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Abstract: The physiological system loses thermal energy to nearby cells via the bloodstream. Such
energy loss can result in sudden death, severe hypothermia, anemia, high or low blood pressure, and
heart surgery. Gold and iron oxide nanoparticles are significant in cancer treatment. Thus, there is
a growing interest among biomedical engineers and clinicians in the study of entropy production
as a means of quantifying energy dissipation in biological systems. The present study provides a
novel implementation of an intelligent numerical computing solver based on an MLP feed-forward
backpropagation ANN with the Levenberg–Marquard algorithm to interpret the Cattaneo–Christov
heat flux model and demonstrate the effect of entropy production and melting heat transfer on
the ferrohydrodynamic flow of the Fe3O4-Au/blood Powell–Eyring hybrid nanofluid. Similarity
transformation studies symmetry and simplifies PDEs to ODEs. The MATLAB program bvp4c is
used to solve the nonlinear coupled ordinary differential equations. Graphs illustrate the impact of
a wide range of physical factors on variables, including velocity, temperature, entropy generation,
local skin friction coefficient, and heat transfer rate. The artificial neural network model engages in a
process of data selection, network construction, training, and evaluation through the use of mean
square error. The ferromagnetic parameter, porosity parameter, distance from origin to magnetic
dipole, inertia coefficient, dimensionless Curie temperature ratio, fluid parameters, Eckert number,
thermal radiation, heat source, thermal relaxation parameter, and latent heat of the fluid parameter
are taken as input data, and the skin friction coefficient and heat transfer rate are taken as output data.
A total of sixty data collections were used for the purpose of testing, certifying, and training the ANN
model. From the results, it is found that the fluid temperature declines when the thermal relaxation
parameter is improved. The latent heat of the fluid parameter impacts the entropy generation and
Bejan number. There is a less significant impact on the heat transfer rate of the hybrid nanofluid over
the sheet on the melting heat transfer parameter.

Keywords: Fe3O4-Au/blood Powell–Eyring hybrid nanofluid; magnetic dipole; Cattaneo–Christov
heat flux; entropy generation and melting/non-melting heat transfer

1. Introduction

Computer simulations and physical–mathematical models of non-Newtonian fluids
have received a lot of interest in recent years. Examples of non-Newtonian fluid subcate-
gories include grease, medicines, symmetry in drug delivery, industrial lubricants, gels,
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chemicals (polymers, paints, and plastics), and foodstuffs (honey, yogurt, and ketchup), as
well as ecological systems including highly concentrated sediments, oil spills, mudflows,
and pollution discharge. The drawing of plastic films, petroleum purification, food tech-
nology, chemical materials, symmetric coating production, insulating materials, aerospace,
metal spinning operations, and paper production are just a few examples of the many
industries that use non-Newtonian fluids. Due to their fundamental characteristics, the tra-
ditional Navier–Stokes equations for the viscous model are insufficient for non-Newtonian
fluids. To precisely describe the properties of non-Newtonian fluids, researchers offered
numerous nonlinear mathematical models, including the Casson, Maxwell, Sisko, Bingham
plastic, Carreau–Yasuda, Eyring–Powell, Jeffrey fluid, Williamson, Brinkman type, and
Oldroyd-B models. Instead of using empirical relationships, the kinetic theory of gases is
used to determine the constitutive equation for the Eyring–Powell liquid [1] model of a
non-Newtonian fluid. Therefore, researchers have started to use the Powell–Eyring fluid
model with greater frequency. The Eyring–Powell fluid model is crucial for industrial
processes that are both natural and geophysical, such as those that include underground
energy transfer, thermal insulation, and pollution abatement. Asha and Sunitha [2] stud-
ied the effects of Joule heating and magnetohydrodynamics on the peristaltic blood flow
of Eyring–Powell nanofluid in a non-uniform channel. Jafarimoghaddam [3] used PST
and PHF to examine the magnetohydrodynamic flow caused by a nonlinearly stretched
sheet acting on non-Newtonian Eyring–Powell fluids within a porous Darcy–Forchheimer
medium. Patil et al. [4] explored the unstable MHD flow of a Powell–Eyring nanofluid
approaching a stagnation point through a convectively warmed extended surface in the
presence of a chemical reaction with thermal radiation. Farooq et al. [5] investigated entropy
in convective heat transfer Powell–Eyring magnesium–blood nanofluid convection across
a linearly stretched surface at the stagnation point.

The first law of thermodynamics deals with the quantity rather than the quality of
energy and the interchangeability of its many forms. Engineers are primarily concerned
with minimizing the rate and extent to which energy is degraded in a practical setting.
Despite this, the quality of power is doomed to diminish (second principle of thermo-
dynamics), and the rate at which this happens is quantified by entropy. To reduce this
loss in energy quality (the exergy), examining how entropy is generated across the flow
field is essential. Numerous researchers have studied the topic of minimizing entropy
creation during fluid flow with heat transfer. Entropy is a unit of measure for the quantity
of energy that cannot be used for work in thermodynamics. Heat exchanger pumps and
electronic cooling systems are two examples of entropy creation in use. Researchers and
engineers are extremely interested in developing strategies to prevent the waste of valuable
energy, particularly in thermodynamical systems, because energy loss may cause significant
disruption. Radiation, conduction, convection, and evaporation are the methods through
which heat is transferred in the human body. Additionally, heat is transferred through the
circulatory system, where heat is lost to surrounding tissues by pulmonary blood flow.
The human body loses heat through conduction and radiation when temperatures are
below 20 ◦C. Entropy generation is essential in preventing the waste of usable energy in
order to control this condition. Bejan [6] used entropy optimization to demonstrate the
characteristics of thermal conductivity in fluids. Jakeer and Reddy [7] investigated the
entropy production in a variable magnetic field and the magnetohydrodynamic stagnation
point flow of an Eyring–Powell hybrid dusty nanofluid. They declared that the nature of
entropy generation (NG) and Bejan number (Be) on the Brinkman number are completely
contradictory (Br).

The magnetic field plays a crucial part in controlling the properties of fluid motion,
which is essential for symmetric biomedical devices, high-temperature plasma, cooling
of atomic reactors, symmetric magnetohydrodynamics generators, hyperthermia, and
other applications [8]. Recently, efforts have been undertaken to develop a mathematical
model of biomagnetic fluids by adapting the field of ferrohydrodynamics (FHD), which
investigates the mechanics of fluid motion as it is affected by strong magnetic polarization
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forces. The term “ferrofluid” refers to a colloidal dispersion of magnetic particles in a
liquid. The thermal Brownian motion of the colloidal particles and the conditions under
which each particle is permanently magnetized considerably influence the characteris-
tics of a ferrofluid. The expansion of the efficacious magnetic force, which significantly
affects fluid temperature, gives ferrofluids their distinctive fluid features. The first fer-
rofluid synthesis was discovered in 1965 as a result of Papell’s creative research [9]. In the
medical area, magnetic nanoparticles in bodily fluids such as lymph fluid and blood are
employed for medication transfer at the specific afflicted site, allowing for novel cancer
therapy approaches and inducing hyperthermia, and magneto-nanofluids are useful for
directing the movement of particles up the bloodstream to a tumor using magnets [8,10,11].
Nasir et al. [12] explored the effect of nonlinear thermal radiation on the ferrohydrodynamic
flow of a SiO2 + TiO2 + Al2O3/H2O hybrid nanofluid on a stretched sheet. Results showed
that maximum radiation values and minimum ferromagnetic parameter levels result in
extraordinarily high heat transfer rates.

Heat transfer is important in many industrial and technical processes, such as combus-
tors, axial blade compressors, fuel cells, heat exchangers, symmetric microelectronic board
circuits, gas turbine blades, computer processors, and hybrid engines. Madhura et al. [13]
investigated a novel solution for studying heat and mass transfer in a nanofluid over a
moving/stationary vertical plate in a porous medium. The free convection flow, heat, and
mass transfer of fractional nanofluids made of several base fluids (water, sodium alginate,
and ethylene glycol) suspended with copper nanoparticles via an endless vertical plate with
radiation effect were studied by Madhura et al. [14]. Saleem et al. [15] used the finite volume
approach and the Boussinesq approximation for buoyancy effects to study the numerical
analysis of steady-state laminar 2D rarefied gaseous flow in a partly heated square two-sided
wavy cavity with internal heat production. Kheioon et al. [16] examined the influence of
vacuum pressure on convection and radiation heat transfer rates from a solid cylindrical rod
inside a vacuum-sealed tank. The natural convective Cu-water nanofluid flow in a l-shaped
cavity with a fluctuating temperature was studied by Saleem et al. [17]. The thermal behavior
and entropy production of a moving, wet porous fin made of linear functionally graded ma-
terial (FGM) under convective–radiative heat transmission were studied by Keerthi et al. [18].
The novelty of the present study is the use of a non-Fourier heat flux model to look at the
melting heat transfer properties of a Powell–Eyring hybrid nanofluid in a ferrohydrody-
namic flow. Blood is used as a base fluid; iron oxide (Fe3O4) and gold (Au) nanoparticles are
added to it. The generation of entropy in biological processes is also evidently employed to
treat cancerous tissues and enhance the performance of medical equipment. Furthermore,
the aforementioned research revealed that no investigations have been conducted on the
entropy production and melting heat transfer during the ferrohydrodynamic flow of iron
oxide (Fe3O4) and gold (Au)/blood Powell–Eyring hybrid nanofluid using a non-Fourier
heat flux model. The consequences of Joule heating, viscous dissipation, and the more
realistic characteristic of melting heat transfer are adopted to examine heat transmission.

2. Mathematical Formulation

The present analysis discusses the steady 2D laminar, incompressible ferrohydrody-
namic flow of a Powell–Eyring hybrid nanofluid made of Fe3O4 and gold flowing across
a melting/non-melting heat transfer surface. Figure 1 depicts the schematic diagram of
the flow problem. It is considered that the surface is being stretched along the x-axis with
the velocity Uw = bx, where b > 0 is the stretching case. A magnetic dipole is positioned
at a distance a1 from the sheet, with its center located on the y-axis. The magnetic field
generated by the dipole points in the positive x-direction and is strong enough to saturate
the ferrofluid. It is assumed that T∞ is the ambient fluid temperature and that Tc is the
melting surface temperature. A non-Darcy porous medium, uniform heat source/sink,
viscous dissipation, and Cattaneo–Christov heat flux are also considered. Table 1 presents
the thermophysical options for the Flow system. Assuming the given conditions and



Symmetry 2023, 15, 1503 4 of 32

utilizing the Boussinesq approximation, it is possible to express the governing equations
as follows [19,20]:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=

(
υhn f +

1
ρhn f βc

)
∂2u
∂y2 −

1
2ρhn f βc3

(
∂u
∂y

)2(∂2u
∂y2

)
+

mp

ρhn f
M

∂H
∂x
−

υhn f

k′
u− F∗√

k′
u2, (2)

u ∂T
∂x + v ∂T

∂y + 1
(ρcp)hn f

mpT ∂M
∂T
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∂x + ∂v

∂x
∂T
∂y

)
+ v
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∂x + ∂v
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∂y

)
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1
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)(
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Table 1. Density (ρ), specific heat
(
Cp
)
, and thermal conductivity (k) of magnetite, silver, and base fluid.

Physical Properties ρ
(

kg/m3
)

cp(J/kg K) k (W/m K) Pr

Blood 1050 3617 0.52 21

Fe3O4 5200 670 6 -

Au 19,300 129 318 -

The boundary conditions are [21]

u = uw, T = Tc, at y = 0,
u→ 0, T → T∞ as y→ ∞,

(4)

and

khn f

(
∂T
∂y

)
y=0

= ρhn f (λ + cs[Tc − Ts])v(x, 0). (5)
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According to a description of the magnetic scalar potential,

Θ =
γ∗

2π

(
x

x2 + (y + a1)
2

)
(6)

Here γ∗ and H exhibit the strength and elements of a magnetic field and can be
expressed as

Hx = −∂Θ
∂x

=
γ∗

2π

 x2 − (y + a1)
2(

x2 + (y + a1)
2
)2

 (7)

Hy = −∂Θ
∂y

=
γ∗

2π

 2x(y + a1)(
x2 + (y + a1)

2
)2

 (8)

H =

([
∂Θ
∂x

]2
+

[
∂Θ
∂y

]2
) 1

2

(9)

Following the expansion in powers of x and the retention of terms up to order x2,

∂H
∂x

= − γ∗

2π

(
2x

(y + a1)
4

)
, (10)

∂H
∂y

=
γ∗

2π

(
4x2

(y + a1)
5 −

2

(y + a1)
3

)
, (11)

Therefore, the modification of M through T can be expressed as

M = K∗(Tc − T) (12)

where Tc is the Curie temperature and K∗ is a pyromagnetic coefficient.
The thermophysical properties of hybrid nanofluids are furnished by [22]

µhn f
µ f

= 1
(1−φFe3O4)

2.5
(1−φAu)

2.5 , αhn f =
khn f

(ρCp)hn f
,

ρhn f
ρ f

= (1− φAu)
((

1− φFe3O4

)
+ φFe3O4

ρFe3O4
ρ f

)
+ φAu

ρAu
ρ f

,

(ρCp)hn f

(ρCp) f
= (1− φAu)

((
1− φFe3O4

)
+ φFe3O4

(ρCp)Fe3O4
(ρCp) f

)
+ φAu

(ρCp)Au
(ρCp) f

,

khn f
kb f

=
(1+2φAu)kAu+2(1−φAu)kb f
(1−φAu)kAu+(2+φAu)kb f

, where
kb f
k f

=
(1+2φFe3O4)kFe3O4

+2(1−φFe3O4)k f

(1−φFe3O4)kFe3O4
+(2+φFe3O4)k f

.


(13)

where µhn f is the viscosity of hybrid nanofluid, φ is the nanoparticle volume fraction, and
ρ f and k f are the thermal conductivities of fluid and nanoparticles, respectively.

The non-dimensional variables are

ψ(ζ, η) = υ f ζ f (η), θ(ζ, η) =
Tc − T

Tc − T∞
= θ1(η) + ζ2θ2(η) (14)

The dimensionless coordinates η and ζ are defined as

η =

(
U0

υ f

)0.5

y, ζ =

(
U0

υ f

)0.5

x (15)
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The velocity components are

u =
∂ψ

∂y
, v = −∂ψ

∂x

By using Equations (14) and (15), Equations (2)–(5) are reduced as follows:(
µhn f

µ f
+ ∈

)
f ′′′ −

ρhn f

ρ f

[
f ′2 − f ′′ f + Fs f ′2

]
−

2β f

(η + α)4 θ1 − δ ∈ f
′′2 f ′′′ − K

µhn f

µ f
f ′ = 0, (16)

1
Pr

( khn f
k f

+ 4
3 R
)

θ′′1 +
(ρcp)hn f

(ρcp) f
f θ1′+

2λβ f
Pr (θ1 − ε)

f
(η+α)3 + Q θ1

+Ec
[(

µhn f
µ f

+ ∈
)

f
′′2 − δ∈

3 f ′′ 4
]
− βe

(
f f ′θ1′+ f 2θ′′1

)
= 0,

(17)

1
Pr

( khn f
k f

+ 4
3 R
)

θ′′2 −
(ρcp)hn f

(ρcp) f
(2 f ′θ2 − f θ2′)− 2λβt

Pr (θ1 − ε)

(
f ′

(η+α)4 +
2 f

(η+α)5

)
−βe

(
4 f ′2θ2 + f 2θ′′2 − 2 f f ′′θ2 − 3 f f ′θ2′

)
+

2λβ f
Pr

f θ2

(η+α)3 + Q θ2 = 0,
(18)

With boundary conditions

f ′(0) = 1, Pr
ρhn f
ρ f

f (0) +
khn f
k f

Me θ1′(0) = 0, θ1(0) = 0, θ2(0) = 0,

f ′(∞) = 0, θ1(∞) = 1, θ2(∞) = 0.

}
(19)

where K =
ν f

k′U0
, Fs =

uw F∗

U0
√

k′
, Pr =

µ f (cp) f
k f

, βe = λTU0, Ec = u2
w

(cp) f (T∞−Tc)
, λ =

U0µ2
f

ρ f k f (Tc−T∞)
,

R = 4σ∗T3
∞

3k∗k f
, Q = Q0

U0(ρcp) f
, Me =

(cp) f (T∞−Tc)

(λ+cs [Tc−Ts ])
, α =

√
U0
υ f

a, β f =
γmpK∗

2πρ f υ2
f
(Tc − T∞), ε = Tc

Tc−T∞
,

∈= 1
βcµ f

, and δ =
u3

0x2

2c2υ f
.

Near the wall (η = 0), the skin friction factor and rate of heat transfer are

τw =
[
µhn f +

1
βc

]
∂u
∂y −

1
6βc3

(
∂u
∂y

)3

qw = −khn f

[
1 + 16σ∗T3

∞
3k∗k f

](
∂T
∂y

)
C f Re1/2

x /2 =
(

µhn f
µ f

+ ∈
)

f ′′(0)− δ∈
3 ( f ′′(0))3,

NuxRe−1/2
x = −

( khn f
k f

+ 4
3 R
)

θ′(0),

 (20)

3. Modeling of Entropy

The volumetric entropy in dimensional form is

SG = 1
T∞2

(
khn f +

16σ∗T3
∞

3k∗

)(
∂T
∂y

)2
− mpT

T∞
∂M
∂T

(
u ∂H

∂x + v ∂H
∂y

)
+ 1

T∞

(
µhn f +

1
βc

)(
∂u
∂y

)2

− 1
T∞

(
1

6βc3

) (
∂u
∂y

)4
+

µhn f
k′ T∞

u2
(21)

By applying Equations (14) and (15) in Equation (21), the converted equation is

NG = α1

( khn f
k f

+ 4
3 R
)

θ′1
2 + 2λβ f (θ1 − ε)

f
(η+α1)

3

+Br
[(

µhn f
µ f

+ ∈
)

f
′′2 − ∈δ

3 f
′′4
]
+

µhn f
µ f

Br K f ′2
(22)
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where α1 = ∆T
T∞

is the dimensionless ratio variable, NG =
SGν f T∞
k f U0∆T is the local entropy

generation, and Br =
µ f uw

2

k f ∆T is the Brinkman number.
The Bejan number (Be) is as follows:

Be =
Heat transfer irreversibility

Total entropy genertion

Be =

( khn f
k f

+ 4
3 R
)

α1
∗θ1
′2 + 2λβ f

(
f θ1

(η+α1)
3

)
 α1

( khn f
k f

+ 4
3 R
)

θ′21 + 2λβ f (θ1 − ε)
f

(η+α1)
3

+Br
[(

µhn f
µ f

+ ∈
)

f
′′2 − ∈δ

3 f
′′4
]
+

µhn f
µ f

Br K f ′2

 (23)

4. Numerical Method

The set of higher-order nonlinear differential Equations (16)–(19) has been reduced to
first-order equations by using the following process:

f = y1, f ′ = y2, f ′′ = y3, θ1 = y4, θ1′ = y5, θ2 = y6, θ2′ = y7 (24)

y3′ =
((

µhn f

µ f
+ ∈

)
− δ ∈ y3

2
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[
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2
]
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y2

)
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1
Pr
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+ 4
3 R
)
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2
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−Ec
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)

y3
2 − δ∈
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4
]
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y7′ =
1(

1
Pr

( khn f
k f

+ 4
3 R
)
− βey1

2
)
 +

(ρcp)hn f

(ρcp) f
(2y1y6 − y1y7) +

2λβt
Pr (y4 − ε)

(
y2

(η+α)4 +
2y1

(η+α)5

)
+βe

(
4y2

2y6 − 2y1y3y6 − 3y1y2y7
)
− 2λβ f

Pr
f y6

(η+α)3 −Q y6

 (27)

With boundary conditions

y2(0) = 1, Pr
ρhn f
ρ f

y1(0) +
khn f
k f

Me y5(0) = 0, y4(0) = 0, y6(0) = 0,

y2(η∞) = 0, y4(η∞) = 1, y6(η∞) = 0.

}
(28)

Selecting a relatively small grade of η∞ is a crucial component of bvp4c [23]. In this
study, the step size is h = 0.001 and the error tolerance is 10−8.

5. ANN Modeling

The artificial neural network is a contemporary computer systems approach that
is based on the concept of the human brain functioning as a network of interconnected
neural cells. This phenomenon has been observed to emulate the development of neural
networks within the human brain. This model exhibits comparable performance to the
human brain with regard to optimization, clustering, learning, classification, prediction,
and generalization.

The following phrases outline the primary benefits of utilizing the artificial neural
network (ANN) methodology:

• The ANN has demonstrated impressive performance and efficiency even when de-
ployed on a limited hardware infrastructure.
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• The use of ANN surprisingly simplifies the intricate process of class-distri-
buted mapping.

• The input vector determines the appropriate results in the training set.
• The weights that signify the results are acquired through iterative training.

The implementation of a training rule and the linking of neurons result in a variety
of architectures. Most often, the layers result from the neurons’ tight interactions. Three
distinct layers make up the ANN technique: input, hidden, and output. The information
sent in from the outside world is received by these layers, processed, and then sent back via
the ANN. Information obtained by the input layer is sent to the hidden layer neurons with-
out being altered by the input layer’s processing components. It is crucial to note that the
weights, connection lines, and connecting neurons perform the information translation. The
system maintains a database for ANN training, where input values and weights are saved.
The construction of an ANN is guided by the utilization of data, which takes into account
various factors such as determining the optimal number of layers and hidden neurons.

The multi-layer perceptron architecture-based feed-forward neural network (FFNN)
has gained widespread popularity and is currently considered a highly intriguing ANN
model. Compared to the backpropagation method, alternative approaches for training feed-
forward neural networks exhibit lower levels of efficiency. The backpropagation algorithm
can modify individual neurons’ weights during the computation of the network’s output
error. This modification is uniformly applied across all neurons with the aim of reducing
the output error.

The subsequent expression represents the net input of the jth hidden neuron, as

depicted in Figure 2: yj(x) =
l

∑
i=1

W1jixi + aj.
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The input layer’s ith node is symbolized as xi, while the hidden layer’s jth node is
denoted as aj. The weight connecting xi and aj is expressed as W1ji.

The jth hidden node’s output is denoted in the following manner:

zj(x) =
1

1 + e−yj(x)
,
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The kth node of the output layer is denoted in the following manner:

ok(x) =
m

∑
j=1

W2kjzj + bk

The weight W2kj serves as a means of connection between the kth node of the output
layer and the jth node of the hidden layer. Additionally, the term bk represents the bias
associated with the kth node of the output layer.

The present study involves the measurement of skin friction and heat transfer rates
for representative samples of ANN output nodes, as illustrated in Figure 3. The parame-
ters β f , K, α, δ, Fs, ε, ∈, Ec, R, Q, βe and λ are estimated for the samples of input nodes.
A trial-and-error approach is used to determine the hidden layer’s node count depending
on the number of epochs needed to train the network, avoid input parameter over- or
under-setting, and ensure convergence of the learning process. Following such repeated
processes, it was discovered that the convergence criteria employed were the introduction
of one hidden layer with five neurons in order to reduce the disparity between the antici-
pated values of Cf and Nu. A total of sixty data collections were used for the purpose of
testing, validating, and training the ANN model. Out of the total amount of data, 70%
was utilized for training, 15% for validation, and the remaining 15% was used to test the
model’s predictions. The results of the skin friction coefficient and heat transfer rate in the
training, validation, and test sets of the ANN model are shown in Figures 4 and 5. The
ANN models are given everything they need to simulate the complex interaction between
input and output variables. The results of the ANN model impressively match the values
obtained by computation.

The process of determining the appropriate number of nodes in the hidden layer
involves the utilization of trial and error. This is done by considering the number of
epochs required to train the network, preventing the occurrence of over- or under-setting
of input parameters, and guaranteeing the convergence of the learning process. Through
iterative procedures, it was determined that the convergence criteria utilized involved the
incorporation of a single hidden layer containing five neurons, with the aim of minimizing
the discrepancy between the predicted values of Cf and Nu. Seventy percent of the entire
dataset was allocated for training purposes, while 15% was reserved for validation and
another 15% was utilized for testing the model’s predictions. Figures 4 and 5 depict the
outcomes of the skin friction coefficient and heat transfer rate in the training, validation, and
test sets of the ANN model. The provided elements equip artificial neural network models
with the necessary components to replicate intricate relationships between input and output
variables. The outcomes of the ANN model exhibit a remarkable level of concurrence with
the figures derived through computation. The skin friction coefficient and heat transfer rate
are important parameters that contribute significantly to the benefits of the ferromagnetic
parameter

(
β f = 1, 1.5, 2, 2.5

)
, porosity parameter (K = 0.7, 0.9, 1.1, 1.3), distance from

origin to magnetic dipole (α = 1.4, 1.8, 2.2, 2.6), (δ = 0.1, 0.2, 0.3, 0.5), inertia coefficient
(Fs = 0.7, 0.9, 1.1, 1.3), thermal radiation (R = 0.2, 0.3, 0.4, 0.5), (ε = 0.2, 0.3, 0.4, 0.5), fluid
parameter (∈= 3, 3.4, 3.8, 4.2), Eckert number (Ec = 0.002, 0.003, 0.004, 0.005), heat source
(Q = 0.02, 0.03, 0.04, 0.05), thermal relaxation parameter (βe = 0.02, 0.03, 0.04, 0.05), and
latent heat of the fluid parameter (λ = 1, 1.4, 1.8, 2.2), as shown in Tables 2–5 in the case
of melting and non-melting. In addition to the quantitative results, the findings of the
artificial neural network model demonstrate a favorable outcome. Thus far, the findings
of this investigation have indicated that the ANN has the capability to accurately forecast
both skin friction and heat transfer rate.
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Figure 4. Pictorial illustration of skin friction.
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Figure 5. Pictorial illustration of the Nusselt number.

Table 2. Numerical and ANN values of C f Re1/2
x

/2 at Me = 0.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 0, CfRe1/2

x
/2

Error
NM ANN

1 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.14629−2.14693 6.39 × 10−4

1.5 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.15761−2.15757 3.89 × 10−5

2 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.16858−2.16858 3.46 × 10−6
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Table 2. Cont.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 0, CfRe1/2

x
/2

Error
NM ANN

2.5 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.17920−2.17813 1.08 × 10−3

1.6 0.7 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.05934−2.05772 1.61 × 10−3

1.6 0.9 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.12691−2.12527 1.63 × 10−3

1.6 1.1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.19223−2.19220 2.70 × 10−5

1.6 1.3 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.25552−2.25553 1.71 × 10−6

1.6 1 1.4 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.23333−2.23325 8.69 × 10−5

1.6 1 1.8 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.17433−2.17491 5.85 × 10−4

1.6 1 2.2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.15013−2.15015 1.76 × 10−5

1.6 1 2.6 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.13867−2.13875 8.61 × 10−5

1.6 1 2 0.2 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.15493−2.15498 5.05 × 10−5

1.6 1 2 0.3 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.14993−2.15001 8.15 × 10−5

1.6 1 2 0.4 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.14482−2.14486 4.30 × 10−5

1.6 1 2 0.5 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.13959−2.13953 6.29 × 10−5

1.6 1 2 0.1 0.7 0.1 4 0.001 0.1 0.01 0.01 2 −2.07261−2.07273 1.18 × 10−4

1.6 1 2 0.1 0.9 0.1 4 0.001 0.1 0.01 0.01 2 −2.13114−2.13070 4.47 × 10−4

1.6 1 2 0.1 1.1 0.1 4 0.001 0.1 0.01 0.01 2 −2.18816−2.18772 4.39 × 10−4

1.6 1 2 0.1 1.3 0.1 4 0.001 0.1 0.01 0.01 2 −2.24376−2.24381 4.89 × 10−5

1.6 1 2 0.1 1 0.2 4 0.001 0.1 0.01 0.01 2 −2.24119−2.24138 1.87 × 10−4

1.6 1 2 0.1 1 0.3 4 0.001 0.1 0.01 0.01 2 −2.32018−2.32011 6.60 × 10−5

1.6 1 2 0.1 1 0.4 4 0.001 0.1 0.01 0.01 2 −2.39694−2.39694 5.52 × 10−6

1.6 1 2 0.1 1 0.5 4 0.001 0.1 0.01 0.01 2 −2.47161−2.43942 3.22 × 10−2

1.6 1 2 0.1 1 0.1 3 0.001 0.1 0.01 0.01 2 −2.16066−2.16068 2.24 × 10−5

1.6 1 2 0.1 1 0.1 3.4 0.001 0.1 0.01 0.01 2 −2.16033−2.16027 5.63 × 10−5

1.6 1 2 0.1 1 0.1 3.8 0.001 0.1 0.01 0.01 2 −2.16000−2.15992 7.61 × 10−5

1.6 1 2 0.1 1 0.1 4.2 0.001 0.1 0.01 0.01 2 −2.15967−2.15964 2.82 × 10−5

1.6 1 2 0.1 1 0.1 4 0.002 0.1 0.01 0.01 2 −2.15987−2.15984 3.37 × 10−5

1.6 1 2 0.1 1 0.1 4 0.003 0.1 0.01 0.01 2 −2.15991−2.15994 2.05 × 10−5

1.6 1 2 0.1 1 0.1 4 0.004 0.1 0.01 0.01 2 −2.15996−2.16000 4.62 × 10−5

1.6 1 2 0.1 1 0.1 4 0.005 0.1 0.01 0.01 2 −2.16000−2.15996 3.73 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.2 0.01 0.01 2 −2.15882−2.15878 3.65 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.3 0.01 0.01 2 −2.15788−2.15786 1.57 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.4 0.01 0.01 2 −2.15701−2.15703 1.61 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.5 0.01 0.01 2 −2.15621−2.15628 7.14 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.02 0.01 2 −2.17153−2.16959 1.95 × 10−3
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Table 2. Cont.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 0, CfRe1/2

x
/2

Error
NM ANN

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.03 0.01 2 −2.18749−2.18737 1.22 × 10−4

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.04 0.01 2 −2.21017−2.21418 4.01 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.05 0.01 2 −2.24532−2.24534 1.76 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.02 2 −2.15978−2.15978 3.12 × 10−6

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.03 2 −2.15973−2.15978 5.15 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.04 2 −2.15968−2.15974 5.59 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.05 2 −2.15963−2.15958 5.49 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1 −2.16100−2.16100 9.01 × 10−6

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1.4 −2.16054−2.16054 6.13 × 10−6

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1.8 −2.16007−2.16002 5.04 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2.2 −2.15960−2.15955 4.52 × 10−5

Mean square error: 0.0000248262.

Table 3. Numerical and ANN values of C f Re1/2
x

/2 at Me = 1.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 1, CfRe1/2

x
/2

Error
NM ANN

1 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.07988−2.08102 1.14 × 10−3

1.5 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.09074−2.09097 2.28 × 10−4

2 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.10138−2.10139 4.32 × 10−6

2.5 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.11181−2.11256 7.49 × 10−4

1.6 0.7 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −1.99306−1.99095 2.12 × 10−3

1.6 0.9 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.06017−2.05865 1.52 × 10−3

1.6 1.1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.12507−2.12511 3.84 × 10−5

1.6 1.3 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.18797−2.18796 6.75 × 10−6

1.6 1 1.4 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.16018−2.16012 5.66 × 10−5

1.6 1 1.8 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.10618−2.10667 4.87 × 10−4

1.6 1 2.2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.08394−2.08420 2.59 × 10−4

1.6 1 2.6 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.07330−2.07332 2.71 × 10−5

1.6 1 2 0.2 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.08825−2.08824 1.33 × 10−5

1.6 1 2 0.3 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.08354−2.08343 1.08 × 10−4

1.6 1 2 0.4 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.07873−2.07864 9.23 × 10−5

1.6 1 2 0.5 1 0.1 4 0.001 0.1 0.01 0.01 2 −2.07382−2.07394 1.14 × 10−4

1.6 1 2 0.1 0.7 0.1 4 0.001 0.1 0.01 0.01 2 −2.00482−2.00479 2.88 × 10−5

1.6 1 2 0.1 0.9 0.1 4 0.001 0.1 0.01 0.01 2 −2.06393−2.06365 2.79 × 10−4
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Table 3. Cont.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 1, CfRe1/2

x
/2

Error
NM ANN

1.6 1 2 0.1 1.1 0.1 4 0.001 0.1 0.01 0.01 2 −2.12146−2.12110 3.60 × 10−4

1.6 1 2 0.1 1.3 0.1 4 0.001 0.1 0.01 0.01 2 −2.17754−2.17758 3.53 × 10−5

1.6 1 2 0.1 1 0.2 4 0.001 0.1 0.01 0.01 2 −2.17467−2.17453 1.42 × 10−4

1.6 1 2 0.1 1 0.3 4 0.001 0.1 0.01 0.01 2 −2.25400−2.25404 4.17 × 10−5

1.6 1 2 0.1 1 0.4 4 0.001 0.1 0.01 0.01 2 −2.33104−2.33104 1.07 × 10−7

1.6 1 2 0.1 1 0.5 4 0.001 0.1 0.01 0.01 2 −2.40594−2.37111 3.48 × 10−2

1.6 1 2 0.1 1 0.1 3 0.001 0.1 0.01 0.01 2 −2.09243−2.09248 4.99 × 10−5

1.6 1 2 0.1 1 0.1 3.4 0.001 0.1 0.01 0.01 2 −2.09261−2.09254 6.80 × 10−5

1.6 1 2 0.1 1 0.1 3.8 0.001 0.1 0.01 0.01 2 −2.09279−2.09280 4.96 × 10−6

1.6 1 2 0.1 1 0.1 4.2 0.001 0.1 0.01 0.01 2 −2.09298−2.09327 2.95 × 10−4

1.6 1 2 0.1 1 0.1 4 0.002 0.1 0.01 0.01 2 −2.09273−2.09271 1.44 × 10−5

1.6 1 2 0.1 1 0.1 4 0.003 0.1 0.01 0.01 2 −2.09257−2.09249 7.43 × 10−5

1.6 1 2 0.1 1 0.1 4 0.004 0.1 0.01 0.01 2 −2.09241−2.09236 4.96 × 10−5

1.6 1 2 0.1 1 0.1 4 0.005 0.1 0.01 0.01 2 −2.09225−2.09232 7.08 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.2 0.01 0.01 2 −2.09400−2.09391 9.21 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.3 0.01 0.01 2 −2.09506−2.09495 1.13 × 10−4

1.6 1 2 0.1 1 0.1 4 0.001 0.4 0.01 0.01 2 −2.09607−2.09614 7.37 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.5 0.01 0.01 2 −2.09701−2.09749 4.84 × 10−4

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.02 0.01 2 −2.08759−2.08934 1.76 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.03 0.01 2 −2.08300−2.08313 1.34 × 10−4

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.04 0.01 2 −2.08369−2.07403 9.66 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.05 0.01 2 −2.06357−2.06354 2.55 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.02 2 −2.09293−2.09290 2.99 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.03 2 −2.09297−2.09288 9.26 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.04 2 −2.09301−2.09296 5.65 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.05 2 −2.09306−2.09315 8.98 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1 −2.09226−2.09227 1.30 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1.4 −2.09250−2.09254 3.04 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1.8 −2.09276−2.09284 8.32 × 10−5

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2.2 −2.09301−2.09318 1.67 × 10−4

Mean square error: 0.0000248262.
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Table 4. Numerical and ANN values of NuxRe−1/2
x

at Me = 0.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 0, NuxRe−1/2

x
Error

NM ANN

1 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.46089−4.44791 1.30 × 10−2

1.5 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.36548−4.36510 3.80 × 10−4

2 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.27002−4.27390 3.88 × 10−3

2.5 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.17453−4.17302 1.51 × 10−3

1.6 0.7 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.31002−4.31532 5.30 × 10−3

1.6 0.9 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.33456−4.33673 2.17 × 10−3

1.6 1.1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.35796−4.35851 5.53 × 10−4

1.6 1.3 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.38036−4.38067 3.10 × 10−4

1.6 1 1.4 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.06652−4.12323 5.67 × 10−2

1.6 1 1.8 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.28092−4.28388 2.97 × 10−3

1.6 1 2.2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.39588−4.40198 6.10 × 10−3

1.6 1 2.6 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.46448−4.48764 2.32 × 10−2

1.6 1 2 0.2 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.34602−4.34650 4.72 × 10−4

1.6 1 2 0.3 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.34563−4.34545 1.80 × 10−4

1.6 1 2 0.4 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.34520−4.34445 7.53 × 10−4

1.6 1 2 0.5 1 0.1 4 0.001 0.1 0.01 0.01 2 −4.34474−4.34353 1.21 × 10−3

1.6 1 2 0.1 0.7 0.1 4 0.001 0.1 0.01 0.01 2 −4.34153−4.34260 1.07 × 10−3

1.6 1 2 0.1 0.9 0.1 4 0.001 0.1 0.01 0.01 2 −4.34477−4.34593 1.16 × 10−3

1.6 1 2 0.1 1.1 0.1 4 0.001 0.1 0.01 0.01 2 −4.34801−4.34920 1.19 × 10−3

1.6 1 2 0.1 1.3 0.1 4 0.001 0.1 0.01 0.01 2 −4.35124−4.35240 1.16 × 10−3

1.6 1 2 0.1 1 0.2 4 0.001 0.1 0.01 0.01 2 −4.32180−4.32562 3.82 × 10−3

1.6 1 2 0.1 1 0.3 4 0.001 0.1 0.01 0.01 2 −4.30032−4.30375 3.43 × 10−3

1.6 1 2 0.1 1 0.4 4 0.001 0.1 0.01 0.01 2 −4.28137−4.28204 6.70 × 10−4

1.6 1 2 0.1 1 0.5 4 0.001 0.1 0.01 0.01 2 −4.26451−4.26063 3.88 × 10−3

1.6 1 2 0.1 1 0.1 3 0.001 0.1 0.01 0.01 2 −4.46625−4.46469 1.56 × 10−3

1.6 1 2 0.1 1 0.1 3.4 0.001 0.1 0.01 0.01 2 −4.41831−4.41871 4.10 × 10−4

1.6 1 2 0.1 1 0.1 3.8 0.001 0.1 0.01 0.01 2 −4.37036−4.37163 1.27 × 10−3

1.6 1 2 0.1 1 0.1 4.2 0.001 0.1 0.01 0.01 2 −4.32242−4.32313 7.07 × 10−4

1.6 1 2 0.1 1 0.1 4 0.002 0.1 0.01 0.01 2 −4.36086−4.36031 5.53 × 10−4

1.6 1 2 0.1 1 0.1 4 0.003 0.1 0.01 0.01 2 −4.37533−4.37336 1.97 × 10−3

1.6 1 2 0.1 1 0.1 4 0.004 0.1 0.01 0.01 2 −4.38980−4.38699 2.81 × 10−3

1.6 1 2 0.1 1 0.1 4 0.005 0.1 0.01 0.01 2 −4.40427−4.40186 2.41 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.2 0.01 0.01 2 −4.53531−4.52760 7.71 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.3 0.01 0.01 2 −4.71261−4.70877 3.84 × 10−3
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Table 4. Cont.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 0, NuxRe−1/2

x
Error

NM ANN

1.6 1 2 0.1 1 0.1 4 0.001 0.4 0.01 0.01 2 −4.87976−4.87325 6.51 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.5 0.01 0.01 2 −5.03796−5.04091 2.94 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.02 0.01 2 −5.77414−5.77091 3.23 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.03 0.01 2 −7.72720−7.69848 2.87 × 10−2

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.04 0.01 2 −10.50691−10.51817 1.13 × 10−2

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.05 0.01 2 −14.80148−14.79289 8.59 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.02 2 −4.33180−4.33348 1.68 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.03 2 −4.31720−4.31861 1.42 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.04 2 −4.30259−4.30294 3.50 × 10−4

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.05 2 −4.28796−4.28642 1.55 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1 −4.51998−4.51681 3.16 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1.4 −4.45083−4.45203 1.19 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1.8 −4.38130−4.38344 2.14 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2.2 −4.31138−4.31057 8.12 × 10−4

Mean square error: 0.000184568.

Table 5. Numerical and ANN values of NuxRe−1/2
x

at Me = 1.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 1, NuxRe−1/2

x
Error

NM ANN

1 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.20072−3.19661 1.30 × 10−2

1.5 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.16211−3.16133 3.80 × 10−4

2 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.12310−3.12346 3.88 × 10−3

2.5 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.08368−3.08257 1.51 × 10−3

1.6 0.7 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.13264−3.13369 5.30 × 10−3

1.6 0.9 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.14724−3.14715 2.17 × 10−3

1.6 1.1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.16133−3.16087 5.53 × 10−4

1.6 1.3 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.17500−3.17482 3.10 × 10−4

1.6 1 1.4 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.05836−3.08342 5.67 × 10−2

1.6 1 1.8 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.13077−3.13409 2.97 × 10−3

1.6 1 2.2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.17264−3.17082 6.10 × 10−3

1.6 1 2.6 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.19874−3.19692 2.32 × 10−2

1.6 1 2 0.2 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.15385−3.15368 4.72 × 10−4
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Table 5. Cont.

βf K α δ Fs ε ∈ Ec R Q βe λ
Me = 1, NuxRe−1/2

x
Error

NM ANN

1.6 1 2 0.3 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.15333−3.15341 1.80 × 10−4

1.6 1 2 0.4 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.15279−3.15321 7.53 × 10−4

1.6 1 2 0.5 1 0.1 4 0.001 0.1 0.01 0.01 2 −3.15222−3.15313 1.21 × 10−3

1.6 1 2 0.1 0.7 0.1 4 0.001 0.1 0.01 0.01 2 −3.15358−3.15319 1.07 × 10−3

1.6 1 2 0.1 0.9 0.1 4 0.001 0.1 0.01 0.01 2 −3.15407−3.15372 1.16 × 10−3

1.6 1 2 0.1 1.1 0.1 4 0.001 0.1 0.01 0.01 2 −3.15463−3.15423 1.19 × 10−3

1.6 1 2 0.1 1.3 0.1 4 0.001 0.1 0.01 0.01 2 −3.15525−3.15472 1.16 × 10−3

1.6 1 2 0.1 1 0.2 4 0.001 0.1 0.01 0.01 2 −3.14099−3.14250 3.82 × 10−3

1.6 1 2 0.1 1 0.3 4 0.001 0.1 0.01 0.01 2 −3.12958−3.13117 3.43 × 10−3

1.6 1 2 0.1 1 0.4 4 0.001 0.1 0.01 0.01 2 −3.11970−3.12007 6.70 × 10−4

1.6 1 2 0.1 1 0.5 4 0.001 0.1 0.01 0.01 2 −3.11107−3.10940 3.88 × 10−3

1.6 1 2 0.1 1 0.1 3 0.001 0.1 0.01 0.01 2 −3.20773−3.20859 1.56 × 10−3

1.6 1 2 0.1 1 0.1 3.4 0.001 0.1 0.01 0.01 2 −3.18650−3.18675 4.10 × 10−4

1.6 1 2 0.1 1 0.1 3.8 0.001 0.1 0.01 0.01 2 −3.16511−3.16496 1.27 × 10−3

1.6 1 2 0.1 1 0.1 4.2 0.001 0.1 0.01 0.01 2 −3.14354−3.14291 7.07 × 10−4

1.6 1 2 0.1 1 0.1 4 0.002 0.1 0.01 0.01 2 −3.16387−3.16478 5.53 × 10−4

1.6 1 2 0.1 1 0.1 4 0.003 0.1 0.01 0.01 2 −3.17339−3.17595 1.97 × 10−3

1.6 1 2 0.1 1 0.1 4 0.004 0.1 0.01 0.01 2 −3.18290−3.18785 2.81 × 10−3

1.6 1 2 0.1 1 0.1 4 0.005 0.1 0.01 0.01 2 −3.19241−3.20137 2.41 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.2 0.01 0.01 2 −3.37827−3.33465 7.71 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.3 0.01 0.01 2 −3.58902−3.55032 3.84 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.4 0.01 0.01 2 −3.78802−3.79790 6.51 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.5 0.01 0.01 2 −3.97645−3.97821 2.94 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.02 0.01 2 −3.97780−3.95129 3.23 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.03 0.01 2 −5.06543−5.14094 2.87 × 10−2

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.04 0.01 2 −6.89639−6.85484 1.13 × 10−2

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.05 0.01 2 −7.10072−7.09668 8.59 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.02 2 −3.15050−3.15059 1.68 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.03 2 −3.14662−3.14695 1.42 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.04 2 −3.14272−3.14305 3.50 × 10−4

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.05 2 −3.13878−3.13888 1.55 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1 −3.22881−3.23008 3.16 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1.4 −3.19942−3.20047 1.19 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 1.8 −3.16950−3.16978 2.14 × 10−3

1.6 1 2 0.1 1 0.1 4 0.001 0.1 0.01 0.01 2.2 −3.13905−3.13785 8.12 × 10−4

Mean square error: 0.000184568.
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6. Results and Discussion

The objective of this section is to illustrate the impact of entropy production and
melting heat transfer on the ferrohydrodynamic flow of a hybrid nanofluid consisting of
iron oxide (Fe3O4) and gold (Au) particles suspended in blood, utilizing a non-Fourier heat
flux model based on the Powell–Eyring equation. This section discusses the significance of
momentum and thermal properties in relation to important parameters, including the fer-
romagnetic parameter

(
β f = 0.0, 1.0, 3.0, 5.0

)
, fluid parameter (∈= 0.0, 1.0, 3.0, 5.0), iner-

tia coefficient (Fs = 0.0, 1.0, 3.0, 5.0), porosity parameter (K = 0.0, 1.0, 3.0, 5.0), heat source
(Q = −0.01,−0.005, 0.00, 0.01), nanoparticle volume fraction (φ = 0.00, 0.01, 0.03, 0.05), la-
tent heat of the fluid parameter (λ = 1.0, 3.0, 5.0, 7.0), Eckert number (Ec = 0.0, 0.1, 0.2, 0.3),
thermal relaxation parameter (βe = 0.0, 0.2, 0.4, 0.6), and radiation (R = 0.0, 1.0, 2.0, 3.0);
the Fe3O4-Au/blood hybrid nanofluid velocity ( f ′(η)), temperature (θ1(η)), entropy gen-
eration, skin friction C f Re1/2

x /2, and Nusselt number −NuxRe−1/2
x x−1 are visualized and

intricately deliberated. The dimensional version of the flow and transport equations is
solved using the bvp4c MATLAB program under specific boundary conditions. Solid
and dotted lines represent the properties of melting and non-melting heat transmission
over the sheet throughout the study. In order to establish the soundness and precision of
the suggested methodology, a comparative analysis is conducted between the numerical
computations at specific stages and the previous findings of Ishak et al. [24] and Pal [25],
and the results of this comparison are presented in Table 6.

Table 6. Comparison of −θ ′(0) for several values of Pr with earlier work [24,25], R = 0, β f = 0,
β = 0, Ec = 0, Q = 0, K = 0, Fs = 0.

Pr 0.72 1.0 3.0 7.0 10.0 100.0

Ishak et al. [24]
(Exact Sol.) 0.808631350 1.0000 1.923682594 3.072250207 3.720673901 12.29408326

Pal [25] 0.80863135 1.0000 1.92368256 3.07225020 3.72067391 12.2940835

Present results 0.808631 1.0000 1.923683 3.072250 3.720674 12.294083

Figures 6–9 manifest the hybrid nanofluid velocity profile f ′(η) examined for the
ferromagnetic parameter

(
β f

)
, fluid parameter (∈), inertia coefficient (Fs), and porosity

parameter (K) through numerical investigation. Figure 6 demonstrates that improving the
ferromagnetic parameter

(
β f

)
tends to decrease the f ′(η). Physically, different magnetic

parameter values lead to Lorentz force deviation, which makes the transport phenomena
more resistant. Figure 7 illustrates how the fluid parameter (∈) influence on velocity profile
f ′(η) changes. According to this graph, the velocity is improved by rising values in the fluid
parameter. Physically, an increase in the values of the fluid parameters is observed as fluid
velocity greatly increases and fluid viscosity significantly decreases. Figure 8 displays how
the velocity profile f ′(η) and inertia coefficient (Fs) are connected. This graph demonstrates
that the velocity decreases with increasing amounts of channel inclination. It is observed
that when the inertia coefficient increases, the thermal boundary layer thickens and fluid
cannot move naturally. In Figure 9, the influence of the porosity parameter (K) on the
velocity profile f ′(η) is portrayed. This graph demonstrates that the velocity profile f ′(η)
decreases with an increase in the porosity parameter (K). Physically, by increasing the
porosity, the pore size of the medium is reduced. The slowing of the fluid flow causes a
reduction in fluid velocity.
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Figures 10–16 were plotted to investigate the impact of different active factors on tem-
perature θ1(η). Figure 10 illustrates the impact of changes in the heat source parameter (Q)
on the temperature profile. An increase in the heat source parameter (Q) results in an
intensification of the temperature profile, as has been observed. Incorporating external heat
into the mechanism results in an increase in the average kinetic energy, leading to a higher
rate of particle transfer. Consequently, the temperature of the blood rises. Figure 11 depicts
the relationship between the volume fraction (φ) of (Fe3O4-Au/blood) nanoparticles and
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temperature θ1(η). It has been observed that a decrease in temperature θ1(η) leads to an
enhancement in the values of φ. Figure 12 depicts the relationship between the latent heat
of the fluid parameter (λ) and temperature θ1(η). It has been identified that increasing
temperature can enhance the values of λ. Figure 13 illustrates how the influence of the
Eckert number (Ec) on temperature θ1(η) changes. According to this graph, the temper-
ature is improved by rising values in the (Ec). Physically, a higher (Ec) produces more
kinetic energy, causing particles to collide more frequently and dissipate energy. As a result,
kinetic energy is converted into thermal energy. Figure 14 explores the effects of the thermal
relaxation parameter (βe) on temperature θ1(η). It is observed that θ1(η) declines upon an
improvement in (βe). This is because when the temperature rises, material particles need
more time to transfer heat to the particles around them. The temperature profile actually
decreases as a result of materials showing a non-conducting behavior at increasing thermal
relaxation parameter values. Therefore, it may be inferred that the Cattaneo–Christov heat
flux model has fewer temperature profiles than Fourier’s law does. The effect of (R) on
θ1(η) is represented in Figure 15. It is detected that an increase in the value of (R) causes
θ1(η) to decline. Increases in (R) values are known to cause a decrease in blood tempera-
ture. Due to the boundary conditions, it is ultimately determined that when the fluid is in
contact with a higher emissivity, it tends to absorb more radiation and consequently lose
more heat to the surroundings. This leads to a decrease in fluid temperature.
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Figure 16. Effects of λ on NG.

Figures 16–21 are plotted for investigating the significance of innumerable active
features in the entropy generation (NG) and Bejan number (Be). Figures 16 and 19 explore
the effects of latent heat of the fluid parameter (λ) on (NG) and (Be). It is noticed that
improvement in (λ) enhances (NG) and (Be). Figures 17 and 20 describe how the (NG) and
(Be) profiles are influenced by the variations in the fluid parameter (∈). It is identified that
improvement in (NG) improves the values of the fluid parameter (∈), and the opposite
nature is observed for (Be). Physically, an increase in the values of the fluid parameters
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is observed as fluid velocity greatly increases and fluid viscosity significantly decreases.
Figures 18 and 21 describe how the (NG) and (Be) profiles are influenced by the variations
in thermal radiation parameter (R). It is identified that improvement in (NG) improves the
values of the thermal radiation parameter (R), and the opposite nature is observed for (Be).
Physically, the medium becomes more thermally diffusible as a result of thermal radiation.
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Figure 22 is outlined to reveal the influence of (Ec) and (Me) on C f Re1/2
x /2. It is

discovered that there is a slight decrease in the skin friction factor of the hybrid nanofluid
over the sheet on the (Me) parameter. It is seen that C f Re1/2

x /2 expands for developing
values of (Ec). Figure 23 shows the effects of (Me) and (∈) parameters on C f Re1/2

x /2. It is
recognized that the enlargement of the skin friction factor of the blood hybrid nanofluid at
the surface amplifies (∈). It is discovered that improving values of (Me) reduces the skin
friction factor of blood hybrid nanofluid over the sheet. Figure 24 is outlined to reveal the
influence of (Ec) and (Me) on −NuxRe−1/2

x . It is discovered that there is a decay in the
Nusselt number of blood-based hybrid nanofluid over the sheet on the (Me) parameter. It
is discovered that improving values of (Ec) decreases the Nusselt number of blood-based
hybrid nanofluid over the sheet. Figure 25 is utilized to investigate the impact of φ and
Me on the −NuxRe−1/2

x of the blood nanofluid. The enhancement of the φ increments for
the Nusselt number is evident, while conversely, a contrasting trend is observed for the
Me. Figure 26 has been presented to illustrate the influence of Me and βe on the value of
−NuxRe−1/2

x . It is revealed that there is a less significant impact on the −NuxRe−1/2
x of

the hybrid nanofluid over the sheet on the (Me) parameter. It is seen that −NuxRe−1/2
x

increases for growing values of (βe).
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This investigation aimed to analyze the entropy generation associated with the flow
of a hybrid nanofluid, specifically Fe3O4-Au/blood, in a heat transfer scenario involving
both melting and non-melting conditions. The study was conducted in the presence of a
magnetic dipole over a permeable sheet, utilizing the Cattaneo–Christov heat flux model.
It is important to note that the blood can be modeled as a Powell–Eyring fluid. The study
presents a clear discussion of the physical effects of different momentum and thermal
parameters through the use of graphical representations such as contour plots. The key
findings of this examination are as follows:

• The artificial neural network model exhibits the advantageous properties of not ne-
cessitating linearization, exhibiting rapid convergence, and incurring a diminished
processing cost.

• The velocity describes the rising nature by upgrading the fluid parameter.
• The temperature increased due to the boosting of the values of the Eckert number.
• The temperature decreased due to the boosting of the thermal relaxation parameter.
• The Nusselt number increased due to an improvement in the values of the nanoparticle
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Nomenclature:

M magnetization (A/m)
T temperature of the fluid (K)
k′ permeability of the porous medium
T∞ temperature of the ambient fluid (K)
mp magnetic permeability
H magnetic field
cs heat capacity of the solid surface (J/K)
Rex local Reynolds number
Q0 heat generation/absorption coefficient
mp magnetic permeability
Me melting parameter
cp specific heat at constant pressure (Jkg−1K−1)
K the porosity parameter
k∗ mean absorption coefficient (m−1)
k thermal conductivity
F∗ Forchheimer parameter
NuxRe−1/2

x Nusselt number
C f Re1/2

x /2 skin friction coefficient
u & v velocity components (m/s)
x & y Cartesian coordinates (m)
ε dimensionless Curie temperature ratio
Q heat source parameter
R radiation parameter
Ec Eckert number
Pr Prandtl number
Fs inertia coefficient
Greek symbols
ρ density (kg m−3)
φ volume fraction of nanoparticle
α1 temperature difference parameter
θ dimensionless temperature
µ dynamic viscosity (kg m−1 s−1)
η similarity variable
υ kinematic viscosity (m2s−1)
α distance from origin to magnetic dipole
λ latent heat of the fluid parameter
βe thermal relaxation parameter
β f ferromagnetic parameter
Subscripts
f fluid
bf base fluid
hnf hybrid nanofluid
Superscript
′ differentiation with respect to η
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