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Abstract: The Brinkman–Bénard convection problem is chosen for investigation, along with very
general boundary conditions. Using the Maclaurin series, in this paper, we show that it is possible to
perform a relatively exact linear stability analysis, as well as a weakly nonlinear stability analysis,
as normally performed in the case of a classical free isothermal/free isothermal boundary combina-
tion.Starting from a classical linear stability analysis, we ultimately study the chaos in such systems,
all conducted with great accuracy. The principle of exchange of stabilities is proven, and the critical
Rayleigh number, Rac, and the wave number, ac, are obtained in closed form. An asymptotic analysis
is performed, to obtain Rac for the case of adiabatic boundaries, for which ac ' 0. A seemingly
minimal representation yields a generalized Lorenz model for the general boundary condition used.
The symmetry in the three Lorenz equations, their dissipative nature, energy-conserving nature, and
bounded solution are observed for the considered general boundary condition. Thus, one may infer
that, to obtain the results of various related problems, they can be handled in an integrated manner,
and results can be obtained with great accuracy. The effect of increasing the values of the Biot numbers
and/or slip Darcy numbers is to increase, not only the value of the critical Rayleigh number, but also
the critical wave number. Extreme values of zero and infinity, when assigned to the Biot number,
yield the results of an adiabatic and an isothermal boundary, respectively. Likewise, these extreme
values assigned to the slip Darcy number yield the effects of free and rigid boundary conditions,
respectively. Intermediate values of the Biot and slip Darcy numbers bridge the gap between the
extreme cases. The effects of the Biot and slip Darcy numbers on the Hopf–Rayleigh number are,
however, opposite to each other. In view of the known analogy between Bénard convection and
Taylor–Couette flow in the linear regime, it is imperative that the results of the latter problem, viz.,
Brinkman–Taylor–Couette flow, become as well known.

Keywords: asymptotic analysis; Brinkman–Bénard convection; Biot number; Darcy–Rayleigh number;
generalized Lorenz model; Maclaurin series; Robin boundary condition; rough boundaries; slip Darcy
number

1. Introduction

The buoyancy-driven convection in a porous medium is a paradigm for many natural
phenomena and also for man-made technological applications. These include beach sand,
sandstone, limestone, groundwater systems for industrial and agricultural use, the flow
through filtering media, thermal insulation, electronic cooling, chemical catalytic reactors,
heat pipes, heat exchangers, solar collectors, crude oil extraction, and thermal energy
storage, to name a few. The pore distribution, with respect to shape and size, in these
situations may be regular or irregular. For some of these media, the porosity (the fraction of
the total volume of the media that is occupied by void space) does not exceed 0.6. Some of
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the aforementioned paradigm problems consider packed beds and granular materials with
porosities in the range 0.4–0.6, and certain other studies involving metal foams (man-made
porous medium) reported very high porosities (>0.9). The choice of a porous material
is based on the application where it will be put to use. The paradigm problem with a
low-porosity medium is referred to as a Darcy–Bénard convective system (DBCS), while
the paradigm problem with a high-porosity medium is referred to as a Brinkman–Bénard
convective system (BBCS) [1–12].

While studying the buoyancy-driven convection in a clear liquid layer (with no porous
matrix), i.e., a Rayleigh–Bénard convective system (RBCS), an artificial boundary condition
that is free–free isothermal (FIFI), and realistic boundary conditions that are rigid–rigid
isothermal (RIRI) or rigid-free isothermal (RIFI) are most commonly used [13–18]. The
RBCS problem involves a clear liquid layer bounded by two infinite horizontal planes,
while a BBCS involves a liquid-saturated porous medium between two planes. One can im-
plement RBCS/BBCS problems with the two planes replaced by low-porosity slabs, and we
would then have a composite media, as shown in Figure 1. For the study of a BBCS bounded
by a Darcy porous media, a slip boundary condition such as the Beavers–Joseph [19,20]
condition needs to be used. In the case of the flow being possible only in the immediate
neighborhood of the two interfaces, then one can use the Saffman slip boundary condi-
tion [21]. Many studies are available that reported on the effect of slip velocity on the
velocity distribution [22–30]. At the interface between porous media in a composite system,
the thermal boundary condition has to be of the third-type (Robin boundary condition).
Since the boundary temperature distribution near an interface is usually non-uniform, this
might lead to an error when using approximations such as effective conductivity. Such
errors can be minimized by adjusting using a thermal-slip coefficient [31–33], which can
eventually be absorbed into the Biot number.

Figure 1. Schematic of composite porous media.

Very few works on Bénard convection [34–36] have made use of general boundary
conditions. By general boundary conditions, we mean the Beavers–Joseph slip condition
for velocity and the Robin boundary condition for temperature. The velocity boundary
condition is also known in the literature as a rough boundary condition. A few works on
RBC have appeared using such a boundary condition [30,37,38], who limited themselves to
a linear stability analysis and predicted the onset of convection.

The objective of the present paper is to consider the unified BBCS problem, encom-
passing all possible boundary combinations by considering a slip condition for velocity
and a third-type thermal boundary condition. As a first step, we perform a linear stability
analysis; then, using information on the modes from linear theory, we seek help from the
Maclaurin series, to conduct a weakly-nonlinear stability analysis, to arrive at a generalized
Lorenz model of the problem. As a limiting case, the results of the DBCS and RBCS are
discussed. The layout of this paper is as follows: In Section 2, the mathematical background
for the model is presented. In Section 3, a brief discussion of the solution method for
solving the boundary eigenvalue problem (BEVP) of linear theory is provided. Section 4 is
dedicated to the special case of both boundaries being adiabatic. In Section 5, the nonlinear
stability analysis is discussed. In Section 6, the results from the study are presented. Finally,
in Section 7 a summary of the study is presented. In the Appendix A, the validity of the
principle of exchange of stabilities (PES) is proven.
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2. Mathematical Formulation

We consider the RBCS in a layer of a sparsely packed porous medium saturated with
a Newtonian liquid between two densely packed porous slabs at y = 0 and y = H. The
lower- and upper-horizontal walls are maintained at constant temperatures of T0 + ∆T
and T0, respectively. The regions outside of the domain of interest, y > H and y < 0, are
assumed to be tightly packed porous media. As a result, these regions can exchange both
liquid matter and heat with the domain of interest. The Cartesian coordinate system is
chosen. A schematic of the described problem is presented in Figure 1.

As shown in the planar diagram in Figure 1, the analysis is restricted to 2D rolls, which
means that the dynamics in any plane parallel to the xz plane will be identical; in other
words, the physical quantities do not depend on the spatial variable z. The components
of the velocity vector ~q in this 2D setup are taken to be (u, v), respectively, in the x and y
directions. It is further assumed that the solid and liquid phases of the considered problem
are in local thermal equilibrium and that the porous media possess homogeneous properties
in both directions. In addition, the dissipation due to viscosity is assumed to be negligibly
small. Under such assumptions, one can invoke Oberbeck–Boussinesq approximation to
write the governing equations in the following form:

∇ ·~q = 0, (1)
ρ0

φ

[
∂~q
∂t

+
1
φ
(~q · ∇)~q

]
= −∇p + µ̃∇2~q + ρ0β(T − T0)gĵ− µ

K
~q, (2)

(
ρ0Cp

)
m

∂T
∂t

+
(
ρ0Cp

)
f (~q · ∇)T =

(
ρ0Cp

)
mκm∇2T. (3)

The symbols appearing in Equations (1)–(3) are

p, (Pa) the hydrostatic pressure of the liquid,

µ, (kgm−1s−1) the dynamic viscosity of the liquid,

µ̃, (kgm−1s−1) the effective viscosity,

K, (m2) the permeability of the porous matrix,

ρ0, (kgm−3) the reference density of the liquid,

β, (K−1) the coefficient of thermal expansion,

g, (ms−2) the acceleration due to gravity,

T, (K) the temperature,

T0, (K) the reference temperature,

κm =
km

(ρ0Cp)m
, (m2s−1) the effective thermal diffusivity of the interior porous matrix,

km, (Wm−1K−1) the thermal conductivity of the interior porous matrix,

(ρ0Cp)m, (J m−3K−1) the average volumetric heat capacity of the interior porous matrix,

(ρ0Cp) f , (J m−3K−1) the average volumetric heat capacity of the liquid,

Cp, (J kg−1K−1) the specific heat at constant pressure,

φ, (0 < φ < 1) the volume fraction.

It is assumed that the domain of interest, 0 < y < H, exchanges heat with the lower

region, y < 0, through convection with an out flux proportional to T0 +
∆T
2

, with ∆T > 0,

and with the upper region, y > H, with an out flux proportional to T0−
∆T
2

. The horizontal
walls y = 0 and y = H are assumed to have different heat transfer coefficient values hl
and hu, respectively. The walls y = 0 and y = H are also assumed to be permeable, with
different permeabilities, K∗l and K∗u, respectively. Since the boundaries are permeable, the
normal mass flux is continuous, and the tangential component of the seepage velocity
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~q = (u, v) must satisfy the empirical relationship of the Beavers and Joseph [19] or the
Saffman [21] slip condition. Thus, the boundary conditions are modeled as follows [29,34]:

v = 0,
∂u
∂y
− α u√

K∗l
= 0,

∂T
∂y
− hl

km

[
T −

(
T0 +

∆T
2

)]
= 0

at y = 0 for −∞ < x < ∞,

 (4)

v = 0,
∂u
∂y

+
α u√
K∗u

= 0,
∂T
∂y

+
hu

km

[
T −

(
T0 −

∆T
2

)]
= 0

at y = H for −∞ < x < ∞.

 (5)

The third-kind temperature boundary conditions in (4) and (5) arise due to a modified
version of Newton’s law of cooling. The third-kind velocity boundary conditions are
due to the Saffman version of the Beavers–Joseph law [19,21]. The material parameters
characterizing the structure of the porous matrix at the boundaries determine the non-
dimensional constant α (slip coefficient) that appears in Equations (4) and (5). At this
juncture, it should be noted that the analysis is restricted to small-scale convective motions
in a sparsely packed, porous medium, and hence the convective acceleration term, (~q · ∇)~q,
in Equation (2) can be neglected, in comparison with the heat advection term (~q · ∇) T
in Equation (3). This essentially means that thermally induced instabilities dominate the
hydrodynamic instabilities. Furthermore, in the case of a viscous liquid, in the absence
of an applied force, a material particle retains its momentum when it is displaced from
one point to another. However, in a porous medium with a fixed solid matrix, this is
not the case, as the solid matrix obstructs the motion, resulting in momentum variation.
With the assumption of small-scale convective motions, many studies have considered the
convective acceleration term, (~q · ∇)~q, to be quite small and hence dropped it from the
study [3,8]. The dimensionless variables used in this study are given by

(x∗, y∗) =
1
H
(x, y), t∗ =

κm

H2 t,

~q∗ = (u∗, v∗) =
MH
κm

(u, v) =
MH
κm

~q,

p∗ =
MH2

µκm
p, T∗ =

T − T0

∆T


, (6)

where M = (ρ0Cp) f /(ρ0Cp)m is the heat capacity ratio.
Using Equation (6) in (1)–(5), and dropping the asterisks for simplicity, the non-

dimensional form of the governing equations may be written as

∇ ·~q = 0, (7)
1

Pr∗
∂~q
∂t

= −∇p + Λ∇2~q− σ2~q + Ra Tĵ, (8)

∂T
∂t

+ (~q · ∇)T = ∇2T, (9)

and the boundary conditions in the dimensionless form as

v = 0,
∂u
∂y
− Sl u = 0,

∂T
∂y
− Bil

(
T − 1

2

)
= 0

at y = 0 for −∞ < x < ∞,

 (10)

v = 0,
∂u
∂y

+ Su u = 0,
∂T
∂y

+ Biu

(
T +

1
2

)
= 0

at y = 1 for −∞ < x < ∞

. (11)
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The non-dimensional numbers appearing in Equations (7)–(11) are as follows: Pr∗ = φλPr

is the modified Prandtl number, Pr =
µ

ρ0κ f
is the Prandtl number, λ =

κ f

κm
is the thermal

diffusivity ratio, φ is the porosity, Λ =
µ̃

µ
is the viscosity ratio, σ2 =

H2

K
is the inverse Darcy

number or the porous parameter, Ra f =
ρ0gβ∆TH3

µκ f
is the Rayleigh number, Ra = λMRa f

is the modified Rayleigh number, (Sl , Su) =

(
αH√
K∗l

,
αH√
K∗u

)
are the slip Darcy numbers at

lower and upper plates, respectively, and (Bil , Biu) =
(

hl H
km

,
hu H
km

)
are the Biot numbers

at lower and upper plates, respectively.
It should be noted here that

(a) the limiting case (Bil , Biu)→ (∞, ∞) recovers the isothermal horizontal boundaries,
while (Bil , Biu)→ (0, 0) recovers adiabatic horizontal boundaries, and

(b) the limiting case (Sl , Su) → (0, 0) recovers stress free horizontal boundaries, while
(Sl , Su)→ (∞, ∞) recovers the rigid horizontal boundaries.

The governing Equations (7)–(9) can be written in component form, as follows:

∂u
∂x

+
∂v
∂y

= 0, (12)

1
Pr∗

∂u
∂t

= −∂p
∂x

+ Λ
(

∂2u
∂x2 +

∂2u
∂y2

)
− σ2u, (13)

1
Pr∗

∂v
∂t

= −∂p
∂y

+ Λ
(

∂2v
∂x2 +

∂2v
∂y2

)
− σ2v + Ra T, (14)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
∂2T
∂x2 +

∂2T
∂y2 . (15)

The stream function, ψ(x, y), is constant in the following form, so as to satisfy the continuity
Equation (12):

u = −∂ψ

∂y
, v =

∂ψ

∂x
. (16)

Eliminating the pressure between Equations (13) and (14), and using Equation (16) in the
resulting equation, the governing Equations (13)–(15) reduce to:

1
Pr∗

∂

∂t
(∇2ψ) = Λ∇4ψ− σ2∇2ψ + Ra

∂T
∂x

, (17)

∂T
∂t

+
∂(ψ, T)
∂(x, y)

= ∇2T. (18)

Here ∇2 =
∂2

∂x2 +
∂2

∂y2 is the Laplacian operator. The second term on the left-hand side of

Equation (18) is the Jacobian term. Now, the boundary conditions (10) and (11) take the
following form:

ψ = 0,
∂2ψ

∂y2 − Sl
∂ψ

∂y
= 0,

∂T
∂y
− Bil

(
T − 1

2

)
= 0 at y = 0 for −∞ < x < ∞ , (19)

ψ = 0,
∂2ψ

∂y2 + Su
∂ψ

∂y
= 0,

∂T
∂y

+ Biu

(
T +

1
2

)
= 0 at y = 1 for −∞ < x < ∞ . (20)

Siddheshwar [34] reported detailed information on the derivation of the rough boundary
condition mentioned above, while Platten and Legros [39] gave similar information on the
Robin boundary condition for temperature.
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2.1. Basic State

The heat is transferred solely in the conduction mode in the quiescent basic state, and
one can obtain the following stationary solution for Equations (17) and (18), corresponding
to the basic state, as follows:

ψb = 0, Tb(y) = −Beff

[
y− 1

2

(
1
Beff
− 2

Bil

)]
, (21)

where the subscript, b, denotes a basic state quantity and Beff = Bil Biu/(Bil + Biu + Bil Biu)
is the effective Biot number.

Noting that ub = 0, vb = 0 and pb = pb(y) in the basic state, from Equation (14)
we obtain

dpb
dy

= Ra Tb(y). (22)

Equation (13) is trivially satisfied in the basic state. Substituting Equation (21) in (22) and
integrating with respect to y once, we obtain

pb(y) = p0 − Ra Beff

[
y2

2
− y

2

(
1
Beff
− 2

Bil

)]
. (23)

The quantity p0 in Equation (23) is an arbitrary integration constant.

2.2. Perturbations of the Basic-State

The basic state given by Equation (21) is perturbed by thermal perturbations, resulting
in a change in the physical quantities, as follows:

ψ = ψb + Ψ,

T = Tb(y) + Θ,

 (24)

where Ψ and Θ are perturbations in the stream function and temperature, respectively.
These perturbations have a small amplitude and finite amplitude in the case of linear and
nonlinear stability analyses, respectively. Substituting Equation (24) into Equations (17)
and (18), the governing equations for the disturbances take the form:

1
Pr∗

∂

∂t
(∇2Ψ) = Λ∇4Ψ− σ2∇2Ψ + Ra

∂Θ
∂x

, (25)

∂Θ
∂t

+
∂(Ψ, Θ)

∂(x, y)
− Beff

∂Ψ
∂x

= ∇2Θ. (26)

The boundary conditions for solving Equations (25) and (26) are obtained from
Equations (19)–(21), (23), and (24), and now take the form:

Ψ = 0,
∂2Ψ
∂y2 − Sl

∂Ψ
∂y

= 0,
∂Θ
∂y
− BilΘ = 0 at y = 0 for −∞ < x < ∞ , (27)

Ψ = 0,
∂2Ψ
∂y2 + Su

∂Ψ
∂y

= 0,
∂Θ
∂y

+ BiuΘ = 0 at y = 1 for −∞ < x < ∞ . (28)

The periodicity condition dictated by the formation of the Brinkman–Bénard convective
cells is given by

Ψ
(

aπ

(
x +

2
a

)
, y
)
= Ψ(x, y)

Θ
(

aπ

(
x +

2
a

)
, y
)
= Θ(x, y)

, for 0 < y < 1 (29)
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The above periodicity condition and the assumption of an infinite-horizontal-extent BBCS
indicates the symmetry of the system about the vertical lines in the xy-plane, at the edge
of a pair of counter rotating cells. In view of the fact that symmetry is invoked through
the periodicity condition (29), there is no need to specify the x-boundary condition (due to
absence of lateral walls).

2.3. Linear Stability Analysis of the Marginal State

In order to prove the validity of the principle of exchange of stabilities in the case
of general boundary conditions, we consider the following periodic wave solutions of
Equations (25) and (26):

Ψ(x, y) = Aeiωt sin(πax)F(y),

Θ(x, y) = BeffBeiωt cos(πax)G(y),

 (30)

where F(y) and G(y) are determined, so as to satisfy the boundary conditions (27) and (28).
The periodicity condition (29) is obviously satisfied by Equation (30). In the Appendix A,
we have proven the principle of exchange of stabilities, and hence we can set ω = 0. Now
substituting Equation (30) with ω = 0 in Equations (25) and (26), we obtain

ΛF′′′′ − (2π2a2Λ + σ2)F′′ + (π2a2Λ + σ2)π2a2F− πaRa∗G = 0, (31)

G′′ − π2a2G + πaF = 0, (32)

where the differentiation with respect to-y is denoted by the prime.
The boundary conditions (27) and (28), together with Equation (30), lead to

F = 0, F′′ − Sl F′ = 0, G′ − BilG = 0 at y = 0, (33)

F = 0, F′′ + SuF′ = 0, G′ + BiuG = 0 at y = 1. (34)

In Equations (31)–(34), the modified Rayleigh number, Ra∗ = RaBeff, is the eigenvalue of
the problem. We first solve BEVP (31)–(34) using the shooting method, to determine the
critical wave number, ac, and the critical Darcy–Rayleigh number, Ra∗c. This information is
then used to obtain a Maclaurin series expansion for the corresponding eigenfunctions. The
eigenfunctions must be chosen appropriately, in order to meet the orthogonality conditions
required by the weakly nonlinear stability analysis. The following section highlights the
implementation of the shooting method for solving the BEVP (31)–(34).

3. Solution of the BEVP of the Linear Stability Analysis
3.1. Evaluation of Unknown, Initial, and Critical Values Using the Shooting Method

To solve the BEVP using the shooting method, we assume the eigenvalue, Ra∗, is an
additional variable. Following Siddheshwar and Revathi [40], we introduce the following
additional artificial differential equation into the boundary value problem:

d
dy

(
Ra∗

)
= 0, Ra∗(0) = Ra∗ (35)

and a normalized additional initial condition, such as

G(0) = 1 (36)

It should be noted here that the eigenfunctions depend on the normalization condition
used. Any of the following conditions could also be used in place of condition (36):

F′(0) = 1 or F′′(0) = 1 or G′(0) = 1. (37)
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We chose the normalization condition (36) so that the eigenfunctions satisfy the orthogonal-
ity conditions required by the weakly nonlinear analysis. Now, by treating the eigenvalue
as an additional variable, Equations (31)–(34) together with (35) and (36) constitute an aug-
mented boundary value problem (ABVP). To solve this BVP using the shooting method, we
first convert the ABVP into an equivalent initial value problem (IVP) through introducing
the necessary unavailable initial conditions F′(0) = α∗ and F′′′(0) = β∗ in the place of the
right-end boundary conditions. Thus, we have the following "augmented" IVP in place of
the ABVP constituted by Equations (31)–(36):

du1

dy
= u2, u1(0) = 0;

du2

dy
= u3, u2(0) = α∗;

du3

dy
= u4, u3(0) = α∗Sl ;

du4

dy
=

1
Λ
[(

2π2a2Λ + σ2)u3 −
(
π2a2Λ + σ2)π2a2u1

+πau5u7], u4(0) = β∗;

du5

dy
= u6, u5(0) = 1;

du6

dy
= π2a2u5 − πau1, u6(0) = Bil ;

du7

dy
= 0, u7(0) = Ra∗.



(38)

Here, u1, u5, and u7 stand for the variables F(y), G(y), and Ra∗, respectively. The IVP (38)
needs to be solved iteratively, until the right-end boundary conditions (34) are satisfied.

To implement a correction scheme for the guessed values of α∗, β∗ and Ra∗, three
additional IVPs are formed by differentiating (38) with respect to α∗, β∗, and Ra∗. Thus,
four IVPs are solved using the Runge–Kutta–Fehlberg (RKF45) method, using an adaptive
step size, for an assumed guess value of α∗, β∗ and Ra∗ to obtain refined values of α∗,
β∗, and Ra∗. This procedure needs to be repeated until the residues are minimized to the
desired tolerance. Rough estimates for the initial values, to begin with, may be obtained
using the single-term Galerkin method, as described in Siddheshwar and Revathi [40].
Post-convergence, the eigenvalue, Ra∗, is recorded over a range of values of the wave
number, a, for a particular set of parameter values. These data can be used to find the
minimum value Ra∗c of the eigenvalue and the corresponding wave number, ac, which are
known as critical values.

3.2. Discussion of the Normalization Condition and "Barletta Scaling"

It should be reiterated that the eigenfunctions required by the weakly nonlinear
stability analysis must satisfy the orthogonality conditions. This mainly depends on the
assumed normalization condition, which in turn is sensitive to the type of lower boundary.
This essentially means that we must choose an appropriate normalization condition to
meet the orthogonality constraints. Extensive computational experimentation revealed that
for small/large values Bil , we may have to float Bil in the initial conditions between G(0)
and G′(0); and similarly, for small/large-values of Sl , we may have to float Sl in the initial
conditions between F′(0) and F′′(0). Table 1 summarizes the appropriate normalization
condition, along with the other initial conditions used in various situations.
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Table 1. Initial conditions and appropriate normal condition (appears in bold font) for various types
of lower boudary.

Type of Lower Boundary Initial and Normalization Condition

Free-Isothermal
(FIFI, FIFA, FIRI, FIRA)

u1(0) = 0, u2(0) = 1, u3(0) = Sl , u4(0) = α∗,

Sl → 0, Bil → ∞ u5(0) =
β∗

Bil
, u6(0) = β∗, u7(0) = Ra∗.

Free-Adiabatic
(FAFI, FAFA, FARI, FARA)

u1(0) = 0, u2(0) = 1, u3(0) = Sl , u4(0) = α∗,

Sl → 0, Bil → 0 u5(0) = β∗, u6(0) = β∗Bil , u7(0) = Ra∗.

Rigid-Isothermal
(RIFI, RIFA, RIRI, RIRA)

u1(0) = 0, u3(0) =
1
Sl

, u3(0) = 1, u4(0) = α∗,

Sl → ∞, Bil → ∞ u5(0) =
β∗

Bil
, u6(0) = β∗, u7(0) = Ra∗.

Rigid-Adiabatic
(RAFI, RAFA, RARI, RARA)

u1(0) = 0, u3(0) =
1
Sl

, u3(0) = 1, u4(0) = α∗,

Sl → ∞, Bil → 0 u5(0) = β∗, u6(0) = β∗Bil , u7(0) = Ra∗.

It can be seen that the temperature distribution, Θ(x, y), has been scaled by Beff. This
ensures that Beff, which is the necessary basic state temperature gradient, does not appear
in the BEVP (31)–(34) and also leads to rescaling of the Rayleigh number. This is crucial in
handling the limiting case of adiabatic boundaries. Note that the case of both boundaries
being adiabatic results in an indeterminate value for Beff, and if the BEVP (31)–(34) contains
Beff, then the computation will result in incorrect eigenvalues. Such a scaling turns out to
be very effective in handling limiting cases and capturing accurate eigenvalues. It was
introduced for the first time by Barletta and Storesletten [29], and hence we shall refer to
this scaling as “Barletta scaling”. Barletta scaling may also be appropriately used for the
velocity field.

We now highlight the methodology for obtaining an analytical expression for the
eigenfunction, obtained numerically using the shooting method.

3.3. Series Expansion of Eigenfunctions

We use the information about the unavailable initial conditions and critical values
of Ra and a obtained using the shooting method in constructing a Maclaurin series for
the eigenfunctions. Before proceeding further, we note here that the series solution pro-
cedure adopted by Narayana et al. [35] for solving the BEVP (31)–(34) is laborious when
determining the critical values ac and Ra∗c. In their work, for each wave number, we need
to solve the nonlinear algebraic system of three equations (generated using the right-end
boundary conditions (34)) using Newton’s method and obtain the values of α∗, β∗ and
Ra∗, which renders the procedure relatively difficult. Here, we adopt a much simpler
procedure for evaluating the initial and critical values, using the shooting method, and use
it to construct the series solution for the eigenfunctions. To this end we assume Maclaurin
series expansion for the eigenfunctions F(y) and G(y), in the following form:

F(y) =
∞

∑
k=0

akyk,

G(y) =
∞

∑
k=0

bkyk,


(39)
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where the Maclaurin constants ak and bk are determined by substituting (39) in the IVP de-
fined by Equations (35)–(38). We obtain the following recurrence relations for the Maclaurin
constants ak and bk:

(k + 4)(k + 3)(k + 2)(k + 1)ak+4 −
(

σ2 + 2π2a2Λ
)
(k + 2)(k + 1)ak+2

+π2a2
(

σ2 + π2a2Λ
)
ak − πaRa∗bk = 0 (40)

(k + 2)(k + 1)bk+2 − π2a2bk + πaak = 0 (41)

The first few Maclaurin constants can be obtained from the initial conditions, and after
some algebra, this procedure gives us

F = F(α∗, β∗, Ra∗; y) and G = G(α∗, β∗, Ra∗; y),

in the following form:

F(α∗, β∗, Ra∗; y) = α∗y +
1
2

α∗Sly2 +
β∗

6
y3

+
1

24Λ

[(
σ2 + 2π2a2Λ

)
α∗Sl + πaRa∗

]
y4

+
1

120Λ

[(
σ2 + 2π2a2Λ

)
β∗ + πaBil Ra∗ − π2a2α∗

(
σ2 + π2a2Λ

)]
y5 + . . . (42)

G(α∗, β∗, Ra∗; y) = 1 + Bily +
1
2

π2a2y2 +
1
6

(
π2a2Bil − πaα∗

)
y3

+
1

24

(
π4a4 − πaα∗Sl

)
y4 +

1
120

(
π2a2

(
π2a2Bil − πaα∗

)
− πaβ∗

)
y5 + · · · . (43)

In addition to depending on α∗, β∗, Ra∗ and y, F(α∗, β∗, Ra∗; y), and G(α∗, β∗, Ra∗; y) de-
pend on the parameters of the problem, viz., Sl , Su, Bil , Biu, Λ, σ2, and also on the wave
number a. The series expansion of the eigenfunctions given by Equations (42) and (43)
would change if an alternative normalization condition was used in place of (36). The
convergence of the series solution presented in Equations (42) and (43) depends on the
number of terms taken. Computation reveals that we must consider at least 20 terms, in
order that the eigenfunctions obtained in the series match those obtained numerically.

4. Asymptotic Analysis of Both Adiabatic Boundaries (0 ≤ Bil << 1, 0 ≤ Biu << 1)

The BEVP (31)–(34) for the case of adiabatic boundaries after scaling the eigenfunction
G(y) using πa may be written as

ΛF′′′′ − (2π2a2Λ + σ2)F′′ + (π2a2Λ + σ2)π2a2F− π2a2Ra∗G = 0, (44)

G′′ − π2a2G + F = 0, (45)

The boundary condition leads to:

F = 0, F′′ = Sl F′, G′ = 0 at y = 0, (46)

F = 0, F′′ = −SuF′, G′ = 0 at y = 1. (47)

We note that the critical wave number corresponding to adiabatic boundaries is very small,
and hence the solution to the BEVP (44)–(47) may be written as a series expansion, in terms
of π2a2, as follows:

F(y) = F0(y) + π2a2F1(y) + . . . ,

G(y) = G0(y) + π2a2G1(y) + . . . ,

}
(48)
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Substituting (48) into Equations (44)–(47), we obtain the following boundary value prob-
lems with various orders of π2a2:

O
(
(π2a2)0

)
:

ΛF′′′′0 − σ2F′′0 = 0, (49)

G′′0 + F0 = 0, (50)

F0 = 0, F′′0 = Sl F′0, G′0 = 0 at y = 0, (51)

F0 = 0, F′′0 = −SuF′0, G′0 = 0 at y = 1. (52)

O
(
(π2a2)1

)
:

ΛF′′′′1 − σ2F′′1 = Ra∗G0 + 2ΛF′′0 − σ2F0, (53)

G′′1 + F1 = G0, (54)

F1 = 0, F′′1 = Sl F′1, G′1 = 0 at y = 0, (55)

F1 = 0, F′′1 = −SuF′1, G′1 = 0 at y = 1. (56)

The solution to the zeroth order perturbation problem (49)–(52) is given by

F0(y) = 0, G0(y) = 1. (57)

The solution to the first-order perturbation problem (53)–(56) is given by

F1(y) = a1 + a2y + a3 cosh
(

σ√
Λ

y
)
+ sinh

(
a4

σ√
Λ

y
)
− Ra∗

2σ2 y2, (58)

G1(y) = 1 +
y2

2
+

Ra∗

σ2
y4

24
−
[

a1y2

2
+

a2y3

6
+

σ2

Λ(
a3 cosh

(
σ√
Λ

y
)
+ a4 sinh

( σ

Λ
y
))]

. (59)

The expressions for the coefficients, ai, (i = 1, 2, 3, 4), which are functions of the parameters
Λ, σ, Sl , Su and Ra∗ are omitted, due to reasons of space. One of the solvability conditions∫ 1

0
Ra∗F0(y)dy = 0

is satisfied trivially, and the other solvability conditions∫ 1

0
[1− F1(y)]G0(y)dy = 0,

yield the following expression for Ra∗c :

Ra∗c =

12σ4
[

2SlSuΛ3/2 + b1 cosh
(

σ√
Λ

)
+ b2 sinh

(
σ√
Λ

)]
[

b3 + b4 cosh
(

σ√
Λ

)
+ b5 sinh

(
σ√
Λ

)] , (60)

where

b1 = Λ1/2[−2SlSuΛ + (Sl + Su)σ
2],

b2 = σ[Sl(−1 + Su)Λ− SuΛ + σ2],

b3 = 4Λ3/2[6(Sl + Su + SlSu)Λ− (6 + 3Sl + 3Su + SlSu)σ
2],

b4 = Λ1/2[−24(Sl + Su + SlSu)Λ2 − 8(−3 + SlSu)Λσ2 + (Sl + Su)σ
4],

b5 = σ[24(Sl + Su + SlSu)Λ2 + (−4(3 + Sl) + (−4 + Sl)Su)Λσ2 + σ4].
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In the limit σ2 → 0 and Λ = 1 (Rayleigh–Bénard-convection), we obtain

Ra∗c =
720[4(3 + Su) + Sl(4 + Su)]

9(8 + Su) + Sl(9 + Su)
. (61)

5. Weakly Nonlinear Stability Analysis: Derivation of the Generalized Lorenz Model

The minimal Fourier–Galerkin representation for obtaining the generalized Lorenz
model is

Ψ(x, y, t) = A(t) sin(πax)F(y), (62)

Θ(x, y, t) = Beff{B(t) cos(πax)G(y)− C(t)H(y)}, (63)

where F(y) and G(y) are given by Equations (40) and (41), with α∗, β∗, RaDc, and ac
tabulated in Tables 2 and 3 for different values of the parameters. The function H(y) is
given by

H(y) = F′(y)G(y). (64)

Here, the prime on F(y) denotes the y-derivative. The three eigenfunctions that we consid-
ered in Equations (62) and (63) are

EF = sin(πax)F(y),

EG = cos(πax)G(y),

EH = H(y).

. (65)

The eigenfunctions EF(x, y) and EG(x, y) are for the linear analysis and EH(y) is for the
convective mode. As required by the weakly nonlinear analysis, we can observe that
EF(x, y), EG(x, y) and EH(y) satisfy the following orthogonality results:

< E2
F > 6= 0, < E2

G > 6= 0 < E2
H > 6= 0,

< EF · EG >= 0, < EF · EH >= 0,

< EG · EH >= 0

. (66)

Here, the angular bracket represents an inner product defined by

< · , · >=
∫ 2π

πa

x=0

∫ 1

y=0
(·)(·) dy dx.

This essentially constitutes integration over a pair of consecutive counter-rotating cells.
Substituting Equations (62) and (63) into Equations (25) and (26), and following a

classical analysis and using the orthogonality relations in (66), we obtain the generalized
Lorenz model, in the form:

1
Pr∗

dA
dt

= −c11 A + c12Ra∗B, (67)

dB
dt

= c21 A− c22B− c23 AC, (68)

dC
dt

= −b∗c31C +
c32

2
AB, (69)
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where

c11 = σ2 −
Λ
[
〈FF′′′′〉 − 2π2a2〈FF′′〉+ π4a4〈F2〉]

〈FF′′〉 − π2a2〈F2〉 ,

c12 = −πa
〈FG〉

〈FF′′〉 − π2a2〈F2〉 ,

c21 = πa
〈FG〉
〈G2〉 , c22 = −〈GG′′〉

〈G2〉 + π2a2,

c23 = −πa
〈FGH′〉
〈G2〉 , c31 = −〈HH′′〉

b∗〈H2〉 , c32 = 1 +
〈HFG′〉
〈H2〉 ,


.

We note here that all cij’s are positive. We now discuss some of the features of the general-
ized Lorenz model in Equations (67)–(69).

Table 2. Values of the critical Rayleigh number and the wave number for different boundary condi-
tions by taking Λ = 1 and σ2 = 0.

BC Parameters’ Values
Present
Study

Platten
and Legros [39] Kanchana et al. [17]

Rac αc Rac αc Rac αc

RIRI (Bil , Biu)→ (∞, ∞)
(Sl , Su)→ (∞, ∞)

1707.75 3.116 1708.35 3.004 1707.762 3.120

RARI (Bil , Biu)→ (0, ∞)
(Sl , Su)→ (∞, ∞)

1295.77 2.552 1285.56 2.752 1295.781 2.550

RIRA (Bil , Biu)→ (∞, 0)
(Sl , Su)→ (∞, ∞)

1295.77 2.552 1250 2.271 1295.781 2.550

FIRI (Bil , Biu)→ (∞, ∞)
(Sl , Su)→ (0, ∞)

1100.64 2.682 1091.57 2.672 1100.657 2.680

RIFI (Bil , Biu)→ (∞, ∞)
(Sl , Su)→ (∞, 0) 1100.64 2.682 1064.44 2.552 1100.657 2.680

RAFI (Bil , Biu)→ (0, ∞)
(Sl , Su)→ (∞, 0) 816.74 2.215 886.11 2.221 816.748 2.210

FIRA (Bil , Biu)→ (∞, 0)
(Sl , Su)→ (0, ∞)

816.74 2.215 854.62 2.052 816.748 2.210

FARI (Bil , Biu)→ (0, ∞)
(Sl , Su)→ (0, ∞)

668.997 2.086 679.76 2.055 669.001 2.050

RIFA (Bil , Biu)→ (∞, 0)
(Sl , Su)→ (∞, 0) 668.997 2.086 705.47 2.067 669.001 2.050

FIFI (Bil , Biu)→ (∞, ∞)
(Sl , Su)→ (0, 0) 657.51 2.221 657.51 2.221 657.511 2.220

FAFI (Bil , Biu)→ (0, ∞)
(Sl , Su)→ (0, 0) 384.692 1.758 350.35 1.388 384.693 1.760

FIFA (Bil , Biu)→ (∞, 0)
(Sl , Su)→ (0, 0) 384.692 1.758 385.59 1.218 384.693 1.760

RARA (Bil , Biu)→ (0, 0)
(Sl , Su)→ (∞, ∞)

720.00 0 720.00 0 722.89 0

RAFA (Bil , Biu)→ (0, 0)
(Sl , Su)→ (∞, 0) 320.00 0 320.00 0 328.46 0.322

FARA (Bil , Biu)→ (0, 0)
(Sl , Su)→ (0, ∞)

320.00 0 320.00 0 321.990 0.329

FAFA (Bil , Biu)→ (0, 0)
(Sl , Su)→ (0, 0) 120.00 0 120.00 0 128.81 0.425
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Table 3. Values of the critical Rayleigh number and the wave number for different values of the Biot
number and the slip Darcy number.

Bil = Biu = 10 Sl = Su = 10

Sl Su ac Ra∗
c Bil Biu ac Ra∗

c

10−3

10

0.76601 792.56 10−3

10

0.69497 782.20

10−2 0.76622 793.08 10−2 0.69594 783.36

10−1 0.76832 798.20 10−1 0.70509 794.39

0.4 0.77484 814.47 0.4 0.72956 825.97

0.6 0.77883 824.68 0.6 0.74220 843.58

1 0.78607 843.75 1 0.76179 872.92

2 0.80077 884.80 2 0.79235 924.63

3 0.81200 918.54 3 0.81005 958.81

4 0.82083 946.80 4 0.82162 983.29

5 0.82796 970.84 5 0.82976 1001.75

10 0.84959 1052.14 10 0.84959 1052.14

102 0.88610 1236.60 102 0.87262 1125.31

103 0.89121 1271.03 103 0.87522 1135.10

106 0.89180 1275.19 106 0.87551 1136.22

10

10−3 0.76601 792.56

10

10−3 0.69497 782.20

10−2 0.76622 793.08 10−2 0.69595 783.36

10−1 0.76832 798.20 10−1 0.70509 794.39

0.4 0.77484 814.47 0.4 0.72956 825.97

0.6 0.77883 824.68 0.6 0.74220 843.58

1 0.78607 843.75 1 0.76179 872.92

2 0.80077 884.80 2 0.79234 924.63

3 0.81200 918.54 3 0.81005 958.81

4 0.82083 946.80 4 0.82162 983.29

5 0.82796 970.84 5 0.82976 1001.75

10 0.84959 1052.14 10 0.84959 1052.14

102 0.88610 1236.60 102 0.87262 1125.31

103 0.89121 1271.03 103 0.87522 1135.10

106 0.89180 1275.19 106 0.87551 1136.22

10−3 10−3 0.67562 570.81 10−3 10−3 0.13434 415.34

10−2 10−2 0.67612 571.74 10−2 10−2 0.23672 435.30

10−1 10−1 0.68099 580.93 10−1 10−1 0.40871 500.27

0.4 0.4 0.69586 610.05 0.4 0.4 0.55208 596.23

0.6 0.6 0.70474 628.30 0.6 0.6 0.59793 638.13

1 1 0.72052 662.37 1 1 0.65594 701.42

2 2 0.75150 736.11 2 2 0.73043 804.34

3 3 0.77445 797.43 3 3 0.76895 870.27

4 4 0.79225 849.53 4 4 0.79306 917.36

5 5 0.80650 894.51 5 5 0.80970 953.04

10 10 0.84959 1052.14 10 10 0.84959 1052.14

102 102 0.92460 1455.50 102 102 0.89578 1203.54

103 103 0.93558 1540.23 103 103 0.90104 1224.71

106 106 0.93684 1550.72 106 106 0.90163 1227.16
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5.1. Symmetric Nature

The system (67)–(69) possesses a symmetry defined by

(A, B, C)→ (−A, −B, C). (70)

This can be seen by substituting Equation (70) into the system (67)–(69). The invariance
of the C-axis implies that the trajectories of the generalized Lorenz system on the C-axis
remain on it and approach the origin (0, 0, 0). Furthermore, for A = 0 and B > 0, we have
dA
dt

> 0. In addition, for B < 0 we have
dA
dt

< 0. These imply all trajectories that rotate
around the C-axis must do so in a clockwise direction when viewed from above the plane
of C = 0 (for more details refer to Sparrow [41]). The symmetry shown above is inherited
for all limiting cases of the generalized Lorenz model in Equations (67)–(69).

5.2. Dissipative Nature

The divergence of the system (67)–(69) is given by

∂

∂A

(
dA
dt

)
+

∂

∂B

(
dB
dt

)
+

∂

∂C

(
dC
dt

)
= −(c11Pr∗ + c22 + b∗c31) < 0. (71)

Thus, the volume element, V, contracts at the rate exp[−(c11Pr∗ + c22 + b∗c31)t]. This
implies that the trajectories traced by the system (67)–(69) cannot have unstable periodic
orbits or unstable stationary points.

5.3. Ellipsoidal Bound on the Solution (Trajectory)

We now show that there is a bounded ellipsoid, E, within which all trajectories of the
generalized Lorenz system (67)–(69) remain. In order to show this aspect, we multiply
Equations (67)–(69) by A, B, and C − C , respectively, where C = (c12Pr∗ + c21Ra∗)/c32.
Adding the resultant equations and rearranging them, we obtain

dL

dτ
= −

[
c11Pr∗A2 + c22B2 + b∗c31

(
C− C

2

)2
− b∗c31

C 2

4

]
, (72)

where L =
1
2
[A2 + B2 + (C− C )2].

The quantity L is a Lyapunov function if the trajectory of (A, B, C) remains bounded
within the ellipsoid:

A2

a2 +
B2

b2 +
C2

c2 = 1, (73)

where

a =

√
c31b∗

c11Pr∗

(
C

2

)
, b =

√
c31b∗

c22

(
C

2

)
, c =

C

2
.

5.4. Energy-Conserving Nature of the System

To prove that the generalized Lorenz system (67)–(69) is energy-conserving within the
dissipationless limit, we consider the kinetic energy, T , and the potential energy, V , as
given below:

T =
1
2
[u2 + v2], V = −Ra∗ Pr∗

2

(
Θ2

1 + Θ2
2

)
, (74)

where
Θ1 = B(t) cos(πax)G(y)and Θ2 = C(t)F′(y)G(y).
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Using the perturbed version of Equation (16), we can write the kinetic energy in terms
of the stream function as

T =
1
2

[(
∂Ψ
∂x

)2
+

(
−∂Ψ

∂y

)2
]

. (75)

Substituting Equation (62) into (75), and simplifying and integrating over one Bénard cell,
we obtain the total kinetic energy, T , in the form

T = − δ4

π4α3 [F(F′′ − π2α2F)]A2 (76)

Now, substituting Θ1 and Θ2 into (74), simplifying and integrating over one Bénard cell,
we obtain the total potential energy, V , in the form

V =
Pr∗Ra∗

2π2

[
2
α
< G, G > B2− < G, FF′′G > C2

]
. (77)

The total energy, E(τ), is given by

E(τ) = T + V . (78)

Substituting T and V from Equations (76) and (77) into Equation (78), and then differenti-
ating with respect to τ, we obtain a simplification

d
dτ

E(τ) = − δ6(Pr∗)2

2π4α3

[(
c11

c12

)
< F, G > (A2 + Ra∗B2)

+
b∗αc31

2
< F′G, F′G > C2

+
1

πRa∗
(

1− α

2δ2

)
< FG, F′G′ > ABC

+
1

πRa∗
(

1 +
α

2δ2

)
< FG, F′G > ABC

]
. (79)

From Equation (79), in the dissipationless limit, viz., Pr∗ → 0, we obtain

d
dt

E(t) = 0. (80)

Equation (80) is a statement of the conservation of energy. In view of this, we conclude
that the generalized Lorenz model of (67)–(69) is energy conserving within the dissipation-
less limit.

By considering the aforementioned nature of the symmetry, as dissipative, and the
existence of the bounding ellipsoid and energy-conserving properties, we conclude that the
generalized Lorenz model (67)–(69) has properties seen in the classical Lorenz model [42].
Hence, it is natural to anticipate chaotic behavior in the system (67)–(69) when Ra∗ greatly
exceeds Ra∗c . We next determine the threshold eigenvalue at which the chaotic attractor
manifests.

5.5. Prediction of the Onset of Chaos Using the Generalized Lorenz Model

The critical points of the generalized Lorenz model of (67)–(69) are given by

(0, 0, 0),
(

q1,
(

c11

c12Ra∗

)
q1,
(

c11c32

2b∗c12c31Ra∗

)
q2

1

)
,(

−q1,−
(

c11

c12Ra∗

)
q1,
(

c11c32

2b∗c12c31Ra∗

)
q2

1

)
,

,
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where q1 =
√

2b∗c31(c12c21Ra∗−c11c22)
c11c23c32

.
Among the three critical points noted above, (0, 0, 0) corresponds to the pre-onset and

the other two are post-onset points. We shall now linearize the Lorenz model about one

post-onset critical point, say
(

q1,
(

c11

c12Ra∗

)
q1,
(

c11c32

2b∗c12c31Ra∗

)
q2

1

)
.

Let

A = q1 + Ã, B =

(
c11

c12Ra∗

)
q1 + B̃,

C =

(
c11c32

2b∗c12c31Ra∗

)
q2

1 + C̃

. (81)

The quantities (Ã, B̃, C̃) are slight deviations from the critical point. The product of these
deviations is negligibly small. Using the above decomposition in the system (67)–(69) and
neglecting the products of quantities with ~ we obtain the linearized Lorenz model in
the form

dX
dt

= AX , (82)

where X = [Ã, B̃, C̃]Tr and

A =



−c11Pr∗ c12Pr∗Ra∗ 0

c21 −
(

c11c23c32

2c12c31Ra∗

)
q2

1 −c22 −c23q1(
c11c32

2c12Ra∗

)
q1

c32

2
q1 −c31


.

The auxiliary equation associated with the above equation is given by

|A − λI| = 0,

where λ is the characteristic root and I is the 3× 3 identity matrix.
On expansion of the determinant, we obtain

f (λ) = −λ3 − s2λ2 − s1λ + s0 = 0, (83)

where the coefficients are given by

s2 = c11Pr∗ + c22 + c31,

s1 = c11c31Pr∗ +
c12c21c31Ra∗

c11
,

s0 = 2c31Pr∗(c11c22 − c12c21Ra∗).

The roots of Equation (83) are real if

Ra∗ = (c11c22)/(c12c21).

When Ra∗ > (c11c22)/(c12c21) we have one real root and a pair of complex conjugate roots.
When we increase Ra∗ further, say Ra∗H , these complex conjugate roots cross the complex
plane’s imaginary axis, leading to a Hopf bifurcation. To find Ra∗H , we replace λ with iλ in
Equation (83) and equate to zero the real and imaginary parts of the resulting equations,
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to obtain two expressions for λ2. Equating the two expressions of λ2 and simplifying, we
obtain the modified Hopf–Rayleigh number Ra∗H as:

rH = P̃r

(
P̃r + b̃ + 3

P̃r− b̃− 1

)
, (84)

where

rH = Ra∗H/Ra∗c , Ra∗c = (c11c22)/(c12c21),

P̃r = (c11/c22)Pr∗ and b̃ = (c31/c22)b∗

}
.

6. Results and Discussion

This work concerning Brinkman–Bénard convection with general boundary conditions
for velocity and temperature is reported to show that it is possible to unify various problems
that have the same governing equations but different boundary conditions. To be precise,
the 36 different problems covered by this study are

1. Brinkman–Bénard convection problem with 16 different boundary conditions;
2. Rayleigh–Bénard convection problem with 16 different boundary conditions (see,

Table 2 for a list of these conditions);
3. Darcy–Bénard convection problem with 4 different temperature boundary conditions.

Since the focus of this work is on covering many related problems in an integrated
manner, we will not digress here to discuss individual boundary conditions and whether
they are of practical utility or not.

Before we move on to a discussion of the results of both linear and nonlinear theories,
we make brief mention of the choice of parameter values. The parameters appearing in
the study are Pr, Λ, σ2, Sl , Su, Bil , Biu, and λ. Apart from these, we also have the non-
dimensional quantity of porosity, φ. The product of Pr, λ, and φ appears together and
hence we have called this product Pr∗ and assigned a value of 10, which is much higher
than that of water. To cover the extreme cases of free and rigid boundaries, as well as a
rough boundary, it is essential that we take the entire range of values from zero to infinity.
For computation, zero is taken to be a very small positive value, 10−3, and infinity is taken
to be a very large positive value, 10+6. This decision about zero and infinity was taken
through the observation of computational values in very general and limiting cases. The
same reasoning was applied when choosing the range of values of Bil and Biu for zero
to infinity.

6.1. Discussion of the Results from Linear Theory

The critical Rayleigh number corresponding to marginal stationary stability was found
using the eigenvalue of the BEVP of Equations (31) and (32), subject to general boundary
conditions. Variation of the critical Rayleigh number and the critical wave number with
non-dimensional parameters is presented in Table 3, as well as in Figures 2 and 3. A very
small slip Darcy number indicates a stress-free boundary condition, and a very large slip
Darcy number indicates a rigid boundary condition. Moderate values indicate a rough
boundary condition.

The Biot number characterizes the relative difference between the thermal resistance
inside the layer and at the boundary surface. If the Biot number is very small, this indicates
that the thermal resistance at the boundary surface exceeds the thermal resistance inside
the layer, and this is the case for a thermally insulated boundary condition. For this type of
boundary condition, all the supplied energy can develop instability, and hence the onset
occurs much earlier than in the case when the Biot number has finite or infinite values. The
critical wave number is equal to zero (large cell), as a result of all the accumulated thermal
energy being used for cell formation. In the case of both boundaries being adiabatic, an
asymptotic analysis is performed to arrive at the expression of the critical Rayleigh number,
by assuming a very small wave number for the regular perturbation expansion. From the
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expression (61), one can obtain the results of FAFA, RARA, and RAFA(FARA), and these
coincide with the classical results. Finite values of Biu and Bil yield a critical Rayleigh
number and a critical wave number, in respect of bounding plates with an arbitrarily low
heat conductivity. On the other hand, if the thermal resistance of the bounding surface is
much less than the thermal resistance inside the layer, then this is a case of an isothermal
boundary condition or a perfect conductor. The larger the value of the Biot number, the
larger the critical Rayleigh number, meaning that larger Biot number systems are most
stable. When this boundary condition is imposed, there is no heat flux across the boundary.
This implies that the thermal fluctuation relaxes infinitely rapidly.

The inverse Darcy number, σ2, characterizes the extent of occupation of the solid phase
in the liquid medium within the sandwiched porous region. A small value of σ2 would
mean that the porous medium is sparsely packed, while a large value would mean it is
densely packed. The slip Darcy numbers Sl and Su arise due to the application of the
Beavers–Joseph slip condition at the interface between the sandwiched porous medium
and its bounding porous walls, which are densely packed. The porous interface renders
the surface rough. The two rough porous walls are considered to be dissimilar, in the sense
that they have unequal yet constant values of thermal resistance and permeability. The
effective viscosity ratio, Λ, in the two porous walls was assumed to be the same, to keep
the number of parameters as low as possible. From earlier experience on porous-medium
Bénard problems, it is evident that the effect of Λ on instability is comparatively small,
in relation to the influence of other parameters. Keeping the parameter values in the two
bounding porous walls unequal, we have the distinct advantage of extracting results for a
maximum number of limiting cases from our study.

In Figures 2 and 3, we present the influence of all parameters on Ra∗c and ac, respec-
tively. In presenting the effect of the variation of a particular parameter on Ra∗c and ac,
we consider moderate values of the other fixed parameters. This procedure was adopted
after ascertaining computationally that the scenario remained similar at values other than
moderate values. In Figure 2a, the extreme values of Bil and Biu (from very small to very
large) refer to insulated and isothermal boundary conditions, respectively. Intermediate
values refer to situations in which the thermal resistance at the boundary surface either
exceeds or is in deficit of the thermal resistance inside the layer. Thus, it is obvious from
the linear stability analysis with general boundary conditions that we were able to bridge
the gap between the results of insulated and isothermal boundary conditions at the two
bounding surfaces. Figure 2b illustrates a similar situation as that in Figure 2a for the case
of shear matching at the interfaces. The gap in the results between the free boundary and
rigid boundary conditions at the interfaces were bridged. An extremely small value of Sl
and Su indicates a free boundary and an extremely large value suggests a rigid boundary.
Intermediate values indicate results pertaining to a rough boundary condition. The results
of Figure 2c–f are essentially a reiteration of the earlier results for different values of σ2

and Λ. The intention behind the presentation of the results in Figure 3 is identical to
that expressed in the context of Figure 2. Table 3 has been included for completeness,
though it is only a tabulated result of the pictorial representation in Figures 2 and 3. To
increase confidence in the results obtained, we validated the results of the present study
by comparing the results in several limiting cases. Tables 2 and 4 document these results
and indicate that we achieved this objective. In what follows, we discuss the results of the
weakly nonlinear stability analysis.
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(a) (b)

(c) (d)

(e) (f)
Figure 2. Variation of the critical Rayleigh number, Ra∗c , with various parameters. (a) Isothermal to
adiabatic. (b) Free to rigid. (c) Clear liquid to densely packed medium, and isothermal to adiabatic.
(d) Effect of viscosity ratio, and isothermal to adiabatic. (e) Clear liquid to densely packed medium,
and free to rigid. (f) Effect of viscosity ratio, and free to rigid.

Table 4. Values of the critical Darcy–Rayleigh number Ra∗c and the wave number αc = πac for
different boundary conditions, taking Λ = 0 and σ2 = 1.

Type of Boundaries
Present Study Nield and Bejan [8]

αc Ra∗
c αc Ra∗

c

Isothermal–Isothermal 3.1416 39.4783 3.14 39.48

Isothermal–Adiabatic 2.3263 27.0976 2.33 27.10

Adiabatic–Isothermal 2.3263 27.0976 - -

Adiabatic–Adiabatic 0.005 12.0013 0 12
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(a) (b)

(c) (d)

(e) (f)
Figure 3. Variation of the critical wave number, ac, with various parameters. (a) Isothermal to
adiabatic. (b) Free to rigid. (c) Clear liquid to densely packed medium, and isothermal to adiabatic.
(d) Effect of viscosity ratio, and isothermal to adiabatic. (e) Clear liquid to densely packed medium,
and free to rigid. (f) Effect of viscosity ratio, and free to rigid.

6.2. Discussion of Results Using Nonlinear Stability Theory

Before providing a discussion of the results of the nonlinear analysis, we now make
some general remarks. We note that the structure of the Lorenz model (67)–(69) is the same
as that of the classical Lorenz model [42], with the coefficients being different. We call the
Lorenz model of this paper a generalized Lorenz model. The values of the parameters
considered in the nonlinear analysis for the purpose of computation were the same as those
chosen in the linear analysis. The intention behind the choice was the same in the two
analyses. In view of the innumerable number of possible limiting cases, we considered
only a few representative cases.

Tables 5 and 6 document the coefficients of the generalized Lorenz model for different
combinations of parameter values. The tabulated values are included to note the fact that
the various quantities characterizing the model were all within a certain expected range
of values. This lends credence to the procedure adopted in the paper for arriving at a
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generalized Lorenz model. The last three columns, viz., b̃, P̃r, and rH , are scaled versions
of the counterparts of the corresponding quantities of the classical Lorenz model [42]. We
observe that these values are within the expected range. There are exceptions, however,
in the cases when Bil and Biu are very small, which are the cases of adiabatic boundaries.
Knowing that such boundaries are not physically realistic, one may consider, without any
doubt, the obtained values of b̃, P̃r, and rH as acceptable values. As a consequence of this
observation, we deliberately refrained from making any further calculations pertaining to
boundaries where both are adiabatic.

Extensive computation of the solution to the generalized Lorenz model was performed,
to cover all possible ranges of parameter values. For each combination of parameter values,
the value of rH obtained analytically using Equation (84) was considered, to meticulously
check the veracity of the prediction made using the bifurcation diagram. In all cases, there
was a perfect match between the two values. We considered 12 boundary combinations out
of the 16 possible ones, by omitting those boundaries which were both adiabatic. Out of the
12, some demonstrated the duplication of values with other cases (due to symmetry), and
these five were bunched together in the bifurcation diagrams, phase space plots, and the
Lyapunov spectrum. As a result, in Figures 4–6, we only see plots of the seven boundary
combinations whose results were different from each other. In these plots, we see only the
results pertaining to a sandwiched clear liquid layer (no porous matrix, i.e., σ2 = 0). We
ascertained that similar results were seen when σ2 6= 0 (sandwiched porous-medium).

The bifurcation diagrams in Figure 4 are plots made through considering the time
series of C(t) and extracting local maximum values from it. To find the time series of
C(t), numerical integration of the Lorenz system (67)–(69) using the standard fourth-order
Runge–Kutta method, with a step-size of ∆t = 10−5, was performed, and the local maxi-
mum of C(t) in the time interval (0, 1000) was extracted. The bifurcation diagram depicts
the transition to chaos at the Hopf bifurcation point, r = rH , and the chaotic motion seen
beyond rH in the CMax − r plane was interrupted by periodic motions of various period-
icities. The intensity of chaos in each period was determined using vigorous oscillations
or otherwise, as seen in the diagram. The more vigorous the oscillations the more chaotic
the system. A period of periodic motion serves the purpose of conserving energy (fueling
zone), which is later used in the next spell of chaos for its sustenance in a range of values
of r. From the bifurcation diagrams with respect to the various boundary combinations
shown in Figure 4, it is clear that they look alike in content, except for the fact that they are
translated versions of each other. In the case when one of the boundaries is adiabatic, the
chaos is more intense compared to that in the case when both boundaries are isothermal.
This is obviously due to the lack of exchange of thermal energy through such a boundary
between the system and its surrounding. Now, coming to the aspects pertaining to the
velocity boundary condition, it was found that, in the case of a rigid boundary combination,
the appearance of chaos or periodic motion took place at large values of r, almost three
times that in the case of the free boundary combination. We even noticed this result in the
case of linear theory, due to the liquid sticking to the rigid boundary.

Figure 5 shows phase-space plots of the seven chosen boundary combinations. Three
ranges of values of r are considered in each plot: r < rH , r = rH , and r > rH . The phase-
space plot pertaining to r < rH is typically that of regular convective motion. Looking
at the plot for r = rH , we obtain a picture of the trajectories moving away from one of
the post-onset critical points and proceeding towards the other post-onset critical point.
A very important point to note regarding these trajectories is that the nonlinear terms,
AB and AC, in the generalized Lorenz model are responsible for keeping the trajectories
within the ellipsoidal trapping region. In other words, this means the solution to the
generalized Lorenz model always remains bounded. Applying the Lipschitz condition
to the initial value problem involving the generalized Lorenz model, it can be seen that
the various loop-like structures (butterfly diagram) are non-intersecting. This is a case of
chaotic dynamics. In the case when periodic motion appears beyond rH , the trajectories



Symmetry 2023, 15, 1506 23 of 32

traced the same loop(s). The number of loops, say n, seen in the phase space plots indicates
that the periodic motion is of period n.

Table 5. Coefficients of the Lorenz system and the Hopf–Rayleigh number for different values of
lower and upper slip Darcy numbers with Λ = 1, σ2 = 1 and Bil = Biu = 10.

Sl Su
Coefficients of the Lorenz System

b̃ P̃r rHc11 c12 = c21 c22 c23 c31 c32

10−3

10

21.8455 0.0275630 12.7768 1.0473500 31.3206 1.6084 2.45136 17.0977 28.2521

10−2 21.8623 0.0275663 12.7798 1.0498800 31.3238 1.60835 2.45104 17.1070 28.2587

10−1 22.0362 0.0276072 12.8116 1.0750500 31.3630 1.60815 2.44802 17.2002 28.3267

0.4 22.5837 0.0277281 12.9102 1.1609500 31.4934 1.60733 2.43942 17.4930 28.5448

0.6 22.9231 0.0277962 12.9707 1.2199800 31.5795 1.60669 2.43468 17.6729 28.6818

1 23.5490 0.0279101 13.0823 1.3422100 31.7525 1.60546 2.42713 18.0006 28.9371

2 24.8594 0.0280961 13.3122 0.4181370 32.1667 1.60212 2.41633 18.6742 29.4845

3 25.8944 0.0281910 13.4922 0.2265190 32.5472 1.59884 2.41230 19.1922 29.9251

4 26.7298 0.0282318 13.6361 0.1525550 32.8891 1.59569 2.41192 19.6023 30.2857

5 27.4177 0.0282411 13.7542 0.1151720 33.1956 1.59281 2.41349 19.9341 30.5850

10 29.5728 0.0281073 14.1238 0.0561866 34.3103 1.58172 2.42925 20.9382 31.5317

102 33.3935 0.0270043 14.8052 0.0211920 37.0307 1.55216 2.50119 22.5552 33.2118

103 33.9318 0.0266963 14.9104 0.0186483 37.5320 1.54639 2.51717 22.7572 33.4430

106 33.9923 0.0266573 14.9228 0.0183795 37.5915 1.5457 2.51906 22.7787 33.4682

10

10−3 21.8446 0.0275619 12.7768 0.0620477 31.3201 1.60838 2.45132 17.0971 28.2514

10−2 21.8621 0.0275660 12.7799 0.0620323 31.3237 1.60834 2.45101 17.1067 28.2584

10−1 22.0362 0.0276073 12.8115 0.0618777 31.3627 1.60813 2.44802 17.2004 28.3269

0.4 22.5836 0.0277279 12.9101 0.0613983 31.4930 1.60731 2.43942 17.4930 28.5448

0.6 22.9229 0.0277961 12.9709 0.0611065 31.5799 1.60671 2.43467 17.6726 28.6815

1 23.5491 0.0279102 13.0821 0.0605773 31.7522 1.60544 2.42714 18.0009 28.9374

2 24.8593 0.0280959 13.3124 0.0595116 32.1669 1.60213 2.41632 18.6738 29.4842

3 25.8944 0.0281910 13.4922 0.0587126 32.5471 1.59884 2.41230 19.1922 29.9251

4 26.7302 0.0282322 13.6361 0.0580950 32.8894 1.59571 2.41194 19.6025 30.2859

5 27.4179 0.0282413 13.7542 0.0576061 33.1957 1.59281 2.41350 19.9343 30.5851

10 29.5728 0.0281073 14.1238 0.0561866 34.3103 1.58172 2.42925 20.9382 31.5317

102 33.3923 0.0270033 14.8052 0.0540763 37.0301 1.55214 2.50116 22.5544 33.2110

103 33.9316 0.0266961 14.9103 0.0538163 37.5318 1.54638 2.51718 22.7572 33.4430

106 33.9926 0.0266569 14.9224 0.0537878 37.5915 1.54566 2.51913 22.7795 33.4692

10−3 10−3 15.3800 0.0269441 11.4402 1.0373900 28.3338 1.64971 2.47669 13.4439 25.5203

10−2 10−2 15.4116 0.0269554 11.4470 1.0401700 28.3428 1.64962 2.47599 13.4634 25.5310

10−1 10−1 15.7209 0.0270617 11.5131 1.0681100 28.4282 1.64851 2.46919 13.6548 25.6376

0.4 0.4 16.6918 0.0273614 11.7176 1.1625000 28.7082 1.64479 2.45000 14.2450 25.9894

0.6 0.6 17.2938 0.0275248 11.8422 1.2265100 28.8921 1.64245 2.43976 14.6036 26.2190

1 1 18.4023 0.0277823 12.0675 1.3575300 29.2502 1.63793 2.42388 15.2495 26.6590

2 2 20.7339 0.0281668 12.5258 0.4260500 30.0877 1.62784 2.40206 16.5529 27.6346

3 3 22.5984 0.0283393 12.8788 0.2311810 30.8385 1.61908 2.39451 17.5469 28.4440

4 4 24.1284 0.0284021 13.1613 0.1555150 31.5103 1.61156 2.39415 18.3328 29.1179

5 5 25.4075 0.0284038 13.3928 0.1171170 32.1097 1.60497 2.39752 18.9709 29.6847

10 10 29.5728 0.0281073 14.1239 0.0561862 34.3106 1.58174 2.42926 20.9381 31.5316

102 102 37.8708 0.0260191 15.5322 0.0197446 40.0625 1.52524 2.57933 24.3822 35.1167

103 103 39.1744 0.0254341 15.7582 0.0170888 41.2115 1.51432 2.61524 24.8597 35.6609

106 106 39.3268 0.0253604 15.7849 0.0168051 41.3522 1.51302 2.61972 24.9142 35.7242
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Table 6. Coefficients of Lorenz system and Hopf–Rayleigh number for different values of lower and
upper Biot numbers with Λ = 1, σ2 = 1, and Sl = Su = 10.

Bil Biu
Coefficients of Lorenz System

b̃ P̃r rH
c11 c12 = c21 c22 c23 c31 c32

10−3

10

29.1037 0.0372074 7.20571 0.0366865 31.0650 1.20452 4.31117 40.3898 54.9233

10−2 29.1028 0.0371515 7.23585 0.0367666 31.0602 1.20599 4.29255 40.2203 54.7124

10−1 29.1179 0.0366544 7.52711 0.037520 31.0242 1.22037 4.12166 38.6841 52.7957

0.4 29.1582 0.0353018 8.36365 0.0396794 30.9802 1.26256 3.70415 34.863 48.0508

0.6 29.1850 0.0345965 8.83169 0.0408873 30.9989 1.28675 3.50996 33.0457 45.8073

1 29.2341 0.0334898 9.61121 0.0429139 31.1066 1.32794 3.23649 30.4167 42.5844

2 29.3284 0.0317191 10.9737 0.0465625 31.5566 1.40233 2.87565 26.726 38.1312

3 29.3946 0.0306572 11.8568 0.0490450 32.0571 1.45194 2.70369 24.7913 35.8509

4 29.4409 0.0299412 12.4751 0.0508662 32.5204 1.48711 2.60681 23.5997 34.4755

5 29.4782 0.0294267 12.9320 0.0522604 32.9310 1.51330 2.54648 22.7949 33.5632

10 29.5728 0.0281073 14.1238 0.0561866 34.3103 1.58172 2.42925 20.9382 31.5317

102 29.7030 0.0263954 15.6651 0.0621767 36.9439 1.66819 2.35836 18.9613 29.5542

103 29.7194 0.0261822 15.8504 0.0630031 37.3445 1.67818 2.35605 18.7499 29.3613

106 29.7201 0.0261570 15.8709 0.0631004 37.3894 1.67922 2.35585 18.7262 29.3399

10

10−3 29.1030 0.0372064 7.20560 0.0486803 31.0649 1.20451 4.31121 40.3894 54.9230

10−2 29.1039 0.0371528 7.23609 0.0487350 31.0599 1.20600 4.29236 40.2204 54.7120

10−1 29.1165 0.0366526 7.52707 0.0492362 31.0239 1.22036 4.12165 38.6824 52.7941

0.4 29.1589 0.0353027 8.36374 0.0505528 30.9811 1.26257 3.70421 34.8635 48.0514

0.6 29.1843 0.0345957 8.83163 0.0512204 30.9977 1.28674 3.50986 33.0452 45.8065

1 29.2338 0.0334894 9.61128 0.0522272 31.1063 1.32794 3.23643 30.4161 42.5837

2 29.3288 0.0317196 10.9737 0.0537338 31.5570 1.40235 2.8757 26.7265 38.1318

3 29.3944 0.0306570 11.8567 0.0545607 32.0570 1.45192 2.70371 24.7914 35.8511

4 29.4414 0.0299416 12.4752 0.0550759 32.5205 1.48711 2.60681 23.5999 34.4757

5 29.4781 0.0294266 12.9320 0.0554203 32.9312 1.51331 2.54650 22.7947 33.5631

10 29.5728 0.0281073 14.1238 0.0561866 34.3103 1.58172 2.42925 20.9382 31.5317

102 29.7029 0.0263953 15.6650 0.0568236 36.9433 1.66817 2.35834 18.9614 29.5542

103 29.7186 0.0261815 15.8503 0.0568663 37.3437 1.67815 2.35602 18.7495 29.3609

106 29.7201 0.0261570 15.8709 0.0568710 37.3895 1.67923 2.35585 18.7261 29.3399

10−3 10−3 29.9469 0.0721017 0.18038 0.0075992 29.0540 1.00387 161.073 1660.23 2021.65

10−2 10−2 29.7094 0.0682501 0.57548 0.0133728 29.0095 1.01288 50.4096 516.258 632.670

10−1 10−1 29.2270 0.0584225 1.86821 0.0231062 28.8743 1.04692 15.4556 156.444 195.459

0.4 0.4 28.9703 0.0485894 3.83446 0.0315834 28.7699 1.10935 7.50299 75.5525 96.9687

0.6 0.6 28.9491 0.0453658 4.72113 0.0344888 28.7900 1.1409 6.09812 61.3181 79.6347

1 1 28.9757 0.0413102 6.09413 0.0384156 28.9332 1.19337 4.74772 47.5469 62.8980

2 2 29.1104 0.0361915 8.40381 0.0440987 29.5681 1.29092 3.51841 34.6395 47.3320

3 3 29.2262 0.0335830 9.92005 0.0474722 30.3189 1.36108 3.05633 29.4618 41.1891

4 4 29.3155 0.0319563 11.0126 0.0497992 31.0588 1.41469 2.82031 26.6201 37.8761

5 5 29.3841 0.0308321 11.8412 0.0515263 31.7464 1.45706 2.68101 24.8150 35.8077

10 10 29.5728 0.0281073 14.1238 0.0561866 34.3103 1.58172 2.42925 20.9382 31.5317

102 102 29.8318 0.0247867 17.4254 0.0629192 40.3437 1.78355 2.31523 17.1198 27.8229

103 103 29.8621 0.0243830 17.8561 0.0638208 41.4017 1.81174 2.31863 16.7237 27.4992

106 106 29.8672 0.0243384 17.9056 0.0639213 41.5289 1.81507 2.31932 16.6803 27.4651
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Figure 4. Bifurcation diagrams of the generalized Lorenz model for different boundary conditions
using the initial conditions (1, 1, 1), Λ = 1, and σ2 = 0. (a) FIFI. (b) FIRI (RIFI). (c) RIRI. (d) FAFI
(FIFA). (e) FARI (RIFA). (f) FIRA (RAFI). (g) RARI (RIRA).

As in the case of the classical Lorenz model [42], in the generalized Lorenz model, one
can also find a trapping region within which the trajectories remain (seen in Figure 3). This
trapping region is an ellipsoid, as shown in Equation (73), and its volume depends on the
boundary combination, as shown in Figure 6. Figure 7 is a justification for not considering
the physically unrealistic boundary combinations of both boundaries as adiabatic. We
have plotted the real part of the largest eigenvalue, λ1, in the Lyapunov spectrum against
r for the representative boundary combinations of FAFA. The figure clearly indicates the
blowing up of Re(λ2) with r, thereby implying that this boundary combination is not viable.
A similar observation holds good for RARA and RAFA(FARA).
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At this point, we draw attention to an earlier work by [17], which covered all possible
boundary combinations in the case of a clear liquid layer bounded by two surfaces. A
Lorenz model of each case was derived using a single-term Galerkin procedure. On
comparison of the corresponding values for rH from this paper with those of [17], it was
found that the values of rH reported here are accurate values. This result is documented
in Table 7. This table also indicates the confidence level for the results obtained using the
Fourier–Galerkin single-term procedure. An important point also needs to be mentioned
here: The method adopted here is also a single-term Fourier–Galerkin, but the trial function
(polynomial with nearly 20 terms) is an accurate description of the eigenfunctions of the
problem. This is the reason why one can have great confidence in the predicted results of
this paper.

r=24 r=24.74 r=28

(a)

r=25.5 r=26.5 r=28

(b)

r=29.5 r=30 r=35

(c)

r=32 r=32.65 r=35

(d)

r=41
r=42.21 r=45

(e)

r=43.50 r=44.4 r=45

(f)

r=53 r=53.88 r=55

(g)

Figure 5. Phase space plots of the generalized Lorenz model for different boundary conditions using
the initial conditions (1, 1, 1), Λ = 1, σ2 = 0, and for different values of r. (a) FIFI. (b) FIRI (RIFI).
(c) RIRI. (d) FAFI (FIFA). (e) FARI (RIFA). (f) FIRA (RAFI). (g) RARI (RIRA).

We end the discussion of results with the observation that extensive computation
revealed that the results obtained in the case of a sandwiched high porosity medium were
qualitatively similar to those reported earlier for the case of a sandwiched clear liquid layer.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6. Ellipsoid and phase space plots of the generalized Lorenz model for different boundary
conditions using the initial conditions (1, 1, 1), r = 55, Λ = 1, and σ2 = 0. (a) FIFI. (b) FIRI (RIFI).
(c) RIRI. (d) FAFI (FIFA). (e) FARI (RIFA). (f) FIRA (RAFI). (g) RARI (RIRA).
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Figure 7. The real part of the eigenvalue versus r. (a) FAFA. (b) Magnified plot of (a) around rH .

Table 7. Values of the Hopf–Rayleigh number for different boundary conditions, taking Λ = 1 and
σ2 = 0.

BC FIFI RIFI FIRI RIRI FAFI FIFA FARI RIFA RAFI FIRA RARI RIRA
Present
study 24.74 26.20 26.20 30.00 32.64 32.64 42.21 42.21 44.37 44.37 53.87 53.87

Kanchana
et al. [17] 24.74 29.13 27.09 35.28 43.38 51.00 43.08 42.46 46.97 45.52 45.35 63.03

7. Summary

The overall conclusions drawn from this study are

(a) It is possible to unify the study of linear and weakly nonlinear regimes of various
related Rayleigh–Bénard problems with identical governing equations but different
boundary conditions;

(b) Using Maclaurin series representation, it is possible to have accurate representations
for the eigenfunctions of both the conductive mode (linear theory) and convective
modes (nonlinear theory);

(c) The generalized Lorenz model has all the characteristics of the classical Lorenz model;
(d) Classical linear and nonlinear stability analyses can be performed using the general-

ized Lorenz model, to obtain information on the onset of regular convection, chaos,
and periodic motions;

(e) The effect of increasing values of the Biot and slip Darcy numbers is to stabilize the
system and decrease the cell size at the onset of regular convection;

(f) The effect of increasing the values of the Biot and slip Darcy numbers on the onset of
chaos is opposite;

(g) The general velocity and thermal boundary conditions used in this paper succeeded
in bridging the gap between the results of free and rigid boundaries, and also those of
isothermal and adiabatic boundary conditions;

(h) By analogy between the results of the present general study and its corresponding
Taylor–Couette problem [43], the results of the linear theory for the latter problem are
as good as known;

(i) This analogy has been proven for linear theory, and further investigation is required
to prove/disprove the analogy in the nonlinear regime.
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Appendix A. Principle of Exchange of Stabilities

To establish the principle of exchange of stabilities, we consider the linear version of
Equations (25) and (26) in the form

1
Pr∗

∂

∂t
(∇2Ψ) = Λ∇4Ψ− σ2∇2Ψ + Ra

∂Θ
∂x

, (A1)

∂Θ
∂t
− Beff

∂Ψ
∂x

= ∇2Θ. (A2)

The solution of Equations (A1) and (A2) in the least possible mode is assumed to be in
the form:

Ψ(t, x, y) = est sin(πax)F(y),

Θ(t, x, y) = Beffest cos(πax)G(y)

}
, (A3)

where s = σ + iω is a complex number that is related to the growth rate, σ, and the
frequency of oscillations, ω. Substituting (A3) into (A1) and (A2), we obtain(

D2 − a2π2
)[

Λ
(

D2 − a2π2
)
− σ2 − s

Pr∗
]

F = πRa∗G, (A4)(
D2 − a2π2 − s

)
G = −aπF, (A5)

where D =
d

dy
is the differential operator. Multiplying Equation (A4) by F̄ and integrating

with respect to y between 0 and 1, we obtain∫ 1

0
F̄
(

D2 − a2π2
)[

Λ
(

D2 − a2π2
)
− σ2 − s

Pr∗
]

Fdy = aπRa∗
∫ 1

0
GF̄dy.

With simplification, the above equation may be written as

Λ
∫ 1

0
F̄ D4Fdy−

(
2Λ a2π2 + σ2 +

s
Pr∗

) ∫ 1

0
F̄ D2Fdy +

(
Λa2π2 + σ2 +

s
Pr∗

)
a2π2

∫ 1

0
F̄Fdy

= aπRa∗
∫ 1

0
GF̄dy.
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With repeated use of integration by parts, it follows that

Λ
{[

F̄ D3F
]1

0
−
[

DF̄ D2F
]1

0
+
∫ 1

0
D2 F̄ D2Fdy

}
−
(

2Λa2π2 + σ2 +
s

Pr∗
)

{
[F̄ DF]10 −

∫ 1

0
DF̄ DFdy

}
+
(

Λa2π2 + σ2 +
s

Pr∗
)

a2π2
∫ 1

0
F̄Fdy

= aπRa∗
∫ 1

0
GF̄dy.

We note that F and, hence, F̄ must vanish on the boundaries, and using the non-slip
boundary conditions from Equations (27) and (28), we obtain the following equation:

I1 +
s

Pr∗
I2 = aπRa∗

∫ 1

0
GF̄dy, (A6)

where

I1 = Λ
{∫ 1

0
|D2F|2dy + Su|DF(1)|2 + Sl |DF(0)|2

}
+ (2Λa2π2 + σ2)

∫ 1

0
|DF|2dy

+(Λa2π2 + σ2)a2π2
∫ 1

0
|F|2dy,

I2 =
∫ 1

0

(
|DF|2 + a2π2|F|2

)
dy.

Here, we note that the integrals I1 and I2 are positive. Similarly, multiplying Equation (A5)
by Ḡ and integrating with respect to y between 0 and 1, we obtain∫ 1

0
Ḡ
(

D2 − a2π2 − s
)

Gdy = −aπ
∫ 1

0
FḠdy.

On using integration by parts, the above equation reduces to

[ḠDG]
1
0 −

∫ 1

0
DG DḠdy−

(
a2π2 + s

) ∫ 1

0
ḠGdy = −aπ

∫ 1

0
FḠdy.

Using the thermal boundary conditions from Equations (33) and (34), we obtain the follow-
ing equation:

I3 + sI4 = aπ
∫ 1

0
FḠdy (A7)

where

I3 =
∫ 1

0

(
|DG|2 + a2π2|G|2

)
dy + Bu|G(1)|2 + Bl |G(0)|2,

I4 =
∫ 1

0
|G|2dy.

Here, we note that the integrals I3 and I4 are positive. Now, multiplying the complex
conjugate of Equation (A7) by Ra∗ and subtracting the resultant equation from (A6), we
arrive at

I1 − Ra∗ I3 +
s

Pr∗
I2 − s̄Ra∗ I4 = 0. (A8)

Equating real and imaginary parts on either side of Equation (A8), we obtain

σ

(
1

Pr∗
I2 − Ra∗ I4

)
+ I1 − Ra∗ I3 = 0 (A9)

ω

(
1

Pr∗
I2 + Ra∗ I4

)
= 0 (A10)
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Since
1

Pr∗
I2 + Ra∗ I4 6= 0, Equation (A10) gives us

ω = 0.

This proves the validity of the principle of exchange of stabilities, thereby discounting
oscillatory convection in the present problem for all possible boundary conditions.
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