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Abstract: Ptolemy’s theorem in Euclidean geometry, named after the Greek astronomer and mathe-
matician Claudius Ptolemy, is well known. We translate Ptolemy’s theorem from analytic Euclidean
geometry into the Poincaré ball model of analytic hyperbolic geometry, which is based on the
Möbius addition and its associated symmetry gyrogroup. The translation of Ptolemy’s theorem from
Euclidean geometry into hyperbolic geometry is achieved by means of hyperbolic trigonometry,
called gyrotrigonometry, to which the Poincaré ball model gives rise, and by means of the duality of
trigonometry and gyrotrigonometry.
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1. Introduction

Analytic hyperbolic geometry represents the study of hyperbolic geometry by
Lobachevsky and Bolyai; it has been studied analytically since 1988 [1], in full analogy
with the analytical study of Euclidean geometry [1–3]. In the analytical study of hyperbolic
geometry, the Einstein addition and Möbius addition capture analogies with the vector
addition, as follows:

(1) The vector addition admits scalar multiplication, giving rise to vector spaces which,
in turn, form the algebraic setting for analytic Euclidean geometry. In full analogy,

(2) The Einstein addition, which pertains to relativistically admissible velocities, also
permits scalar multiplication, giving rise to Einstein gyrovector spaces, which, in
turn, form the algebraic setting for the Klein ball model of analytic hyperbolic geome-
try [1–5]. Accordingly, the Klein model of hyperbolic geometry is also known as the
relativistic model of hyperbolic geometry [6,7]. Furthermore, in full analogy,

(3) the Möbius addition [8] admits scalar multiplication, giving rise to Möbius gyrovector
spaces, which, in turn, form the algebraic setting for the Poincaré ball model of analytic
hyperbolic geometry [1–4].

In the same way that the Euclidean vector plane admits trigonometry, each Ein-
stein gyrovector plane and Möbius gyrovector plane admits hyperbolic trigonometry,
called gyrotrigonometry.

Ptolemy’s theorem in Euclidean plane geometry, named after the Greek astronomer
and mathematician Claudius Ptolemy, is well known.

(1) In [6], we presented the well-known proof of Ptolemy’s theorem in terms of the stan-
dard trigonometry of analytic Euclidean plane geometry. In particular, the associated
law of cosines was employed.

(2) In full analogy, in [6], we discovered the hyperbolic Ptolemy’s theorem in the Klein
(relativistic) model of analytic hyperbolic plane geometry. The proof of the resulting
hyperbolic Ptolemy’s theorem is obtained by means of the gyrotrigonometry that the
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Klein model of analytic hyperbolic geometry admits. In particular, the associated law
of gyrocosines was employed.

(3) In full analogy, in this article, we discover the hyperbolic Ptolemy’s theorem in the
Poincaré ball model of analytic hyperbolic plane geometry. The proof of the resulting
hyperbolic Ptolemy’s theorem is obtained by means of the gyrotrigonometry that the
Poincaré model of analytic hyperbolic geometry admits. In particular, the associated
law of gyrocosines is employed.

Finally, we present an elegant application of the hyperbolic Ptolemy’s theorem to
gyrodiametric gyrotriangles, which results in a Pythagorean-like identity.

For a fruitful reading of this article, familiarity with Ref. [6] is recommended, where im-
portant background information about gyrogroups, gyrovector spaces, and gyrotrigonome-
try is reviewed. In particular, the duality of trigonometry–gyrotrigonometry is reviewed
and illustrated.

2. Möbius Addition and Scalar Multiplication

Let s > 0 be any positive constant and let Rn = (Rn,+, ·) be the Euclidean n-space,
n ∈ N, endowed with the common vector addition, +, and inner product, ·, and let Rn

s be
the s-ball given by

Rn
s = {v ∈ Rn : ‖v‖ < s} . (1)

Möbius addition is a binary operation, ⊕, in the s-ball Rn
s , given by

u⊕v =
(1 + 2

s2 u·v + 1
s2 ‖v‖2)u + (1− 1

s2 ‖u‖2)v

1 + 2
s2 u·v + 1

s4 ‖u‖2‖v‖2
(2)

where · and ‖·‖ are the inner product and the norm that the ball Rn
s inherits from its ambient

space Rn [8].
Note that in the Euclidean limit, s → ∞, the s-ball Rn

s expands to the whole of its
ambient space Rn, and Möbius addition tends to the common vector addition, u + v, in Rn.

Möbius addition in Rn
s , n ≥ 2, is neither commutative nor associative. Hence, the pair

(Rn
s ,⊕) does not form a group. However, it forms a gyrocommutative gyrogroup as shown,

for instance, in [2,3]. A gyrogroup is a group-like structure, a prominent concrete example
of which is given by the Einstein addition of relativistically admissible velocities, studied,
for instance, in [2,3,6]. The elegant road from Möbius to gyrogroups is revealed in [8].

The definition of gyrogroups, some of which are gyrocommutative, is presented, for
instance, in [2,3,5,6]. Gyrogroups form a natural generalization of groups [9], giving rise to
useful applications, such as in [10–28].

Möbius addition, ⊕, admits scalar multiplication, ⊗, turning Möbius gyrogroups
into Möbius gyrovector spaces (Rn

s ,⊕,⊗). Möbius scalar multiplication is given by ([1]
Section 3.6), ([2] Section 8.12), ([3], Section 6.14)

r⊗v = s

(
1 +
‖v‖

s

)r
−
(

1− ‖v‖
s

)r

(
1 +
‖v‖

s

)r
+

(
1− ‖v‖

s

)r
v
‖v‖

= s tanh(r tanh−1 ‖v‖
s

)
v
‖v‖

(3)

where r∈R, v∈Rn
s , v 6= 0; and r⊗0 = 0.

Gyrovector spaces are naturally generalized vector spaces, the definition of which is
presented, for instance, in [2,3,6].

The resulting (i) Möbius gyrovector spaces form the algebraic setting for the Cartesian
Poincaré ball model of analytic hyperbolic geometry, just as (ii) Einstein gyrovector spaces
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form the algebraic setting for the Cartesian Klein ball model of analytic hyperbolic geometry,
just as (iii) vector spaces form the algebraic setting for the standard Cartesian model of
analytic Euclidean geometry [1]. Interesting applications of gyrovector spaces are found,
for instance, in [29–40].

Thus, the notions of gyrogroups and gyrovector spaces preserve the flavor of their
classical counterparts, groups, and vector spaces [1]. In particular, in the same way that
groups are linked to symmetry in geometry, gyrogroups are linked to symmetry in gyroge-
ometry. In this paper, the gyro-counterpart of Euclidean geometry is the Poincaré model of
hyperbolic geometry.

Gyrovector planes admit hyperbolic trigonometry, called gyrotrigonometry, just as
vector planes admit common trigonometry. The law of gyrocosines in the gyrotrigonometry
of the Klein model of hyperbolic geometry is employed in [6] for the proof of Ptolemy’s
theorem in the Klein model. Similarly, the law of gyrocosines in the gyrotrigonometry of
the Poincaré ball model of hyperbolic geometry is employed in this article for the proof of
Ptolemy’s theorem in the Poincaré model.

3. Gyrotrigonometry in Möbius Gyrovector Planes and Its Law of Gyrocosines

Möbius addition and scalar multiplication allow Möbius gyrolines to be expressed ana-
lytically in a way that is fully analogous to lines in analytic Euclidean geometry. The unique
Euclidean line that passes through two distinct points, A, B ∈ Rn, is given analytically by

A + (−A + B)t , (4)

t ∈ R. In full analogy, the unique Möbius gyroline that passes through two distinct points,
A, B ∈ Rn

s , in a Möbius gyrovector space (Rn
s ,⊕,⊗), is given analytically by

A⊕(	A⊕B)⊗t , (5)

t ∈ R, where 	A = −A is depicted in Figure 1 for n = 2. 5

A, t = 0

B, t = 1

The Möbius Gyroline L
AB

through the points A and B

A⊕(⊖A⊕B)⊗t

−∞ < t < ∞

Figure 1. In the gyroformalism of analytic hyperbolic ge-
ometry, expressions that describe hyperbolic geometric ob-
jects take graceful forms analogous to their Euclidean coun-
terparts. This is illustrated here, where the unique gyroline
in a Möbius gyrovector plane (R2

s,⊕,⊗) through two given
points A,B ∈ R2

s is shown. When the gyroline parameter
t∈R runs from −∞ to ∞ the point P (t) = A⊕(	A⊕B)⊗t
runs over the gyroline LAB . In particular, at “time” t = 0
the point is at P (0) = A, and, owing to the left cancella-
tion law of Möbius addition, at “time” t = 1 the point is at
P (1) = B. The Möbius gyroline equation is shown in the
box. The analogies it shares with the Euclidean straight line
equation in the vector space approach to Euclidean geometry
are obvious.

A,B ∈ Rn.

A gyrotriangle ABC whose gyrosides are the gyrosegments AB, BC and
AC in Rn

s , along with its gyroangles, is depicted in Fig. 2. The gyrolengths
of the gyrosides of gyrotriangle ABC are

a := |BC|h = ‖	B⊕C‖
b := |AC|h = ‖	A⊕C‖
c := |AB|h = ‖	A⊕B‖ ,

(8)

as shown in Fig. 2.

Gyrotrigonometry in Möbius gyrovector spaces is studied, for instance,
in ([3] Sect. 8.5). In gyrotrigonometry the gyrocosine of a gyroangle α =

Figure 1. In the gyroformalism of analytic hyperbolic geometry, expressions that describe hyper-
bolic geometric objects take graceful forms analogous to their Euclidean counterparts. This is
illustrated here, where the unique gyroline in a Möbius gyrovector plane (R2

s ,⊕,⊗) through two
given points A, B ∈ R2

s is shown. When the gyroline parameter t∈R runs from −∞ to ∞, the point
P(t) = A⊕(	A⊕B)⊗t runs over the gyroline LAB . In particular, at “time” t = 0, the point is at
P(0) = A, and, owing to the left cancellation law of Möbius addition, at “time” t = 1, the point is
at P(1) = B. The Möbius gyroline equation is shown in the box. The analogies it shares with the
Euclidean straight line equation in the vector space approach and Euclidean geometry are obvious.
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A Möbius gyroline (5) is a circular arc that approaches the boundary of the s-ball Rn
s

orthogonally. It passes at point A when t = 0, and at point B when t = 1, and it forms a
geodesic in the Poincaré ball model of hyperbolic geometry [4].

The gyrosegment AB that links the two distinct points A, B ∈ Rn
s is given by (5) with

0 ≤ t ≤ 1. The gyrolength of a gyrosegment AB is

|AB|h := ‖	A⊕B‖ , (6)

A, B ∈ Rn
s , just as the length of a segment AB is

|AB|e := ‖ − A + B‖ , (7)

A, B ∈ Rn.
A gyrotriangle ABC whose gyrosides are the gyrosegments AB, BC, and AC in Rn

s ,
along with its gyroangles, is depicted in Figure 2. The gyrolengths of the gyrosides of
gyrotriangle ABC are

a := |BC|h = ‖	B⊕C‖
b := |AC|h = ‖	A⊕C‖
c := |AB|h = ‖	A⊕B‖ ,

(8)

as shown in Figure 2.6

α

β

γ

A

B

C

a

b

c

a = ‖⊖B⊕C‖

b = ‖⊖A⊕C‖

c = ‖⊖A⊕B‖

cosα = ⊖A⊕B
‖⊖A⊕B‖ ·

⊖A⊕C
‖⊖A⊕C‖

cosβ = ⊖B⊕A
‖⊖B⊕A‖ ·

⊖B⊕C
‖⊖B⊕C‖

cos γ = ⊖C⊕A
‖⊖C⊕A‖ ·

⊖C⊕B
‖⊖C⊕B‖

Figure 2. A gyrotriangle ABC in Möbius gyrovector plane
(R2

s,⊕,⊗), along with its (i) gyrovertices A,B,C, (ii) gyro-
side gyrolengths a, b, c, and (iii) gyroangles α, β, γ and their
gyrocosines.

∠BAC, shown in Fig. 2, is given by

(9) cosα =
	A⊕B
‖	A⊕B‖·

	A⊕C
‖	A⊕C‖ ,

just as in trigonometry the cosine of an angle α, in the Euclidean counterpart
of Fig. 2, is given by

(10) cosα =
−A+B

‖ −A+B‖·
−A+ C

‖ −A+ C‖ .

Accordingly, viewing cosα trigonometrically yields (10), while viewing
cosα gyrotrigonometrically yields (9). The resulting trigonometry and gy-
rotrigonometry duality is illustrated in ([6] Sect. 11). The usefulness of the
analogies that (5) and (4) share suggests that the analogies that (9) and (10)
share will prove useful as well. We will see in this article that this is, indeed,
the case.

Figure 2. A gyrotriangle ABC in the Möbius gyrovector plane (R2
s ,⊕,⊗), along with its (i) gyrover-

tices A, B, C, (ii) gyroside gyrolengths a, b, c, and (iii) gyroangles α, β, γ and their gyrocosines.

Gyrotrigonometry in Möbius gyrovector spaces is studied, for instance, in ([3] Section 8.5).
In gyrotrigonometry, the gyrocosine of a gyroangle α = ∠BAC, shown in Figure 2, is
given by

cos α =
	A⊕B
‖	A⊕B‖ ·

	A⊕C
‖	A⊕C‖ , (9)



Symmetry 2023, 15, 1487 5 of 9

just as in trigonometry, the cosine of an angle, α, in the Euclidean counterpart of Figure 2, is
given by

cos α =
−A + B
‖ − A + B‖ ·

−A + C
‖ − A + C‖ . (10)

Accordingly, viewing cos α trigonometrically yields (10), while viewing cos α gy-
rotrigonometrically yields (9). The resulting trigonometry–gyrotrigonometry duality is illus-
trated in ([6] Section 11). The usefulness of the analogies that (5) and (4) share suggests that
the analogies that (9) and (10) share will prove useful as well. We will see in this article that
this is, indeed, the case.

An important trigonometric identity that we will view gyrotrigonometrically is

sin
α

2
sin

γ

2
+ sin

β

2
sin

δ

2
= sin

α + β

2
sin

β + γ

2
(11)

for any α, β, γ ∈ R, where δ = 2π − (α + β + γ). Identity (11) can be realized not only
trigonometrically (i) in the Euclidean plane, but also gyrotrigonometrically (ii) in the
Einstein gyrovector plane, and (iii) in the Möbius gyrovector plane. These three distinct re-
alizations of (11) are consistent, owing to the duality of trigonometry and gyrotrigonometry,
as explained in [6].

Indeed, (i) realizing (11) in trigonometry gives rise to Ptolemy’s theorem in Euclidean
geometry, as shown in [6]; (ii) realizing (11) in Einstein gyrotrigonometry gives rise to
Ptolemy’s theorem in the Klein ball (relativistic) model of hyperbolic geometry, as shown
in [6]; and (iii) realizing (11) in Möbius gyrotrigonometry gives rise to Ptolemy’s theorem
in the Poincaré ball model of hyperbolic geometry, as we will see in Section 4.

Having the gyrotriangle notation in Figure 2, we are now in the position to state the law
of gyrocosines in a Möbius gyrovector plane, verified in ([2] Section 8.4) and ([3] Section 8.5).

Theorem 1 (The law of gyrocosines in Möbius gyrovector spaces). Let ABC be a gyrotri-
angle in a Möbius gyrovector plane (Rn

s ,⊕,⊗) with vertices A, B, C ∈ R2
s , side gyrolengths

0 < a, b, c < s, and gyroangles α, β, γ, as shown in Figure 2. Then, the gyrosides and gyroangles
of the gyrotriangle satisfy the law of gyrocosines

c2 =
a2 + b2 − 2ab cos γ

1 + a2
s b2

s − 2asbs cos γ
(12)

and, equivalently,

cos γ =
a2 + b2 − c2 − a2

s b2
s c2

2ab(1− c2
s )

(13)

where as = a/s, bs = b/s, cs = c/s, with similar relations involving the other gyrosides and
gyroangles of the gyrotriangle.

Note that in the Euclidean limit, s→ ∞, the law of gyrocosines (12) descends to the
law of cosines,

c2 = a2 + b2 − 2ab cos γ (14)

as expected. Also, note that in the context of Euclidean geometry, cos γ in (14) is viewed
trigonometrically, as in (10), while in the context of hyperbolic geometry, cos γ in (12)
and (13) is viewed gyrotrigonometrically, as in (9) and Figure 2.

4. Ptolemy’s theorem in the Poincaré Ball Model of Hyperbolic Geometry

Applying the law of gyrocosines (13) to the O-gyrovertex gyroangle α = ∠AOB of
gyrotriangle ABO, shown in Figure 3, yields

cos α =
2r2 − |AB|2h − r4

s4 |AB|2h
2r2(1− |AB|2h

s2 )
, (15)
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noting that a, b, c, and γ in (13) are, respectively, realized in (15) by r, r, |AB|h, and α.8

r

r

r

r

A

B

C

D
O
α
β

γ

δ

|AB|g|CD|g + |AD|g|BC|g = |AC|g|BD|g

Figure 3. Illustrating Ptolemy’s Theorem in the hyperbolic
plane regulated by Möbius gyrovector plane (R2

s,⊕,⊗). A
gyrocyclic gyroquadrilateral ABCD inscribed in its circum-
gyrocircle gyrocentered at its circumgyrocenter O, with gy-
roradius r = ‖	O⊕A‖ = ‖	O⊕B‖ = ‖	O⊕C‖ = ‖	O⊕D‖
is shown. The O-gyrovertex gyroangles α, β, γ and δ satisfy
the equation α+ β + γ + δ = 2π. The Hyperbolic Ptolemy’s
Theorem is fully analogous to its Euclidean counterpart, as-
serting that |AB|g|CD|g + |AD|g|BC|g = |AC|g|BD|g, where
|AB|g, etc., is defined by (20) along with (6).

4. Ptolemy’s Theorem in the Poincaré Ball Model of
Hyperbolic Geometry

Applying the law of gyrocosines (13) to the O-gyrovertex gyroangle α =
∠AOB of gyrotriangle ABO, shown in Fig. 3, yields

(15) cosα =
2r2 − |AB|2h − r4

s4
|AB|2h

2r2(1− |AB|2h
s2

)
,

noting that a, b, c and γ in (13) are, respectively, realized in (15) by r, r, |AB|h
and α.

Figure 3. Ptolemy’s theorem in the hyperbolic plane regulated by the Möbius gyrovector plane
(R2

s ,⊕,⊗). A gyrocyclic gyroquadrilateral ABCD inscribed in its circumgyrocircle gyrocentered at its
circumgyrocenter O, with gyroradius r = ‖	O⊕A‖ = ‖	O⊕B‖ = ‖	O⊕C‖ = ‖	O⊕D‖ is shown.
The O-gyrovertex gyroangles α, β, γ, and δ satisfy the following equation: α + β + γ + δ = 2π.
The Hyperbolic Ptolemy’s theorem is fully analogous to its Euclidean counterpart, asserting that
|AB|g|CD|g + |AD|g|BC|g = |AC|g|BD|g, where |AB|g, etc., is defined by (20) along with (6).

We now employ the trigonometric (and, hence, gyrotrigonometric) identity sin2(α/2) =
(1− cos α)/2, obtaining from (15) the equation

sin2 α

2
=

1− cos α

2
=

(s2 − r2)2

4s2r2(s2 − |AB|2h)
|AB|2h (16)

so that, finally,

sin
α

2
=

s2 − r2

2sr
√

s2 − |AB|2h
|AB|h =

1− r2
s

2r
γ|AB|h |AB|h (17)

where rs = r/s, and where γ|AB|h is the Lorentz gamma factor of |AB|h, given by

γ|AB|h =
1√

1− |AB|2h
s2

. (18)

Repeating the result in (17) for the six O-gyrovertex gyrotriangle gyroangles α, β, γ, δ,
α + β, and β + γ in Figure 3 yields the following six equations:
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sin
α

2
=

1− r2
s

2r
γ|AB|h |AB|h =:

1− r2
s

2r
|AB|g

sin
β

2
=

1− r2
s

2r
γ|BC|h |BC|h =:

1− r2
s

2r
|BC|g

sin
γ

2
=

1− r2
s

2r
γ|CD|h |CD|h =:

1− r2
s

2r
|CD|g

sin
δ

2
=

1− r2
s

2r
γ|AD|h |AD|h =:

1− r2
s

2r
|AD|g

sin
α + β

2
=

1− r2
s

2r
γ|AC|h |AC|h =:

1− r2
s

2r
|AC|g

sin
β + γ

2
=

1− r2
s

2r
γ|BD|h |BD|h =:

1− r2
s

2r
|BD|g

(19)

where
|AB|g = γ|AB|h |AB|h (20)

and so forth. We call |AB|g the g-modified gyrolength of gyroside AB, and so forth.
Substituting (19) into the gyrotrigonometric identity (11) yields the result (21) of

Ptolemy’s theorem in the Poincaré ball model of hyperbolic geometry.

Theorem 2 (Ptolemy’s theorem in the Poincaré ball model of hyperbolic geometry). Let
ABCD be a gyrocyclic gyroquadrilateral, shown in Figure 3. Then, the product of the g-modified
gyrodiagonals equals the sum of the products of the g-modified opposite gyrosides; that is

|AB|g|CD|g + |AD|g|BC|g = |AC|g|BD|g . (21)

Clearly, in the Euclidean limit, s→ ∞, the hyperbolic Ptolemy’s theorem (21) descends
to its Euclidean counterpart, studied in [6].

5. Gyrodiametric Gyrotriangles

Definition 1. A gyrotriangle is gyrodiametric if one of its gyrosides coincides with a gyrodiameter
of its circumgyrocircle.

In Euclidean geometry, a diametric triangle is right-angled, with the angle opposite to
the diametric side being π/2. In contrast, non-Euclidean gyrodiametric gyrotriangles are
not right-gyroangled; however, they obey a Pythagorean-like identity, as Theorem 3 asserts.

Definition 2. A gyrocyclic gyroquadrilateral is gyrodiametric if its gyrodiagonals intersect at its
circumgyrocenter, as shown in Figure 4.

A gyrodiametric gyroquadrilateral ABCD, shown in Figure 4, gives rise to two gyro-
diametric gyrotriangles, ABC and ADC. In the notation shown in Figure 4, we clearly have

α = γ

β = δ

α + β = β + γ .

(22)

Hence, by (19), the equations in (22) yield, respectively, the equations

|AB|g = |CD|g
|BC|g = |AD|g
|AC|g = |BD|g .

(23)
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Hence, it follows from (21) that

|AB|2g + |BC|2g = |AC|2g (24)

where |AB|g, |BC|g, and |AC|g are the g-modified gyrolengths of the gyrosides of the
gyrodiametric gyrotriangle ABC, as shown in Figure 4.

Formalizing the result in (24), we proved the following theorem, where we use the
notation in Figure 4.10

A

B

C

D

O
α

β
γ

δ

α = γ

β = δ

|AB|2g + |BC|2g = |AC|2g

Figure 4. A Gyrodiametric Gyroquadrilateral in a Möbius
gyrovector plane. The gyrocyclic gyroquadrilateral ABCD of
Fig. 3 is depicted here in the special position where the two
gyrodiagonals AC and BD intersect at the gyroquadrilateral
circumgyrocenter O, resulting in the two gyrodiametric gy-
rotriangles ABC and ADC. The common gyroside, AC, of
these gyrotriangles is a gyrodiameter of the gyroquadrilateral
circumgyrocircle. The Pythagorean-like formula that the g-
modified gyroside gyrolengths of a gyrodiametric gyrotrian-
gle obey in the Poincaré ball model of hyperbolic geometry
is shown.

shown in Fig. 3. Then, the product of the g-modified gyrodiagonals equals
the sum of the products of the g-modified opposite gyrosides, that is

(21) |AB|g|CD|g + |AD|g|BC|g = |AC|g|BD|g .

Clearly, in the Euclidean limit, s→∞, the hyperbolic Ptolemy’s Theorem
(21) descends to its Euclidean counterpart, studied in [6].

5. Gyrodiametric Gyrotriangles

Definition 3. A gyrotriangle is gyrodiametric if one of its gyrosides coin-
cides with a gyrodiameter of its circumgyrocircle.

Figure 4. A gyrodiametric gyroquadrilateral in a Möbius gyrovector plane. The gyrocyclic gyro-
quadrilateral ABCD of Figure 3 is depicted here in the special position where the two gyrodiagonals,
AC and BD, intersect at the gyroquadrilateral circumgyrocenter O, resulting in the two gyrodiametric
gyrotriangles, ABC and ADC. The common gyroside, AC, of these gyrotriangles is a gyrodiameter of
the gyroquadrilateral circumgyrocircle. The Pythagorean-like formula that the g-modified gyroside
gyrolengths of a gyrodiametric gyrotriangle obey in the Poincaré ball model of hyperbolic geometry
is shown.

Theorem 3 (Gyrodiametric Gyrotriangle Pythagorean-like Equation). Let ABC be a gyro-
diametric gyrotriangle in a Möbius gyrovector space (Rn

s ,⊕,⊗), where AC is the gyrodiametric
gyroside. Then, the gyrotriangle gyrosides obey the Pythagorean-like equation

|AB|2g + |BC|2g = |AC|2g (25)

where

|AB|g = γ|AB|h |AB|h
|AB|h = ‖	A⊕B‖ .

(26)
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