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Abstract: In this work, we introduce some new concepts such as n-cyclic Fisher quasi-contraction
mappings, full-n-noncyclic and regular-n-noncyclic Fisher quasi-contraction mappings in metric
spaces. We then generalize the results by Safari-Hafshejani, Amini-Harandi and Fakhar. Meanwhile,
we answer the question “under what conditions does a full-n-noncyclic Fisher quasi-contraction
mapping have n(n− 1)/2 unique optimal pairs of fixed points?”. Further, to support the main results,
we highlight all of the new concepts via non-trivial examples.

Keywords: best proximity point; n-cyclic Fisher quasi-contraction mapping; regular-n-noncyclic and
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1. Introduction

In 1974, Ćirić [1] proved a fixed point (fp) result for a novel class of contractive
mappings, which is called quasi-contraction mapping. In fact, he showed that quasi-
contraction is a real generalization of some well-known linear contractions, and his result
was an expansion of the Banach contraction principle. Then, he proved the existence
and uniqueness of fp for T-orbitally single-valued mappings and F-orbitally multi-valued
mappings in complete metric spaces.

A self-mapping S on a metric space Y is named a generalized contraction if nonnega-
tive functions exist m(i, j), n(i, j), o(i, j) and p(i, j) for every i, j ∈ Y so that

sup
i,j∈Y
{m(i, j) + n(i, j) + o(i, j) + 2p(i, j)} < 1

and

d(Si, Sj) 6 m(i, j)d(i, j) + n(i, j)d(i, Si) + o(i, j)d(j, Sj) + 2p(i, j)[d(i, Sj) + d(j, Si)],

and is named a quasi-contraction if there is 0 6 ω < 1 so that

d(Si, Sj) 6 ω max{d(i, j), d(i, Si), d(j, Sj), d(i, Sj), d(j, Si)}

for all i, j ∈ Y [1].
In 1977, Rhoades [2] compared various contractive mappings in metric spaces and

showed that Ćirić contractive mapping is one of the most total contractive mappings in
metric spaces as it contains many different versions of contractions. Thus, many authors
became interested in studying quasi-contractions and extended the Ćirić’s fp results in
various aspects. One of these results was introduced by Fisher [3] as follows:
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Theorem 1. Let (Y, d) be a complete metric space and S : Y → Y be a continuous mapping.
Assume that there exists m, n ∈ N and some λ ∈ [0, 1) provided that

d(Smi, Sn j) 6 λ max{d(Sαi, Sβ j), d(Sαi, Sα′ i), d(Sβ j, Sβ′ j) :

0 ≤ α, α′ ≤ m and 0 ≤ β, β′ ≤ n}

for all i, j ∈ Y. Then S has a unique fp.

For more details, see [4–6] and references therein.
Although the fp theory is a significant tool for solving fp equations for mappings T

defined on a subset A of a metric space (X, d), a non-self mapping T : A→ B does not neces-
sarily have an fp. Hence, one may attempt to find an element x that is, in some sense, closest
to Tx. The best approximation theorems and best proximity point (bpp) theorems became
famous in this viewpoint. Let (X, d) be a metric space, ∅ 6= A, B ⊂ X, d(A, B) = inf{d(x, y);
x ∈ A, y ∈ B} and T : A→ B be a non-self mapping. The bpp(s) of T is the set of all points
x ∈ A so that d(x, Tx) = d(A, B). The main goal of the bpp theory is to provide enough
conditions that vouch for the existence of such points. Hence, this theory for various
mappings has been considered by many researchers (for example, see [7–12]). On the other
hand, in 2003, Kirk et al. [13] formulated and defined cyclic mappings as follows:

A mapping T : A ∪ B → A ∪ B is said to be cyclic if T(A) ⊆ B and T(B) ⊆ A. Note
that if T(A) ⊆ A and T(B) ⊆ B, then T is called a noncyclic mapping.

In [7], Eldred et al. proved the existence of an optimal pair of fp(s) of noncyclic
mappings. After that, Eldred and Veeremani [8] studied the existence of the bpp of cyclic
contraction mappings on uniformly convex Banach spaces. Moreover, Suzuki et al. [9] and
Espínola et al. [11] established the existence of the bpp for cyclic contraction mappings in
metric spaces by applying the properties: unconditionally Cauchy and weakly uncondi-
tionally Cauchy, respectively. In fact, the researchers mentioned above have fused cyclical
and noncyclic concepts of mappings with the bpp theory to solve some problems in the
approximation and optimization theories. Hence, many authors are working on finding
the bpp for cyclic and noncyclic mappings in various spaces in [14–17] and the references
therein. Ultimately, Safari-Hafshjani et al. [18] defined a Fisher quasi-contraction and
studied the existence of fp(s) and bpp(s) for noncyclic and cyclic Fisher quasi-contraction
mappings.

In this work, we define the concepts of n-cyclic Fisher quasi-contraction mappings,
as well as full-n-noncyclic and regular-n-noncyclic Fisher quasi-contraction mappings in
metric spaces. Next, we generalize the results by Safari-Hafshejan et al. [18] and prove
the existence of n(n− 1)/2, the unique optimal pair of fp(s) for full-n-noncyclic Fisher
quasi-contraction mappings.

Let us start with some well-known definitions and notions, which are required in the
following sections.

For two nonempty sets, A and B in X, we denote δ[A, B] by δ[A, B] = sup{d(x, y) :
x ∈ A, y ∈ B}. Note that δ[A, B] exhibits symmetry.

Definition 1 ([9,14]). Let A and B be two nonempty subsets of a metric space (X, d). Then,
1. The pair (A, B) has the unconditionally Cauchy (UC) property if for two sequences {xn} and

{x′n} in A and a sequence {yn} in B, lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, yn) = d(A, B) implies

lim
n→∞

d(xn, x′n) = 0.

2. The pair (A, B) has the weakly unconditionally Cauchy (WUC) property if for each {xn} ⊆ A
and ε > 0, there exists y ∈ B so that d(xn, y) 6 d(A, B) + ε for n > n0 implies {xn}
is Cauchy.

Proposition 1 ([11]). Let A and B be two nonempty subsets of a metric space (X, d) provided that
A is complete and (A, B) has the UC property. Then (A, B) has the WUC property.

Definition 2 ([19]). The mapping T on A1 ∪ A2 ∪ · · · ∪ An is called n-cyclic when T(A1) ⊆ A2,
T(A2) ⊆ A3, . . . , T(An) ⊆ A1.
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2. Results of the n-Cyclic Fisher Quasi-Contraction
Inspired by the findings of the study about cyclic Fisher quasi-contractions [18], we

introduce the n-cyclic Fisher quasi-contraction as follows:

Definition 3. Let A1, A2, . . . , An be nonempty subsets of a metric space (X, d) and T be n-cyclic
mapping on A1 ∪ A2 ∪ · · · ∪ An. Point x∗ ∈ A1 ∪ A2 ∪ · · · ∪ An is called the bpp for T if there
exist m ∈ N and 1 6 m 6 n provided that

x∗ ∈ Am and d(x∗, Tx∗) =

{
d(Am, Am+1) 1 6 m 6 n− 1
d(An, A1) m = n

.

It is obvious that if d(Am, Am+1) = 0 or d(An, A1) = 0, then the above problem finds
an fp of T.

Remark 1. From now on, whenever the term (Am, Am+1) is observed, it refers to one of the pairs
of consecutive sets like (A1, A2), (A2, A3), . . . , (An−1, An) and (An, A1).

Notations. Let A1, A2, . . . , An be nonempty subsets of a metric space X, p, q ∈ N and
T be a n-cyclic mapping on A1 ∪ A2 ∪ · · · ∪ An. Then,

Ax,y
pn,qn = {Tinx, T jn−1y; 0 6 i 6 p, 1 6 j 6 q} ⊆ Am,

Bx,y
pn,qn = {T jn+1x, Tiny; 0 6 j 6 p− 1, 0 6 i 6 q} ⊆ Am+1,

for all x ∈ Am and y ∈ Am+1. Moreover, for x ∈ Am and r ∈ N, consider two sets Ax
r and

Bx
r as follows:

Ax
r = {x, Tnx, T2nx, T3nx, . . . , Trnx} ⊆ Am,

Bx
r = {Tx, Tn+1x, T2n+1x, T3n+1x, . . . , Trn+1x} ⊆ Am+1.

Definition 4. Let A1, A2, . . . , An be nonempty subsets of a metric space (X, d) and T be n-cyclic
mapping on A1 ∪ A2 ∪ · · · ∪ An. The mapping T is called the n-cyclic Fisher quasi-contraction for
some 1 6 m 6 n if there exist p, q ∈ N and 0 6 c < 1 so that

max {d(Tpnx, Tqny), d(Tpn+1x, Tqn−1y)} 6 cδ[Ax,y
pn,qn,Bx,y

pn,qn] + (1− c)d(Am, Am+1)

for all x ∈ Am and y ∈ Am+1.

Example 1. Consider R with the Euclidean metric, A1 = [0, 2] and A2 = [−2, 0]. Assume that
T : A1 ∪ A2 → A1 ∪ A2 is defined by

Tx =

{
−x x ∈ A1

− x
2 x ∈ A2

.

For p = q = 1 and c = 1
2 , we have

max {d(T2x, T2y), d(T3x, T1y)} = |x− y|
2

6
1
2

δ[{x, T2x, Ty}, {y, T2y, Tx}] + 1
2

d(A1, A2).

Thus, T is a 2-cyclic Fisher quasi-contraction for every x ∈ A1 and y ∈ A2. Since

d(T2x, T2y) 6 max {d(T2x, T2y), d(T3x, T1y)},

then

d(T2x, T2y) 6
1
2

δ[{x, T2x, Ty}, {y, T2y, Tx}] + 1
2

d(A1, A2).
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This is the same example from Safari et al. [18] for n = 2.

One of the fundamental steps in the literature on fp(s) is to find a Picard iteration
sequence. Here, for x0 ∈ Am and y0 ∈ Am+1, we define our iteration sequence as follows:

xi =

{
T

in
2 x0 ∈ Am, i is even

T
(i−1)n

2 +1x0 ∈ Am+1, i is odd
and yi =

{
T

in
2 y0 ∈ Am+1, i is even

T
(i+1)n

2 −1y0 ∈ Am, i is odd
. (1)

Lemma 1. Let A1, A2, . . . , An be nonempty subsets of a metric space (X, d) and T be the n-cyclic
Fisher quasi-contraction mapping on A1 ∪ A2 ∪ · · · ∪ An with the quantities pn,
qn, and 0 6 c < 1. Also, for x0 ∈ Am, consider sequence {xi} to be the same as in (1). Then,
δ[Ax0

r ,Bx0
r ] = d(Tsnx0, Ts′n+1x0) for some s, s′ ∈ N, where sn < pn or s′n < qn.

Proof. For simplicity, assume that qn > pn. Since Ax0
r and Bx0

r are finite sets, we have
δ[Ax0

r ,Bx0
r ] = sup{d(α, β); α ∈ Ax0

r , β ∈ Bx0
r )} = d(Tsnx0, Ts′n+1x0) for some s, s′ ∈ N. On

the contrary, suppose that p 6 s 6 r and q 6 s′ 6 r. Then, by the definition of {xi},
Tsn−pnx0 ∈ Am and Ts′n−qn+1x0 ∈ Am+1. Thus, we have

δ[Ax0
r ,Bx0

r ] = d(Tsnx0, Ts′n+1x0)

= d(Tpn(Tsn−pnx0), Tqn(Ts′n−qn+1x0))

6 max{d(Tpn(Tsn−pnx0), Tqn(Ts′n−qn+1x0)), d(Tpn+1(Tsn−pnx0), Tqn−1(Ts′n−qn+1x0))}

6 cδ[AT(s−p)nx0,T(s′−q)n+1x0
pn,qn ,BT(s−p)nx0,T(s′−q)n+1x0

pn,qn ] + (1− c)d(Am, Am+1),

which implies that δ[Ax0
r ,Bx0

r ] 6 cδ[Ax0
r ,Bx0

r ] + (1− c)d(Am, Am+1) and since 0 6 c < 1,
this is impossible.

Lemma 2. Assume that all the conditions of Lemma 1 are met. Then, for k, k′ ∈ N with k′ > k >
q > p, we have

lim
k,k′→∞

d(x2k, x2k′+1) = d(Am, Am+1). (2)

Proof. From Lemma 1, we have δ[Ax0
r ,Bx0

r ] = d(Tsnx0, Ts′n+1x0) for some s, s′ ∈ N, where
sn < pn or s′n < qn. At the first, we show that δ[Ax0

r ,Bx0
r ] is bounded from above; that is,

δ[Ax0
r ,Bx0

r ] 6 Mc
x0

, (3)

where

Mc
x0

=
1

1− c
max{d(Tin+1x0, T jn+1x0); 0 6 i, j 6 p + q + 1}+ d(Am, Am+1)

is the same upper bound. For this, we consider the three following cases.
Case 1: Suppose that sn < pn and s′n < qn. Then, we have the following:

(1− c)d(Tsnx0, Ts′n+1x0) 6 d(Tsnx0, Ts′n+1x0) 6 max{d(Tin+1x0, T jn+1x0); 0 6 i, j 6 p + q + 1}.

Thus,

d(Tsnx0, Ts′n+1x0) 6
1

1− c
max{d(Tsnx0, Ts′n+1x0); 0 6 i, j 6 p + q + 1}

6
1

1− c
max{d(Tsnx0, Ts′n+1x0); 0 6 i, j 6 p + q + 1}+ d(Am, Am+1),
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which implies that δ[Ax0
r ,Bx0

r ] = d(Tsnx0, Ts′n+1x0) 6 Mc
x0

.
Case 2: Suppose that sn < pn and qn 6 s′n. Then, Ts′n−qn+1 ∈ Am+1 and

d(Tsnx0, Ts′n+1x0) 6 d(Tsnx0, Tpnx0) + d(Tpnx0, Ts′n+1x0)

= d(Tsnx0, Tpnx0) + d(Tpnx0, Tqn(Ts′n−qn+1x0))

6 d(Tsnx0, Tpnx0) + (cδ[Ax0
r ,Bx0

r ] + (1− c)d(Am, Am+1)).

Therefore, (1 − c)δ[Ax0
r ,Bx0

r ] 6 d(Tsnx0, Tpnx0) + (1 − c)d(Am, Am+1), which con-
cludes that δ[Ax0

r ,Bx0
r ] = d(Tsnx0, Ts′n+1x0) 6 Mc

x0
.

Case 3: Suppose that pn 6 sn and s′n < qn. Then, Tsn−pnx0 ∈ Am and

d(Tsnx0, Ts′n+1x0) = d(Tpn(Tsn−pnx0), Ts′n+1x0)

6 d(Tpn(Tsn−pnx0), Tqn+1x0) + d(Tqn+1x0, Ts′n+1x0)

6 d(Tqn+1x0, Ts′n+1x0) + (cδ[Ax0
r ,Bx0

r ] + (1− c)d(Am, Am+1)).

Therefore, (1 − c)δ[Ax0
r ,Bx0

r ] 6 d(Tqn+1x0, Ts′n+1x0) + (1 − c)d(Am, Am+1), which
concludes that δ[Ax0

r ,Bx0
r ] = d(Tsnx0, Ts′n+1x0) 6 Mc

x0
.

Now, for the optional λ ∈ N and k > q > p, we show that

δ[Ax2k
λ ,Bx2k

λ ] 6 cδ[Ax2k−q

λ+
q
2

,Bx2k−q

λ+
q
2
] + (1− c)d(Am, Am+1), (4)

in which

Ax2k−q

λ+
q
2
= {x2k−q, Tnx2k−q, T2nx2k−q, . . . , T(λ+

q
2 )nx2k−q} = {x2k−q, x2k−q+2, . . . , x2k+2λ},

Bx2k−q

λ+
q
2
= {T1x2k−q, Tn+1x2k−q, T2n+1x2k−q, . . . , T(λ+

q
2 )n+1x2k−q} = {x2k−q+1, x2k−q+3, . . . , x2k+2λ+1}.

Since k > q > p, then x2k+2s−2p ∈ Am and x2k+2s′−2q+1 ∈ Am+1. Also, T is n-cyclic Fisher
quasi-contraction mapping. Thus,

δ[Ax2k
λ ,Bx2k

λ ] = d(Tsnx2k, Ts′n+1x2k)

= d(Tpnx2k+2s−2p, Tqnx2k+2s′−2q+1)

6 cδ[A
x2k+2s−2p ,x2k+2s′−2q+1
pn,qn ,B

x2k+2s−2p ,x2k+2s′−2q+1
pn,qn ] + (1− c)d(Am, Am+1)

= cδ[{Tinx2k+2s−2p, T jn−1x2k+2s′−2q+1 : 0 6 i 6 p, 1 6 j 6 q},

{T jn+1x2k+2s−2p, Tinx2k+2s′−2q+1 : 0 6 j 6 p− 1, 0 6 i 6 q}] + (1− c)d(Am, Am+1)

= cδ[{x2k+2s−2p+2i, x2k+2s′−2q+2j : 0 6 i 6 p, 1 6 j 6 q},
{x2k+2s−2p+2j+1, x2k+2s′−2q+2i+1 : 0 6 j 6 p− 1, 0 6 i 6 q}] + (1− c)d(Am, Am+1),

which induces that (4) holds.
Also, for k, k′ ∈ Nwith k′ > k > q > p, we show that

d(x2k, x2k′+1) 6 cδ[Ax2k−q

k′−k+ q
2
,Bx2k−q

k′−k+ q
2
] + (1− c)d(Am, Am+1), (5)

in which

Ax2k−q

k′−k+ q
2
= {x2k−q, Tnx2k−q, T2nx2k−q, . . . , T(k′−k+ q

2 )nx2k−q} = {x2k−q, x2k−q+2, . . . , x2k′},

Bx2k−q

k′−k+ q
2
= {T1x2k−q, Tn+1x2k−q, T2n+1x2k−q, . . . , T(k′−k+ q

2 )n+1x2k−q} = {x2k−q+1, x2k−q+3, . . . , x2k′+1}.

Since k′ > k > q > p, then x2k−2p ∈ Am and x2k′−2q+1 ∈ Am+1. Also, the mapping T is an
n-cyclic Fisher quasi-contraction. Thus, we have
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d(x2k, x2k′+1) = d(Tpnx2k−2p, Tqnx2k′−2q+1)

6 cδ[A
x2k−2p ,x2k′−2q+1
pn,qn ,B

x2k−2p ,x2k′−2q+1
pn,qn ] + (1− c)d(Am, Am+1)

= cδ[{Tinx2k−2p, T jn−1x2k′−2q+1 : 0 6 i 6 p, 1 6 j 6 q},

{T jn+1x2k−2p, Tinx2k′−2q+1 : 0 6 j 6 p− 1, 0 6 i 6 q}] + (1− c)d(Am, Am+1)

= cδ[{x2k−2p+2i, x2k′−2q+2j :: 0 6 i 6 p, 1 6 j 6 q},
{x2k−2p+2j+1, x2k′−2q+2i+1 : 0 6 j 6 p− 1, 0 6 i 6 q}] + (1− c)d(Am, Am+1),

which induces that (5) holds.
Using (4) and (5), we have

d(x2k, x2k′+1) 6 c(cδ[Ax2k−2q
k′−k+q,Bx2k−2q

k′−k+q] + (1− c)d(Am, Am+1)) + (1− c)d(Am, Am+1)

= c2δ[Ax2k−2q
k′−k+q,Bx2k−2q

k′−k+q] + (1− c2)d(Am, Am+1).

Continuing this procedure, we have

d(x2k, x2k′+1) 6 c[
2k
q ]

δ[A
x

2k−[ 2k
q ]q

k′−k+ q
2 [

2k
q ]

,B
x

2k−[ 2k
q ]q

k′−k+ q
2 [

2k
q ]
] + (1− c[

2k
q ]
)d(Am, Am+1)

6 c[
2k
q ]

δ[Ax0
k′ ,B

x0
k′ ] + (1− c[

2k
q ]
)d(Am, Am+1).

Using (3), we have

d(Am, Am+1) 6 d(x2k, x2k′+1) 6 c[
2k
q ]Mc

x0
+ (1− c[

2k
q ]
)d(Am, Am+1). (6)

If k→ ∞ in (6), then k′ → ∞ and c[
2k
q ] → 0, and so (2) is established.

Example 2. Consider R with the Euclidean metric, A1 = [0, 1], A2 = [2, 3) and A3 = [3, 4]. We
define T : A1 ∪ A2 ∪ A3 → A1 ∪ A2 ∪ A3 as follows:

Tx =


2, x ∈ A1

3, x ∈ A2

−x + 4, x ∈ A3

.

Then, for p = q = 1, c = 1
2 and for any x ∈ A1 and y ∈ A2, we have

max{d(1, 2), d(2, 1)} = max{d(T3x, T3y), d(T4x, T2y)}

6
1
2

δ[{x, 1}, {y, 2}] + (1− 1
2
)d(A1, A2)

6
1
2

sup{d(x, y), d(x, 2), d(1, y), d(1, 2)}+ 1
2

.

Hence, the mapping T is a 3-cyclic Fisher quasi-contraction. On the other hand, by a simple
calculation, we have {x2k} = {1} and {x2k′+1} = {2}. This shows that

lim
k,k′→∞

d(x2k, x2k′+1) = d(A1, A2) = 1.

Lemma 3. Consider a metric space (X, d) with the subsets A1, A2, . . . , An 6= ∅ such that Am
and Am+1 have the WUC property. Also, suppose that T is an n-cyclic Fisher quasi-contraction
mapping on A1 ∪ A2 ∪ · · · ∪ An. Further, for x0 ∈ Am, consider the sequence {xi} to be the same
as in (1). Then, two sequences {x2k} = {Tknx0} and {x2k+1} = {Tkn+1x0} are Cauchy.
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Proof. Using Lemma 2, for any {x2k} ⊆ Am and for every ε > 0, there exists y ∈ Am+1
so that d(x2k, y) 6 d(Am, Am+1) + ε for n > n0. Since the pair (Am, Am+1) has the WUC
property, then {x2k} is a Cauchy sequence. Analogously, {x2k+1} is Cauchy.

Now, we find the bpp for the n-cyclic Fisher quasi-contraction mapping.

Theorem 2. Assume that T is the n-cyclic Fisher quasi-contraction mapping on A1 ∪ A2 ∪ · · · ∪
An with the quantities pn, qn, 1 6 m 6 n and 0 6 c < 1, where A1, A2, . . . , An are nonempty
subsets of a metric space (X, d) and Am is complete. If the mapping T is continuous at each point
of set

S = {z ∈ Am : z = lim
k→∞

Tknx for some x ∈ Am}

and the pair (Am, Am+1) has the UC property, then
1. T has at least one bpp z ∈ Am;
2. Tn has at most n fp(s).

Proof. Using Lemma 3, for any x0 ∈ Am, {x2k} = {Tknx0} is a Cauchy sequence in Am.
Since Am is complete, we have lim

k→∞
Tknx0 = z for some z ∈ Am. Thus, z ∈ S. Now, by the

continuity of T and d, and using Lemma 2, we have

d(z, Tz) = d( lim
k→∞

Tknx0, T( lim
k→∞

Tknx0))

= d( lim
k→∞

Tknx0, lim
k→∞

Tkn+1x0)

= lim
k→∞

d(x2k, x2k+1)

= d(Am, Am+1).

This displays that z ∈ Am is a bpp of T.
Now, we establish Tn has at most n fp(s). Suppose that {x2k} = {Tknx0},

{x′k} = {T
(k+1)nx0} and {yk} = {Tkn+1x0}. Then, by Lemma 2, we gain

lim
k→∞

d(x2k, yk) = lim
k→∞

d(x′k, yk) = d(Am, Am+1).

Since the pair (Am, Am+1) has the UC property, then lim
k→∞

d(x2k, x′k) = 0. Using the continu-

ity of d, we have

0 = lim
k→∞

d(x2k, x′k)

= d( lim
k→∞

x2k, lim
k→∞

x′k)

= d(z, Tn( lim
k→∞

Tknx0))

= d(z, Tnz),

which induces that Tnz = z; that is, Tn has an fp. Now, we prove this fp is unique. Similar
to the above argument, for each x ∈ Am, assume that z′ ∈ Am provided that

lim
k→∞

Tknx = z′, d(z′, Tz′) = d(Am, Am+1) and Tnz′ = z′.
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Now, without the loss of generality, consider d(z, Tz′) 6 d(z′, Tz). Then, we have

d(z′, Tz) = d(Tpnz′, T(Tqnz))

= d(Tpnz′, Tqn(Tz))

6 max{d(Tpnz′, Tqn(Tz)), d(Tpn+1z′, Tqn−1(Tz))}

6 cδ[Az′ ,Tz
pn,qn,Bz′ ,Tz

pn,qn] + (1− c)d(Am, Am+1)

= cδ[{z′, z}, {Tz′, Tz}] + (1− c)d(Am, Am+1)

= c sup{d(z′, Tz′), d(z′, Tz), d(z, Tz′), d(z, Tz)}+ (1− c)d(Am, Am+1)

6 cd(z′, Tz) + (1− c)d(Am, Am+1),

which implies that d(z′, Tz) = d(Am, Am+1). Thus, d(z′, Tz) = d(z, Tz) = d(Am, Am+1).
Let z′ = lim

k→∞
Tknx and z = lim

k→∞
Tknx0. Then, we have

lim
k→∞

d(Tknx0, Tz) = lim
k→∞

d(Tknx, Tz) = d(Am, Am+1).

Since the pair (Am, Am+1) has the UC property, we have z′ = z. Therefore, for each
x ∈ Am, {Tknx} converges to z. Since n ordered pairs exist (A1, A2),(A2, A3),. . . ,(An, A1),
then Tn has at most n fp(s).

Corollary 1. Assume that all the conditions of Theorem 2 are met. Further, suppose that

max{d(Tnu, Tv), d(Tu, Tnv)} 6 c min{d(Tu, v), d(u, Tv)}+ (1− c)d(Am, Am+1)

for all u, v ∈ Am. Then, T has a unique bpp z ∈ Am.

Proof. Let z1 and z2 be the bpp(s) of the mapping T. Then, z1 and z2 are the fp(s) of the
mapping Tn. Now, without loss of generality, assume d(Tz1, z2) 6 d(z1, Tz2). Then,

d(z1, Tz2) = d(Tnz1, Tz2)

6 cd(Tz1, z2) + (1− c)d(Am, Am+1)

6 cd(z1, Tz2) + (1− c)d(Am, Am+1).

Hence, d(z1, Tz2) = d(z2, Tz2) = d(Am, Am+1). Since (Am, Am+1) has the UC prop-
erty, then z1 = z2.

Example 3. Consider d, A1, A2, A3, and T to be the same as in Example 2. Clearly, T has no fp(s).
Here, we find the bpp of the mapping T and the fp of the mapping T3.

By the definition of the bpp: If x∗ ∈ A1 is the bpp, then d(x∗, Tx∗) = d(A1, A2). Thus,
d(x∗, 2) = 1 and x∗ = 1 ∈ A1 (note that x∗ = 3 /∈ A1). If x∗ ∈ A2 is the bpp, then
d(x∗, Tx∗) = d(A2, A3). Thus, d(x∗, 3) = 0, which induces that x∗ = 3 /∈ A2. Similarly, if
x∗ ∈ A3 is the bpp, then x∗ = 3 ∈ A3.

Note that all the assumptions of Theorem 2 are held. Thus, we can check the validity of the
assertion of this theorem.
1. By using (A1, A2): For z = 1 in A1, {x2k} = {T3kx0} = {1}. Thus, z = lim

k→∞
T3kx0 = 1

is the bpp of T on A1. Also, T31 = 1 and z = 1 are unique fps of T3.
2. By using (A2, A3): A2 is not complete. We cannot apply Theorem 2 to this case.
3. By using (A3, A1): For z = 3 in A3, {x2k} = {T3kx0} = {3}. Thus, z = lim

k→∞
T3kx0 = 3

is the bpp of T on A3. Also, T33 = 3 and z = 3 are unique fps of T3.
Consequently, z = 1 and z = 3 are bpp(s) for the mapping T. Also, we have T31 = 1, T32 = 2,
and T33 = 3. Thus, T3 has three fp(s).
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3. Regular-n-Noncyclic and Full-n-Noncyclic Fisher Quasi-Contractions
Let A1, A2, . . . , An be nonempty subsets of a metric space (X, d). A self-mapping T

on A1 ∪ A2 ∪ · · · ∪ An is called noncyclic if T(Ai) ⊆ Ai for 1 6 i 6 n. Also, the pair
(x′i , x′j) ∈ Ai × Aj for 0 6 i, j 6 n with i 6= j is denoted as an optimal pair of fp(s) of the
noncyclic mapping T if Tx′i = x′i , Tx′j = x′j, and d(x′i , x′j) = d(Ai, Aj).

It is obvious that if x0 ∈ Ai, y0 ∈ Aj and T is the noncyclic mapping, then xk+1 = Txk ∈
Ai and yk+1 = Tyk ∈ Aj for k ≥ 0.

Notations. Let m ∈ N ∪ {0}. Define the set Cu
m by Cu

m = {u, Tu, . . . , Tmu} for u ∈
A1 ∪ A2 ∪ · · · ∪ An. Clearly, if u ∈ Ai for i = 1, 2, . . . , n, then Cu

m ⊆ Ai.
Now, we define the notion of regular-n-noncyclic and full-n-noncyclic Fisher quasi-

contractions in metric spaces. Then, we obtain the main outcomes of this part.

Definition 5. Let A1, A2, . . . , An be nonempty subsets of a metric space (X, d) and T be a non-
cyclic mapping on A1 ∪ A2 ∪ · · · ∪ An. Then, T is said to be
1. A regular-n-noncyclic Fisher quasi-contraction if there exist two sets Ai and Aj for 1 6 i,

j 6 n with i 6= j and some pi, pj ∈ N so that

d(Tpi x, Tpj y) 6 cδ[Cx
pi

, Cy
pj ] + (1− c)d(Ai, Aj)

for each x ∈ Ai and y ∈ Aj, where 0 6 c < 1;
2. A full-n-noncyclic Fisher quasi-contraction if for all Ai and Aj, where 1 6 i, j 6 n with i 6= j,

there exist some pi, pj ∈ N so that

d(Tpi x, Tpj y) 6 cδ[Cx
pi

, Cy
pj ] + (1− c)d(Ai, Aj)

for each x ∈ Ai and y ∈ Aj, where 0 6 c < 1.

Lemma 4. Let A1, A2, . . . , An be nonempty subsets of a metric space (X, d) and T be a regular-n-
noncyclic Fisher quasi-contraction mapping on A1 ∪ A2 ∪ · · · ∪ An. Then,

δ[Cx0
k , Cy0

l ] 6 Mx0,y0 (7)

for each k, l ∈ N, where

Mx0,y0 =
1

1− c
max{d(Tix0, T jy0), d(Tix0, T jx0), d(Tiy0, T jy0); 0 6 i, j 6 max{pi, pj}}+ d(Ai, Aj).

Proof. Since the mapping T is a regular-n-noncyclic Fisher quasi-contraction, there exist
two sets Ai and Aj for 1 6 i, j 6 n with i 6= j and some pi, pj ∈ N such that

d(Tpi x, Tpj y) 6 cδ[Cx
pi

, Cy
pj ] + (1− c)d(Ai, Aj). (8)

First, we show that

δ[Cx0
k , Cy0

l ] = d(Trx0, Tr′y0) where r < pi or r
′
< pj. (9)

On the contrary, suppose that δ[Cx0
k , Cy0

l ] = d(Tux0, Tvy0), where pi 6 u 6 k and
pj 6 v 6 l. Then, u− pi ≥ 0 and v− pj ≥ 0, and xu−pi = Tu−pi x0 and yv−pj = Tv−pj y0,
respectively. It follows from (8) that

δ[Cx0
k , Cy0

l ] = d(Tux0, Tvy0)

= d(Tpi Tu−pi x0, Tpj Tv−pj y0)

6 cδ[C
xu−pi
pi , C

yv−pj
pj ] + (1− c)d(Ai, Aj)

6 cδ[Cx0
k , Cy0

l ] + (1− c)d(Ai, Aj),
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which, by c ∈ [0, 1), implies that δ[Cx0
k , Cy0

l ] 6 d(Ai, Aj). Consequently, δ[Cx0
k , Cy0

l ] =
d(Ai, Aj) and (9) holds.

Now, we prove (7) by applying (9) and consider the three following cases.
Case 1: Suppose that r < pi and r

′
< pj. Then,

(1− c)d(Trx0, Tr′y0) 6 d(Trx0, Tr′y0)

6 {d(Tix0, T jy0), d(Tix0, T jx0), d(Tiy0, T jy0); 0 6 i, j 6 max{pi, pj}}
+ (1− c)d(Ai, Aj),

which concludes that d(Trx0, Tr′y0) 6 Mx0,y0 . Thus, (7) holds.
Case 2: Assume that 0 6 r < pi and pj 6 r′ 6 l. Then,

δ[Cx0
k , Cy0

l ] = d(Trx0, Tr′y0)

6 d(Trx0, Tpi x0) + d(Tpi x0, Tr′y0)

6 d(Trx0, Tpi x0) + d(Tpi x0, Tpj Tr′−pj y0)

6 d(Trx0, Tpi x0) + (cδ[Cx0
k , Cy0

l ] + (1− c)d(Ai, Aj)),

which implies that (1− c)δ[Cx0
k , Cy0

l ] 6 d(Trx0, Tpi x0) + (1− c)d(Ai, Aj). Thus, (7) holds.
Case 3: Similarly, if pi 6 r 6 k and r′ < pj, then (7) holds.

Lemma 5. Assume that all the conditions of Lemma 4 are met. Further, suppose that xt+1 = Txt
and yt′+1 = Tyt′ for t, t′ ∈ N∪ {0}. Then,

lim
t,t′→∞

d(xt, yt′) = d(Ai, Aj). (10)

Proof. Since t, t′ → ∞, without loss of generality, we can suppose that t, t′ > max{pi, pj}.
Hence, t − pi ≥ 0 and t′ − pj ≥ 0. On the other hand, δ[Cxt

k , Cyt′
l ] = sup{d(x, y) :

x ∈ Cxt
k , y ∈ Cyt′

l }. Thus, for 0 6 r′ 6 k and 0 6 s′ 6 l, we obtain

δ[Cxt
k , Cyt′

l ] = d(Tr′xt, Ts′yt′)

= d(Tpi+r′xt−pi , Tpj+s′yt′−pj
)

= d(Tpi Tr′xt−pi , Tpj Ts′yt′−pj
)

6 cδ[C
xt−pi
k+pi

, C
yt′−pj
l+pj

] + (1− c)d(Ai, Aj).

Consequently,

δ[Cxt
k , Cyt′

l ] 6 cδ[C
xt−pi
k+pi

, C
yt′−pj
l+pj

] + (1− c)d(Ai, Aj). (11)

Now, by using (11) and by putting k = l = 0, we have

d(xt, yt′) = δ[Cxt
0 , Cyt′

0 ] 6 cδ[C
xt−pi
pi , C

yt′−pj
pj ] + (1− c)d(Ai, Aj)

6 c(cδ[C
xt−2pi
2pi

, C
yt′−2pj
2pj

] + (1− c)d(Ai, Aj)) + (1− c)d(Ai, Aj)

= c2δ[C
xt−2pi
2pi

, C
yt′−2pj
2pj

] + (1− c2)d(Ai, Aj)

6 c2(cδ[C
xt−3pi
3pi

, C
yt′−3pj
3pj

] + (1− c)d(Ai, Aj)) + (1− c2)d(Ai, Aj)

= c3δ[C
xt−3pi
3pi

, C
yt′−3pj
3pj

] + (1− c3)d(Ai, Aj)
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for t, t′ > max{2pi, 2pj}.
Continuing this process, using Lemma 4 and setting α(t, t′) = min{[ t

pi
], [ t′

pj
]}, we have

d(Ai, Aj) 6 d(xt, yt′)

6 cα(t,t′)δ[C
xt−α(t,t′).pi
α(t,t′).pi

, C
yt′−α(t,t′).pj
α(t,t′).pj

] + (1− cα(t,t′))d(Ai, Aj)

6 cα(t,t′)δ[Cx0
t , Cy0

t′ ] + (1− cα(t,t′))d(Ai, Aj)

6 cα(t,t′)Mx0,y0 + (1− cα(t,t′))d(Ai, Aj).

Now, by taking the limit as t, t′ → ∞, (10) is established.

Lemma 6. Let A1, A2, . . . , An be nonempty subsets of a metric space (X, d) and T be a regular-n-
noncyclic Fisher quasi-contraction mapping on A1 ∪ A2 ∪ · · · ∪ An. Further, suppose that (Ai, Aj)
has the WUC property, and for x0 ∈ Ai, consider xt+1 = Txt for any t > 0. Then, the sequence
{xt} is Cauchy.

Proof. By Lemma 5, {xt} is Cauchy.

Theorem 3. Let A1, A2, . . . , An 6= ∅ be subsets of (X, d) and T be a regular-n-noncyclic Fisher
quasi-contraction mapping on A1 ∪ · · · ∪ An. Also, let Ai and Aj for 1 6 i, j 6 n be com-
plete subsets of X such that (Ai, Aj) and (Aj, Ai) have the UC property. Further, assume
that T : Ai → Ai and T : Aj → Aj are continuous. Then, T has a unique optimal pair of
fp(s) (x∗i , y∗i ) provided that {Tnx0} and {Tny0} converge to x∗i and y∗j for each x0 ∈ Ai and
y0 ∈ Aj, respectively.

Proof. From Lemma 6, {Tnx0} is Cauchy. Since Ai is complete, {Tnx0} converges to a
certain x∗i ∈ Ai. Since T is the continuous mapping on Ai, we deduce that Tx∗i = x∗i ; that
is, x∗i ∈ Ai is an fp of T. For uniqueness, assume that x∗∗i ∈ Ai is another fp of T. Also, let
y0 ∈ Aj. Using Lemma 5, we have

lim
n→∞

d(x∗i , Tny0) = lim
n→∞

d(Tnx∗i , Tny0) = d(Ai, Aj) = lim
n→∞

d(Tnx∗∗i , Tny0) = lim
n→∞

d(x∗∗i , Tny0).

Since the pair (Ai, Aj) has the UC property, then x∗i = x∗∗i . Similarly, T has a unique fp
y∗j ∈ Aj such that {Tny0} converges to a certain y∗i ∈ Ai. Also, by Lemma 5, we have

d(x∗i , y∗j ) = lim
n→∞

d(Tnx∗i , Tny∗j ) = d(Ai, Aj).

Hence, (x∗i , y∗j ) ∈ Ai × Aj is a unique optimal pair of fp of T.

As an application, in the following corollary, we show that a full-n-noncyclic Fisher
quasi-contraction mapping has n(n− 1)/2 unique optimal pairs of fixed points.

Corollary 2. Let A1, A2, . . . , An be nonempty and complete subsets of a metric space (X, d) and
T be a full-n-noncyclic Fisher quasi-contraction mapping on A1 ∪ A2 ∪ · · · ∪ An. Also, assume
that the pairs (Ai, Aj) and (Aj, Ai) have the UC property for each 1 6 i, j 6 n with i 6= j. Further,

suppose that the mapping T : Ai → Ai is continuous. Then, T has n(n−1)
2 unique optimal pairs

of fp(s) (x∗i , y∗i ) provided that {Tnx0} and {Tny0} converge to x∗i and y∗j for each x0 ∈ Ai and
y0 ∈ Aj, respectively.

Proof. By Theorem 3, (x∗i , y∗j ) is a unique optimal pair of fp of T for some i, j = 1, . . . , n

with i 6= j. Since there exist n(n−1)
2 cases of the different pairs (Ai, Aj) for any i, j, then the

assertion holds.

Example 4. Consider R2 with the metric d((α, β), (γ, δ)) =
√
(α− γ)2 + (β− δ)2 for each

(α, β), (γ, δ) ∈ R2. Also, assume that A1 = {(a, 0) : 1 6 a 6 2}, A2 = {(0, b) : 1 6
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b 6 2} and A3 = {(a, 0) : −2 6 a 6 −1} are three subsets of R2. Moreover, suppose that
T : A1 ∪ A2 ∪ A3 → A1 ∪ A2 ∪ A3 is defined as follows:

Tx =


(1, 0), x ∈ A1

(0, 1), x ∈ A2

(−2, 0), x ∈ A3

.

Clearly, T is a noncyclic mapping. For the pair (A1, A2), let p1 = p2 = 1 and c be a fixed
number in [0, 1). For each x ∈ A1 and y ∈ A2, we have δ[Cx

1 , Cy
1 ] >

√
2. Thus, we conclude that

d(T1x, T1y) = d((1, 0), (0, 1)) =
√

2 6 cδ[Cx
1 , Cy

1 ] +
√

2(1− c);

that is, the mapping T is a regular-3-noncyclic Fisher quasi-contraction. Further, since

lim
t,t′→∞

d(xt, yt′) = d((1, 0), (−1, 0)) = d(A1, A2) =
√

2,

the assertion of Lemma 5 holds. Furthermore,

T(1, 0) = (1, 0), T(0, 1) = (0, 1) and d((1, 0), (0, 1)) = d(A1, A2).

Thus, ((1,0),(0,1)) is an optimal pair of fp of T. Moreover, look at the pair (A1, A3). For every
p1, p2 ∈ N and x = (1, 0) ∈ A1 and y = (−1, 0) ∈ A3, we obtain

d(Tp1 x, Tp2 y) = d((1, 0), (−2, 0)) = 3 
 cδ[Cx
p1

, Cy
p2 ] + 2(1− c).

Note that δ[Cx
p1

, Cy
p2 ] = δ[C(1,0)

p1 , C(−1,0)
p2 ] = δ[d((1, 0), (−1, 0)), d((1, 0), (−2, 0))] = 3.

So, T is not the full-3-noncyclic Fisher quasi-contraction mapping. In addition,

lim
t,t′→∞

d(xt, yt′) = d((1, 0), (−2, 0)) = 3 6= 2 = d(A1, A3).

Example 5. Let (R2, d) be the same metric space in Example 4. Also, suppose that A1 = {(a, 0) :
1 6 a 6 2}, A2 = {(a, 0) : −2 6 a 6 −1}, A3 = {(0, b) : 1 6 b 6 2} and A4 = {(0, b) :
−2 6 b 6 −1} are four arbitrary subsets of R2. We define a mapping T on A1 ∪ A2 ∪ A3 ∪ A4
as follows:

Tx =


(1, 0), x ∈ A1

(−1, 0), x ∈ A2

(0, 1), x ∈ A3

(0,−1), x ∈ A4

.

For p = q = 1 and for each x ∈ A1 and y ∈ A2, we have

Cx
1 = {x, (1, 0)}, Cy

1 = {y, (−1, 0)}, δ[Cx
1 , Cy

1 ] = 4 and d(A1, A2) = 2.

Thus, there exists a 0 6 c < 1 so that

d(Tx, Ty) = d((1, 0), (−1, 0)) = 2 6 cδ[Cx
1 , Cy

1 ] + (1− c)d(A1, A2).

Also,

lim
t,t′→∞

d(xt, yt′) = d((1, 0), (−1, 0)) = d(A1, A2) = 2.
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Similarly, we can use the above discussion for all 1 6 i, j 6 4 with i 6= j. Hence, mapping T
is a full-4-noncyclic Fisher quasi-contraction. In addition, T has six unique optimal pairs of fp(s)
as follows:

((1, 0), (0, 1)), ((1, 0), (−1, 0)), ((1, 0), (0,−1))
((0, 1), (−1, 0)), ((−1, 0), (0,−1)), ((0, 1), (0,−1)).

4. Conclusions
In the present paper, we introduced the concepts of n-cyclic Fisher quasi-contraction

mappings, as well as full-n-noncyclic and regular-n-noncyclic Fisher quasi-contraction
mappings in metric spaces. Then we stated and proved several bpp theorems regarding
these contractions. Moreover, we solved an open problem about the number of optimal
pairs of fp(s) for full-n-noncyclic Fisher quasi-contraction mappings. Due to the gener-
alization of this paper, unlike the other articles, we found more than one bpp. In future
studies, readers may concentrate on specific aspects of these points. For example, they
could explore the optimum of a bpp or discuss the unique conditions of these points. Also,
they may obtain similar results in various metric spaces.
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