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Abstract: Taking the random factors into account, a fractional main drive system of a rolling mill
with Gaussian white noise is developed. First, the potential deterministic bifurcation is investigated
by a linearized stability analysis. The results indicate that the fractional order changes the system
from a stable point to a limit cycle with symmetric phase trajectories. Then, the stochastic response
is obtained with the aid of the equivalent transformation of the fractional derivative and stochastic
averaging methods. It is found that the joint stationary probability density function appears to have
symmetric distribution. Finally, the influence of the fractional order and noise intensity on system
dynamics behavior is discussed. The study is beneficial to understand the intrinsic mechanisms of
vibration abatement.
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1. Introduction

The rolling mill system is a kind of complex system which combines mechanical, elec-
trical, hydraulic and multiple nonlinear factors. For the convenience of analysis, researchers
often highly abstract the system into a ’mass spring’ system [1,2]. Yarita, I. et al. [3] are the
first scholars to study the vibration problem of rolling mills. They analyzed the influence
of process parameters and emulsion properties on vibration. Tlusty, J. et al. [4] propose
that the vertical vibration of a rolling mill is a self-excited vibration caused by a negative
damping effect when the phase difference between the rear tension fluctuation and rolling
force fluctuation is 90°. In subsequent studies [5], the results all showed that the vibration
of the rolling mills was caused by the dynamic change in the rolling mill’s structure and
the interaction of the rolling process, which caused the self-excited vibration. Therefore,
the research focus was shifted to the theoretical modeling of the rolling mill structure and
rolling process.

In rolling mill production, torsional vibration problems of complex rolling mill systems
are inevitable [6,7]. For example, in the case of a sudden load (such as steel biting, steel
throwing, etc.) [8,9] or a roll slipping, the static and stable state of the roller’s connecting
shaft torque is changed, resulting in a torsional vibration phenomenon of rolling mills.
Therefore, it is very important and necessary to study the dynamics and responses of rolling
mill systems [10,11].

In the past decades, fractional systems have attracted much attention and have been
extensively studied in many scientific and engineering fields [12–14], such as bioengineer-
ing [15,16], automatic control [17], signal processing [18,19], quantum evolutionary complex
systems [20], etc. Fractional systems have many better properties than integer-order dif-
ferential systems. Because of this, some works have studied the effects of fractional order
derivatives on the dynamic properties of rolling mill systems [21,22]. In 2014, Zhang [11]
studied the dynamic properties of a class of rolling mill systems, and mainly analyzed the
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Hopf analysis properties of the system. However, the influence of the fractional derivative
on the dynamics of the system was ignored. Wang [23] analyzed the Hopf bifurcation con-
trol for the main drive delay system of rolling mills. However, the study did not consider
the impact of noise on the system.

In addition, random factors are ubiquitous and non-negligible [24–29]. Actually, there
are lots of random factors in rolling mill systems and rolling process [30,31]. However,
there was little literature concerning the effect of stochastic excitations on the dynamics of
the rolling mill system. Based on the above analysis, different from the previous studies on
rolling mill systems, this paper considers the stochastic response of rolling mill systems.
With the aid of the equivalent transformation of a fractional derivative and the stochastic
averaging method, the effect of noise and the fractional derivative on the dynamics of the
concerned system is indicated. Our results also provide a new perspective to studies on
dynamical analysis of rolling mill systems. We end this part by highlighting the novelties
and contributions of this work as follows:

• The fractional derivative and random factor are simultaneously introduced to the
rolling mill’s main drive system;

• Combining the equivalent transformation of the fractional derivative with the stochas-
tic averaging method, we obtain the stochastic response of the proposed system;

• The influence of fractional derivative and noise intensity on system dynamics behavior
is revealed.

The structure of this study is underscored as follows. In Section 2, the model of a
rolling mill system with fractional damping and noise is designed. Simplification and
an approximate analytical solution of the rolling mill model are presented in Section 3.
In Section 4, deterministic bifurcation of the fractional rolling mill system is studied theo-
retically and numerically. Subsequently, the stochastic response of rolling mill system is
investigated with varied fractional order and noise intensity in Section 5. In Section 6, we
conclude this paper.

2. The Rolling Mill’s Main Drive System with Fractional Damping and Noise

In this work, the rolling mill’s main drive system closely follows Ref. [11] and the
dimensionless equation is given below in (1).

θ̈(t) + ω2θ(t) + k1θ̇(t) + k2θ̇2(t) + k3θ̇3(t) = 0. (1)

where θ stands for roll angle, and k1, k2, k3 ω are system parameters. The specific meaning
of the parameters can be seen in Ref. [11].

As the rolling mill’s main drive system (1), there has been almost no consideration
of the viscoelastic properties of the damping term and external disturbance of the system.
To make the model more general, we adopt a model with fractional derivatives and external
disturbance, and its kinetic equation is as follows:

θ̈(t) + ω2θ(t) + k1θ̇(t) + k2θ̇2(t) + k3θ̇3(t) + Dαθ(t)=ξ(t), (2)

where k1, k2, k3 are constants.
The fractional order term is used to model the viscoelasticity of stick-slip friction

between rolls and rolled parts and Gaussian white noise is adopted to represent the external
stochastic disturbance.

Dαη represents the fractional derivative within the Captuo’s definition:

Dαθ(t) =
1

Γ(1− α)

∫ t

0
(t− τ)−α θ̇(t)dτ, 0 < α ≤ 1, (3)

and ξ(t) represents the Gaussian white noise satisfying the following statistical characteristics:

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t + h)〉 = 2dδ(h). (4)
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3. Equivalent Model and Theoretical Analysis

In consideration of 0 < α ≤ 1, the term associated with the fractional derivative can
be considered to contribute to both the damped term and the stiffness term [32,33].

Dαθ ≈ ωα−1 sin
απ

2
θ̇ + ωα cos

απ

2
θ. (5)

Substituting (5) into (2):

θ̈(t) + ω2
0θ(t) +

(
k1 + ωα−1 sin

απ

2

)
θ̇(t) + k2θ̇2(t) + k3θ̇3(t)=ξ(t), (6)

where the dot represents the derivative with respect to t.

ω2
0 = ω2 + ωα cos

απ

2
.

The new variables transformation is introduced as follows:

θ(t) = a(t) cos φ,
φ = ω0t + ϕ(t).

(7)

To take the first derivative of (7), we have

θ̇ = ȧ cos φ− aω0 sin φ− aϕ̇ sin φ. (8)

Under the assumption that damping and excitation terms are small, a(t) and ϕ(t) are
two slowly varying processes, i.e., the amplitude and the phase will be slowly varying with
respect to time. Equation (8) can be simplified as follows:

θ̇(t) = −a(t)ω0 sin φ. (9)

Then the potential energy U(θ) and the total energy H of the system are as follows:

U(θ) =
∫ θ

0 ω2
0xdx = 1

2 ω2
0θ2,

H = U(θ) + 1
2 θ̇2.

(10)

By aid of (7) and (9), (6) can be rearranged as an equation within variables a and ϕ,{
ȧ = sin φ

ω0
[ f − ξ(t)],

ϕ̇ = cos φ
aω0

[ f − ξ(t)],
(11)

where
f = −(k1 + ωα−1 sin

απ

2
)aω0 sin φ + k2a2ω2

0sin2φ− k3a3ω3
0sin3φ.

To derive the stochastic equations for a(t) and ϕ(t) , we take the average of Equation (11)
over one period base on the method of stochastic averaging [34,35].

da = (F1 +
d

2aω2
0
)dt +

√
d

ω2
0

dW0(t),

dϕ = F2dt + 1
a

√
d

ω2
0

dW1(t) ,
(12)

where

F1 = 1
2π

∫ 2π
0

f
ω0

sin ϕdϕ,

F2 = 1
2π

∫ 2π
0

f
aω0

cos ϕdϕ .
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The amplitude a(t) and phase ϕ(t) are decoupled to independent variables. Then, we
can derive the first derivative moment and second derivative moment of amplitude a(t)
as follows:

ā1 = − 1
2 (k1 + ωα−1 sin απ

2 )a− 3
8 k3ω2

0a3 + d
2aω2

0
,

b̄11 = d
ω2

0
.

(13)

Then, the Fokker–Planck–Kolmogorov (FPK) equation of the transition probability
density function complies with the following equation:

∂p(a, t)
∂t

= − ∂

∂a
[ā1 p(a, t)] +

1
2

∂

∂a2 [b̄11 p(a, t)] .

Letting ∂p(a,t)
∂t = 0, one ultimately derives the expression of the stationary density

in (14).

P(a) = Na exp

[
ω2

0
2d

(k1 + ωα−1 sin
απ

2
)a2 −

3ω4
0

16d
k3a4

]
, (14)

where N is normalization constant,

N = 1

/∫ +∞

0
a exp

[
ω2

0
2d

(k1 + ωα−1sin
απ

2
)a2 −

3ω4
0

16d
k3a4

]
da.

Meanwhile, the total energy H = U(a) = 1
2 ω2

0a2, the stationary PDF of the total energy
H can be obtained as follows:

P(H) = P(a)
∣∣∣∣ da
dH

∣∣∣∣ = P(a)
ω2

0a
. (15)

Then the joint PDF of the displacement θ and velocity θ̇ is as follows:

P(θ, θ̇) = P(H)
T(H)

∣∣∣
H= 1

2 ω2θ2+ 1
2 θ̇2

=N exp
[

ω2
0

2d (k1 + ωα−1 sin απ
2 )(θ2 + θ̇2

ω2
0
)− 3ω4

0
16d k3(θ

2 + θ̇2

ω2
0
)

2
]

.
(16)

In the above equation, H = 1
2 ω2θ2 + 1

2 θ̇2, T(H) = 2π
ω0

, N is normalization constant,

N = 1

/∫ +∞

−∞

∫ +∞

−∞
exp

[
ω2

0
2d

(k1 + ωα−1sin
απ

2
)(θ2 +

θ̇2

ω2
0
)−

3ω4
0

16d
k3(θ

2 +
θ̇2

ω2
0
)

2]
dθdθ̇.

4. Deterministic Case

In this section, we will investigate the potential bifurcation phenomenon of the rolling
mill’s main drive system without stochastic disturbance (d = 0). Then, (6) reduces to the
following equation:

θ̈(t) + ω0θ(t) +
(

k1 + ωα−1 sin
απ

2

)
θ̇(t) + k2θ̇2(t) + k3θ̇3(t)=0. (17)

The eigenvalues of the Jacobian can be obtained in virtue of linearizing Equation (11)
at (θ, θ̇) = (0, 0)

λ12 =
1
2

[
−(k1 + ωα−1 sin

απ

2
)±

√
(k1 + ωα−1 sin

απ

2
)

2
− 4ω2

0

]
, (18)
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which yields the Hopf bifurcation condition as follows:

k1 + ωα−1 sin
απ

2
= 0. (19)

Next, the details of the bifurcation with the variation in the fractional order α will
be explored. The parameters k2 = 0.01, k3 = 0.05 are fixed. The bifurcation diagram in
parameter plane k1 − α can be found and is shown in Figure 1 based on Equation (19).

Figure 1 shows that the red curve (the edge of the Hopf bifurcation) divides the
parametric space into two regions. Subsequently, we fix k1 = −0.95 and investigate the
bifurcation on the fractional order q that vary along the horizontal dotted line in Figure 1.
When α < 0.797, the rolling mill’s main drive system yields a stable limit cycle. When
α > 0.797, one yields a stable steady state.

The phase diagrams with fractional order of 0.7, 0.75, 0.85 are depicted in Figure 2.
The time history diagram with fractional orders of 0.7, 0.75, 0.85 are depicted in Figure 3.
In Figures 2 and 3, the same representative initial condition I1 = (θ, θ̇) = (0.1, 0), I2 =
(θ, θ̇) = (1, 0) are selected. A scrutiny of Figures 2 and 3 indicates that the phase diagram
the rolling mill’s main drive system changes from a limit cycle to a stable steady state along
with the increase in the fractional order. This confirms the validity of our research results.

Figure 1. Bifurcation diagram of the deterministic system for k2 = 0.01, k3 = 0.05; The red curve
denotes the edge of the Hopf bifurcation.

Figure 2. Phase planes of the deterministic system for different fractional order: (a) α = 0.7, the system
yields a large limit cycle; (b) α = 0.75, the system yields a small limit cycle; (c) α = 0.85, the system
yields a stable steady state.
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Figure 3. The time history diagram of θ in the deterministic system: (a) α = 0.7; (b) α = 0.75;
(c) α = 0.85.

5. Stochastic Case

As is well known, noise is omnipresent in many dynamics systems. Therefore, it is
important to study the response of the the rolling mill’s main drive system in the presence
of noise. Subsequently, the effect of noise intensity and fractional order will be investigated
in the rolling mill’s main drive system. The parameters k1 = −0.95, k2 = 0.01, k3 = 0.05
are fixed.

5.1. Effect of Noise Intensity

The effects of noise intensity d on the rolling mill’s main drive system will be studied
in this part. The theoretical results and numerical results of the stationary probability
density function (PDF) P(a) and joint stationary probability density function P(θ, θ̇) are
obtained and shown in Figures 4 and 5.

As can be seen from Figure 4, the stationary PDF P(a) for different noise intensity
showed a unimodal shape. Firstly, for noise intensity d = 0.02, the peak of the stationary
PDF P(a) corresponds to a smaller amplitude (see curve 1). For noise intensity d = 0.06,
the amplitude corresponding to the peak of the stationary PDF becomes larger(see curve
2). With the noise intensity further increase (d = 0.12), the amplitude corresponding to the
peak of the PDF still increases further (see curve 3). This implies that the system response
is concentrated near a certain amplitude in the presence of noise and increases gradually
with the monotonically increasing of noise intensity.

0 0.5 1 1.5 2 2.5

a

0

0.5

1

1.5

P
(a

)

 

1. d=0.02

2. d=0.06

3. d=0.12

3

2

1

Figure 4. The stationary probability density function P(a) of the amplitude for different noise
intensity d with k1 = −0.95, k2 = 0.01, k3 = 0.05, α = 0.9. The lines denote the analytical results,
whereas dots represent the numerical results.
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Figure 5. The joint stationary probability density function P(θ, θ̇) with different noise intensity d.
The the left side of the figure represent the analytic results and the right side denotes the numerical
results. (a1, a2) d = 0.002, (b1, b2) d = 0.06, (c1, c2) d = 0.12.

5.2. Effect of Fractional Order

The effects of fractional order on the rolling mill’s main drive system have been studied
in this subsection. The theoretical results and numerical results of the stationary PDF P(a)
and joint stationary PDF P(θ, θ̇) are obtained and shown Figures 6 and 7.

It reflects that both the stationary PDF P(a) for different noise intensities showed a
unimodal shape in Figure 6. Firstly, for fractional order α = 0.6, the peak of the stationary
PDF P(a) corresponds to a larger amplitude (see curve 1). For fractional order α = 0.7,
the amplitude corresponding to the peak of the stationary PDF P(a) becomes smaller (see
curve 2). With the fractional order further increasing (α = 0.95, see curve 3), the amplitude
corresponding to the peak of the stationary PDF P(a) still decreases further. This implies
that the system response is concentrated near a certain amplitude in the presence of noise
and decreases gradually with the monotonically increasing of fractional order.

To conclude, all of the above results mirror that noise intensity and fractional order
can modulate the amplitude corresponding to the peak of the stationary PDF’s left shift or
right shift. The evolution of the response with the monotonic increasing of noise intensity
and fractional order indicate that the noise intensity is conducive to modulate a larger
amplitude. In contrast, the fractional order is conducive to induce a small amplitude.

It is worth pointing out that the response of the rolling mill’s main drive system for
different fractional orders yields a limit cycle or a stable fixed point in the absence of
noise. Nevertheless, both the stationary probability density functions P(a) for different
system parameters (noise intensity and fractional order) showed a unimodal shape in the
presence of noise. The theoretical and numerical results of the stationary probability density
function P(a) and joint stationary probability density function P(θ, θ̇) verify the validity of
the conclusion.
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0 0.5 1 1.5 2 2.5

a

0

0.5

1

1.5

P
(a

)

 

1. =0.6

2. =0.7

3. =0.953

1

2

Figure 6. The stationary probability density function P(a) of the amplitude for different fractional
order α with k1 = −0.95, k2 = 0.01, k3 = 0.05, d = 0.04. The lines denote the analytical results,
whereas dots represent the numerical results.

Figure 7. The joint stationary probability density function P(θ, θ̇) with distinct values of α. The left
side of the figure represent the analytic results and the right side denotes the numerical results.
(a1, a2) α = 0.6, (b1, b2) α = 0.7, (c1, c2) α = 0.95.

6. Conclusions and Discussion

In a summary, the rolling mill’s main drive system with a fractional order derivative
and stochastic disturbance was considered. The dynamics of the rolling mill’s main drive
system was investigated both in the absence and in the presence of stochastic disturbance.

For the absence of stochastic disturbance, the deterministic bifurcations induced
by fractional order were explored based on the linearization method and a numerical
simulation for the rolling mill’s main drive system. The results indicated that fractional
order can change the system from a stable point to a limit cycle.

For the presence of stochastic disturbance, the response of the rolling mill’s main drive
system was investigated with varying the fractional order and noise intensity. The evolu-
tion of the response with the monotonic increase in noise intensity and fractional order
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implied that the noise intensity was conducive to modulate a larger amplitude. In contrast,
the fractional order was conducive to induce a small amplitude. Therefore, it provides an
efficient strategy to control the system so that the amplitude of the vibration was small
enough when the vibration occurs, which is going to be our later work.

In this paper, the rolling mill’s main drive system with fractional order and stochastic
disturbance is considered and the dynamic response is investigated both in the absence and
presence of stochastic disturbance. We mainly focused on the impact of Gaussian white
noise and fractional order on the dynamic behavior of the system. The impact of other
types of noise and time delays on the dynamic behavior of the system is also a problem
that needs further research.
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