, L4 = 0.0236. Hence, from (10),
we can obtain $̆ = 0.0604, and solve the following transcendental equation by MATLAB:

2 exp(−2.2×(0.4− $̆)) + 0.0236 exp(2× 0.4× 0.6658) = 1. (73)

Thus, by Theorem 1, when $̃ < min(∆/2, $̆), the system (71) is ESt. In Figure 1, we take
$̆ = 0.0280 < 0.0604; the state in Figure 1 is ESt, That is, systems (1) and (2) are ESy. In addition,
Figure 2 shows the state of the system without delay interference under a linear controller.

Figure 1. Convergence state of CDN (71) $̆ = 0.0280 under linear controller.

Figure 2. The state of CDN (72) without time delays under the linear controller.
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In Figure 3, we select $̆ = 0.0350 < 0.0604; the state in Figure 3 is not ESt, that is, systems
(1) and (2) are not ESy.

Figure 3. The state of CDN (71) at $̆ = 0.0350 under linear controller.

Example 2. A CDN consisting of three nodes with time delays under the nonlinear controller is
considered: 

˙̂zi(t) =Θ(ẑi(t), t) + k
3

∑
j=1

aij ẑj(t) + k
3

∑
j=1

bij ẑj(t− $(t)) + ci(t),

ẑi(t0) =ẑi0 ∈ R3×3,

ci(t) =−Θ(li(t), t) + Θ(χ(t), t) + Ŏli(t),

χ̇(t) =Θ(χ(t), t).

(74)

Without delay interference, system (74) becomes

˙̂zi(t) =Θ(ẑi(t), t) + k
3

∑
j=1

aij ẑj(t) + k
3

∑
j=1

bij ẑj(t) + ci(t),

ẑi(t0) =ẑi0 ∈ R3×3,

ci(t) =−Θ(li(t), t) + Θ(χ(t), t) + Ŏli(t),

χ̇(t) =Θ(χ(t), t),

(75)

where i ∈ 1, 2, 3, let the synchronization error be

li(t) = ẑi(t)− χ(t),

and li(t) = (li1(t), li2(t), li3(t))
T ∈ R3×3 is the i state vector of the CDN. $(t) is the time delays

and satisfies $(t) : [t0,+∞), $′(t) ≤ ϑ < 1, ψ = {ψ(s) : −$̇ ≤ s ≤ 0} ∈ C([−$̃, 0],Rm).
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The error system is obtained from system (74) and system (75) and expressed in matrix form as{
l̇(t) = kAl(t) + kBh(t− $(t)) + Ol(t),

l(t0) = l0 ∈ R3×3,
(76)

and {
l̇(t) = kAl(t) + kBl(t) + Ol(t),

l(t0) = l0 ∈ R3×3.
(77)

Suppose the coupling coefficient is k = 1.5. The coupling matrix is

A =

 −0.750 0.001 0
0.001 0.750 0.1

0 −0.8 0.01

, B =

 −0.8 0.02 0
0.02 −0.8 0.1

0 0 −0.8

,

O =

 −1.105 0 0
0 −1.105 0
0 0 −1.105

.

The activation function is Υ(·) = sin (·). The initial value of the three nodes and isolated
node is l1 = (1, 0,−1)T , l2 = (−1, 1, 0)T , l3 = (−1, 1, 1)T and χ(t) = (−0.1, 0.1, 0.1)T . When
L = 1.4, D = 1.2, the system (77) is ESt.

Choose ∆ = 0.3, ϑ = 0. By calculation T3 = 0.3559, T4 = 0.1147. Hence, from (29), we
have $̆ = 0.2804, and solve the following transcendental equation by MATLAB:

1.4 exp(−1.2×(0.3− $̆)) + 0.1147 exp(3× 0.3× 0.3559) = 1. (78)

According to Theorem 2, when $̃ < min(∆/2, $̆), the system (77) is ESt. In Figure 4, we take
$̆ = 0.2250 < 0.2804; the state in Figure 4 is ESt, which means that systems (1) and (2) are ESy.
In addition, Figure 5 shows the state of the system (77) without delay interference under a nonlinear
controller.

Figure 4. Convergence state of CDN (76) $̆ = 0.2250 under linear controller.
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Figure 5. The state of CDN (77) without time delays under the linear controller.

In Figure 6, we select $̆ = 0.0350 < 0.0604; the state in Figure 6 is not ESt, which means that
systems (1) and (2) are not ESy.

Figure 6. The state of CDN (76) at $̆ = 0.3300 under linear controller.
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Example 3. Consider CDN model consisting of three nodes with time delays and random distur-
bances under the linear controller

dzi(t) =
[

Θ(zi(t), t) + k
3

∑
j=1

aijzj(t) + k
3

∑
j=1

bijzj(t− $(t)) + ci(t)
]

dt

+ δ
3

∑
j=1

vijzj(t)dB(t),

zi(t0) =zi0 ∈ R3×3,

ci(t) =S̆li(t),

χ̇(t) =Θ(χ(t), t),

(79)

where i ∈ 1, 2, 3, let the synchronization error be

li(t) = ẑi(t)− χ(t),

and li(t) = (li1(t), li2(t), li3(t))
T ∈ R3×3 be the i-th state vector of the CDN. $(t) is time delay,

and satisfies $(t) : [t0,+∞), $′(t) ≤ ϑ < 1, ψ = {ψ(s) : −$̇ ≤ s ≤ 0} ∈ C([−$̃, 0],Rm).
Without delay and random disturbance, system (79) becomes

˙̂zi(t) =Θ(ẑi(t), t) + k
3

∑
j=1

aij ẑj(t) + k
3

∑
j=1

bij ẑj(t) + ci(t)dt

ẑi(t0) =zi0 ∈ R3×3,

ci(t) =S̆li(t),

χ̇(t) =Θ(χ(t), t).

(80)

The matrix forms of systems (79) and (80) are, respectively,
dq(t) =

[
Υ(q(t), t) + kAq(t) + kBq(t− $(t))

+ Sq(t)
]
dt + δVq(t)dB(t),

q(t0) =q0 ∈ R3×3,

(81)

and {
l̇(t) = Υ(l(t), t) + kAl(t) + kBl(t) + Sl(t),

l(t0) = l0 ∈ R3×3.
(82)

Suppose the coupling matrix

A =

 −1 0.01 −0.01
−0.05 −0.5 1

0.1 −0.1 −1

, B =

 0.2 −0.1
−0.1 0.2
−0.1 0.2

,

S =

 1 0 0
0 1 0
0 0 1

, V =

 1 0 0
0 1 0
0 0 1

.

The coupling coefficient is k = 1.2. The activation function is Υ(·) = sin (·). Select Φ = 1,
that is, ||Υ(h) − Υ(p)|| ≤ ||l − p||. The initial value of the three nodes and isolated node is
l1 = (−2, 2, 2)T , l2 = (−1.6, 0, 1.6)T , l3 = (−1.6, 1.6, 0)T and χ(t) = (−0.1, 0.1, 0.1)T . For
L = 0.8, D = 0.5, system (82) is ESt.

Let ∆ = 0.3, ϑ = 0. From Theorem 3, we obtain the following two equations:

1.28 exp(− 0.3) + 0.0512 exp(10.073088 + 0.024δ̃) = 1, (83)
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and

2N2 exp(0.6N1) + 1.28 exp(−(0.3− $̆)) = 1. (84)

Combine Theorem 3 in N1, N2. We have δ̃ = 0.0024, $̆ = 0.0403. From Theorem 3, if the
time delays and random disturbance are less than the above-derived bound, which is |δ| ≤ δ̃, $̃ <
min(∆/2, $̆), then CDN (39) disturbed by noise is MSESt. Thus, CDN (39) and (2) are MSESy.

In Figure 7, said CDNs under linear controller (39) and (2) have been implemented as ESy.
Meanwhile, Figure 7 shows CDN (39) and (2) under the linear controller $̆ = 0.0303, δ̃ = 0.002.
Because both the time delays and the strength of random disturbances are smaller than the bound
derived from Theorem 3, error system (81) is stable. Therefore, CDNs (39) and (2) are MSESy
and ASESy. In addition, Figure 8 shows the state of the system (81) without delay and random
perturbations under a nonlinear controller.

Figure 7. The state of CDN (81) with $̆ = 0.0303 and δ̃ = 0.002 under linear controller.

Figure 8. The state of CDN (81) without delay and disturbance under linear controller.

In Figure 9 describes the state of time delays and excessive noise intensity, i.e., $̆ = 0.403,
δ̃ = 0.024. It is easy to obtain that the limits of the time delays and noise intensity are greater than
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the theoretical results derived from Theorem 3. Therefore, error system (82) is unstable, that is, error
system (81) is unstable, so CDNs (39) and (2) are not ESy.

Figure 9. The state of CDN (82) with $̆ = 0.403 and δ̃ = 0.024 under linear controller.

Example 4. Consider a CDN with three nodes with time delays and random disturbances under
the nonlinear controller

dzi(t) =
[

Θ(zi(t), t) + k
3

∑
j=1

aijzj(t) + k
3

∑
j=1

bijzj(t− $(t)) + ci(t)
]

dt

+ δ
m

∑
j=1

vijzj(t)dB(t),

zi(t0) =zi0 ∈ R3×3,

ci(t) =−Θ(li(t), t) + Θ(χ(t), t) + Ŏli(t),

χ̇(t) =Θ(χ(t), t),

(85)

where i ∈ 1, 2, 3, the synchronization error is

li(t) = ẑi(t)− χ(t),

and li(t) = (li1(t), li2(t), li3(t))
T ∈ R3×3 is the i-th state vector of the CDN. $(t) is a time delay

that satisfies $(t) : [t0,+∞), $′(t) ≤ ϑ < 1, ψ = {ψ(s) : −$̇ ≤ s ≤ 0} ∈ C([−$̃, 0],Rm).
Without time delays and random disturbances, system (85) becomes

˙̂zi(t) =Θ(ẑi(t), t) + k
3

∑
j=1

aij ẑj(t) + k
3

∑
j=1

bij ẑj(t) + ci(t)dt

ẑi(t0) =zi0 ∈ R3×3,

ci(t) =−Θ(li(t), t) + Θ(χ(t), t) + Ŏli(t),

χ̇(t) =Θ(χ(t), t).

(86)

The matrix forms of systems (85) and (86) are, respectively,{
dq(t) =

[
kAq(t) + kBq(t− $(t)) + Oq(t)

]
dt + δVq(t)dB(t),

q(t0) =q0 ∈ R3×3,
(87)
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and {
l̇(t) = kAl(t) + kBl(t) + Ol(t),

l(t0) = l0 ∈ R3×3.
(88)

Suppose the coupling matrix

A =

 −0.2 −0.01 0
−0.01 −0.2 0

0.2 −0.1 −0.01

, B =

 −0.12 −0.1 0
−0.12 0.1 0

0 0 −0.2

,

O =

 1 0 0
0 1 0
0 0 1

, V =

 −1 0 0
0 −1 0
0 0 −1

.

The coupling coefficient is k = 1.1. The activation function is Υ(·) = sin (·), the initial value
of the three nodes and isolated node is l1 = (−2, 2,−2)T , l2 = (−1, 1, 1)T ,
l3 = (−2, 2,−2)T and χ(t) = (−0.2, 0.2,−0.2)T . When L = 1.1, D = 1, system (88) is ESt.

Select ∆ = 0.5, ϑ = 0. From Theorem 4, we can obtain the following two equations.

2.42 exp(−1) + 0.069696δ̃2 exp(5.3246 + 0.0432δ̃) = 1, (89)

and
2N6 exp(1.5N5) + 2.42 exp(−2(0.5− $̆)) = 1. (90)

According to Theorem 4, N5, N6, we can obtain δ̃ = 0.0876, $̆ = 0.0351. According to
Theorem 4, if the time delays and random disturbances are less than the bounds derived above, that
is, |δ| ≤ δ̃, $̃ < min(∆/2, $̆), then the CDN (39) disturbed by noise is MSESt. Thus, CDNs (39)
and (2) are MSESy.

In Figure 10 shows the state of CDN (39) and (2) under nonlinear controller $̆ = 0.0303,
δ̃ = 0.002. In addition, Figure 11 shows the state of the system (88) without delay and random
perturbations under a nonlinear controller. Because both the time delays and the strength of random
disturbances are smaller than the bound derived from Theorem 3. Hence, error system (88) is stable
and error system (87) is stable, Therefore, CDNs (39) and (2) are MSESy and ASESy under the
nonlinear controller.

Figure 10. The state of CDN (87) with $̆ = 0.0351 and δ̃ = 0.0876 under nonlinear controller.
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Figure 11. The state of CDN (88) without delay and disturbance under nonlinear controller.

Figure 12 shows the status of $̆ = 0.5, δ̃ = 0.094. Obviously, the time delays and noise
intensity are greater than the bounds derived from Theorem 4. Therefore, error system (88) is
unstable, that is, error system (87) is unstable, so CDN (38) and (2) are not ESy.

Figure 12. The state of CDN (87) with $̆ = 0.5 and δ̃ = 0.094 under nonlinear controller.

Remark 8. The proof and calculation process involved in this paper is complex. For the proof
process, the Gronwall–Bellman lemma and some inequality techniques are used to analyze the
results of this paper. The calculation process was performed by MATLAB calculation of the involved
matrices and numerical simulations.

5. Conclusions

This paper explores the robustness of ESy with time delays and random disturbances
in the CDNs that the have realized the ESy under the controllers. However, the information
of the CDN is inevitably disturbed by external time delay and the noise in the process
of transmission between nodes. Hence, to what extent CDN can withstand external time
delays and noise interference without losing synchronization has become the research
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hotspot of this paper. By applying the Gronwall–Bellman lemma and some inequality
methods, the maximum intensities of CDNS with external time delays and noise interfer-
ence are estimated by calculating transcendental equations, and sufficient conditions to
ensure the ESy of CDNs with time delays and random disturbances are obtained. It is
shown that (9), (28), (44) and (59) are ESt when the time delay limits and the size of random
disturbances are less than the upper bound we derive, and therefore, systems (1), (39) and
(2) are ESy. The results of this paper provide theoretical support for the analysis and design
of CDN. In the future, we try to use less conservative inequality techniques to expand the
upper limit of the delays and random disturbance strength. In view of the methods and
techniques utilized in this article, we will further study the inequality techniques, which
are less conservative, to analyze the upper bounds of delays and random interference in
the next stage, so that the obtained results are less conservative, so that the synchronization
of CDN is easier, or consider other systems, for example, generalized synchronization of
delayed CDNs.
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